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Abstract. In this paper, a novel fractional-order 2I2SR rumor spreading model is investigated.
Firstly, the boundedness and uniqueness of solutions are proved. Then the next-generation matrix
method is used to calculate the threshold. Furthermore, the stability of rumor-free/spreading
equilibrium is discussed based on fractional-order Routh–Hurwitz stability criterion, Lyapunov
function method, and invariance principle. Next, the necessary conditions for fractional optimal
control are obtained. Finally, some numerical simulations are given to verify the results.
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1 Introduction

Rumor refers to the remarks that have no corresponding factual basis but are fabricated
and promoted to spread by certain ways. With the development of science and technology,
the rapid spread of rumors causes huge economic losses, disturb the normal order, and
undermine social stability [6, 8]. Therefore, it is of great practical significance to study
the dynamics of rumor propagation in social networks.

The mechanism of rumor transmission is similar to the process of epidemic trans-
mission. In the 1960s, the classic DK model was proposed by Daley and Kendall, which
divided the total population into three categories: ignorant, spreader, and removed, then
numerical method is used to study the spread process of rumors, which is similar to
those in infectious diseases [2, 3]. Based on the above research, the DK model was im-
proved, and then MK model was obtained in 1973 [14]. With the efforts of many scholars,
more and more modified rumor propagation models have been put forward in recent
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years [13, 22, 28, 31]. In 2019, Wang et al. considered the cross-propagation mechanism
and established SIR rumor propagation model in a multilanguage environment. Then its
stability also was deeply investigated [22]. In 2020, considering the network topology,
Li et al. analyzed the dynamic behaviors of rumor propagation model with educational
mechanism and carried out optimal control in the multilanguage environment [13]. In
2020, a time-delay SIR rumor propagation model considering the network topology and
forcing silence function was proposed and the stability of the rumor propagation model
was analyzed in [31]. Yu et al. established 2S2IR model based on multilanguage envi-
ronment and studied Hopf bifurcation with time delay and the important parameter of the
model, respectively [28].

Fractional calculus, called generalized calculus or arbitrary calculus, is a general-
ization of integral calculus and has short-term memory effect and genetic effect. With
the continuous development and improvement of the fractional calculus theory, the frac-
tional differential equation has been widely used in many fields [25, 29, 30]. Huang et
al. considered fractional neural networks with double delays. Furthermore, the stability
and bifurcation of the system were studied [9]. The dynamics of fractional SIR epidemic
model with time delay and saturation function were studied by Wang et al. [23]. In 2019,
Wang et al. proposed a fractional ecoepidemiological model with time delay. Then the
Hopf bifurcation of the system was studied, and the control strategies were given [24].
In recent years, the problem of fractional optimal control has been studied extensively,
and the conditions of fractional optimal control have been obtained [11, 15, 21]. Memory
effect on information transmission process is studied in [17, 20, 26], which shows that
multiple redundant contacts of the same rumor will change people’s initial thoughts of it,
and the cumulative feature will affect the behavior of individuals in social networks. Due
to the memory effect of fractional calculus, rumor propagation process can be analyzed
accurately by studying the rumor propagation process with fractional calculus. In 2019,
Singh considered a SIR rumor propagation model with Atangana–Baleanu derivative, and
the effect of fractional order on the population of each warehouse was studied [18]. A
fractional-order SIR model, which is similar to the epidemic model, was established
to examine the adoption and abandonment of online social networks by social network
users. Then the properties of the solutions of the system were studied in [7]. Ren et al.
established a fractional stochastic rumor propagation model in mobile social networks,
and the stability conditions of the system were obtained [16]. Inspired by [7, 28], we
consider a fractional-order 2I2SR rumor spreading model and study the properties of
the solutions. The optimal control conditions of the system are given at last. The main
contributions of this study are as follows:

• Compared with [28], a fractional 2I2SR rumor propagation model is generalized,
which considers the unit dimension of the equation and memory effect in rumor
propagation process.

• The properties and dynamics of the solutions to the given rumor propagation model
are studied by means of fractional differential equation theory.

• The optimal control of the given fractional rumor propagation model is obtained by
using the fractional optimal control theory.
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The rest of this article is arranged as follows. In Section 2, some preparations re-
lated to fractional equations are introduced. In Section 3, a fraction-order 2S2IR rumor
spreading model is proposed. In Section 4, the properties of the solutions are disscussed.
Furthermore, the fractional-order optimal control strategies are presented. In Section 5,
some numerical simulations are illustrated to verify the theoretical results. In Section 6,
we have a brief summary for the whole paper.

2 Preliminaries

In this section, some preparations related to fractional differential equations are given,
which will be used in the following discussion.

Definition 1. (See [5].) Let f be a function defined on [a, b], and let κ > 0. The Riemann–
Liouville fractional integral of order κ for the function f is defined by

aD
−κ
t f(t) =

1

Γ(κ)

t∫
a

(t− τ)κ−1f(τ) dτ, t ∈ [a, b],

where Γ(·) is the gamma function.

Definition 2. (See [5].) The Caputo fractional derivative of order κ of a function f(t) is
defined as

C
t0D

κ
t f(t) =

1

Γ(n− κ)

t∫
t0

f (n)(τ)

(t− τ)κ+1−n dτ,

where n is the positive integer, and n− 1 < κ < n. Γ(·) is the gamma function, Γ(s) =∫∞
0
ts−1e−t dt. When 0 < κ < 1, one has

C
t0D

κ
t f(t) =

1

Γ(1− κ)

t∫
t0

f ′(τ)

(t− τ)κ
dτ.

Definition 3. (See [15].) Let f ∈ C[a, b], whereC[a, b] represents the space of absolutely
continuous functions on [a, b], the left and right Caputo fractional derivatives (CFDs) are
as follows:

(i) left CFD

C
aD

κ
t f(t) =

1

Γ(n− κ)

t∫
a

f (n)(τ)

(t− τ)κ+1−n dτ ;

(ii) right CFD

C
tD

κ
b f(t) =

(−1)n

Γ(n− κ)

b∫
t

f (n)(τ)

(t− τ)κ+1−n dτ.
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Lemma 1. (See [7].) If f is continuous and κ > 0, then

C
aD

κ
t aD

−κ
t f(t) = f(t).

Lemma 2. (See [27].) Let 0 < α < 1 and t > 0, then function Eα(µ(t − t0)α) is
nonnegative. Furthermore, 0 6 Eα(µ(t− t0)α) 6 1 for t > t0 when µ 6 0.

Lemma 3. (See [12].) Assume that w(t) is continuous on [t0,+∞) and satisfies

C
t0D

κ
t w(t) 6 −λw(t) + µ, w(t0) = wt0 ,

where 0 < κ < 1, (λ, µ) ∈ R2, and λ 6= 0. Then

w(t) 6

(
wt0 −

µ

λ

)
Eκ
[
−λ(t− t0)κ

]
+
µ

λ
.

Lemma 4. (See [12].) Consider the system

C
t0D

κ
t x(t) = f(t, x), t > t0, (1)

with initial condition xt0 , where 0 < κ 6 1, f : [t0,∞) × Ω → Rn, Ω ∈ Rn. Then
there exists a unique solution of system (1) on [t0,∞) × Ω if f(t, x) satisfies the locally
Lipschitz condition with respect to x.

Lemma 5. (See [4].) Considering the following n-dimensional linear fractional differen-
tial system with multiple time delays:

C
0D

κ1
t x1(t) = b11x1(t− τ11) + b12x2(t− τ12) + · · ·+ b1nxn(t− τ1n),

C
0D

κ2
t x2(t) = b21x1(t− τ21) + b22x2(t− τ22) + · · ·+ b2nxn(t− τ2n),

· · ·
C
0D

κn
t xn(t) = bn1x1(t− τn1) + bn2x2(t− τn2) + · · ·+ bnnxn(t− τnn),

(2)

where 0<κi<1, and κi is real. The initial values xi=φi(t) are given for −maxi,j τij=
−τmax 6 t 6 0 and i = 1, 2, . . . , n. In this system, state variables xi(t), xi(t−τij) ∈ R,
time-delay matrix T = (τij)n×n ∈ (R+)n×n, coefficient matrix B = (bij)n×n, and
initial values φi(t) ∈ C0[−τmax, 0]. Then the characteristic matrix of system (2) can be
labeled as

∆(s) =


sκ1 − b11e−sτ11 −b12e−sτ12 · · · −b1ne−sτ1n

−b21e−sτ21 sκ2 − b22e−sτ22 · · · −b2ne−sτ2n

...
...

. . .
...

−bn1e−sτn1 −bn2e−sτn2 · · · sκn − bnne−sτnn

 .

Lemma 6. (See [4].) If all the roots of det∆(s) = 0 satisfy |arg s| > π/2, then the zero
solution of system (2) is Lyapunov globally asymptotically stable.
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Remark 1. Assume that κ1 = κ2 = · · · = κn = κ ∈ (0, 1), and det∆(λ) = 0 is the
characteristic equation of the following equation:

dx(t)

dt
= f(t, x).

Then we have the equivalent conditions:

|arg s| > π

2
⇐⇒ |arg λ| > κπ

2
.

Lemma 7. (See [10].) Assume that u(t) ∈ R+ is continuous and derivable. Then for any
time instant t > t0 and for all κ ∈ (0, 1),

C
t0D

κ
t

[
u(t)− u∗ − u∗ ln

u(t)

u∗

]
6

(
1− u∗

u(t)

)
C
t0D

κ
t u(t), u∗ ∈ R+.

Lemma 8. (See [10].) Consider the following autonomous system:

Dκy(t) = g(y). (3)

Suppose B is a bounded closed set, every solution of system (3) starts from a point in B
and remains in B for all time. There exists V (y) : B → R with continuous first partial
derivatives satisfying the following condition:

DκV |(3) 6 0.

Let F = {y|DκV |(3) = 0}, and let M be the largest invariant set of F . Then every
solution y(t) originating in B tends to M as t → +∞. Particularly, if M = 0, then
y → 0, t→ +∞.

3 Model formulation

Many rumor models have been improved to better understand the rumor spreading pro-
cess. A 2I2SR rumor propagation model in multilingual environment is introduced in [5].
The information may be in Chinese, English, or even other languages since these users
come from different countries or regions. Assume that one of them is the official language
of this social network, and others are unofficial languages, and all users understand official
language. In this model, we consider five types of users: Ignorants-1 (I1(t)), Ignorants-2
(I2(t)), Spreaders-1 (S1(t)), Spreaders-2 (S2(t)) and Removers (R(t)). I1(t) represents
users who can speak both official and other languages, but they prefer to publish infor-
mation in unofficial languages, and they do not know the rumor information. I2(t) stands
for users who only can use official language to exchange information, and they also do
not know the rumor information. S1(t) refers to individuals who have received the rumor
and can speak official language and other languages, but they prefer to spread rumor
in unofficial languages. S2(t) describes the ones who know the rumor and propagate it in

Nonlinear Anal. Model. Control, 28(5):859–882, 2023
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Table 1. Descriptions of parameters for the model (4).

Symbols Description Units
Πi The immigration rates of Ii(t), i = 1, 2 [Number] × [Unit of time]−1

αi The probability of turning Ii(t) into Si(t) [Number] × Unit of time]−1

βi The probability of turning Si(t) into R(t) [Unit of time]−1

u The probability of turning I1(t) into S2(t) [Number] × Unit of time]−1

d The removal rate for each compartment [Unit of time]−1

official language.R(t) represents the rumor recovery individuals who know the rumor and
no longer spread it. The population movement between the five warehouses is modeled
as follows:

dI1(t)

dt
= Π1 − α1I1(t)S1(t)− uI1(t)S2(t)− dI1(t),

dI2(t)

dt
= Π2 − α2I2(t)S2(t)− dI2(t),

dS1(t)

dt
= α1I1(t)S1(t) + uI1(t)S2(t)− dS1(t)− β1S1(t),

dS2(t)

dt
= α2I2(t)S2(t)− dS2(t)− β2S2(t),

dR(t)

dt
= β1S1(t) + β2S2(t)− dR(t)

(4)

with the initial conditions

I1(0) > 0, I2(0) > 0, S1(0) > 0, S2(0) > 0, R(0) > 0.

People’s acceptance of information and whether they choose to spread information
are affected by individual’s subjective will. For model (4), it was established with integer-
order differential equations. A detailed description of the parameters can be seen in Ta-
ble 1. However, the state of each moment does not depend on the historical status of the
system. The memory effect of rumor transmission was not considered. It can be seen
from [7, 9, 11, 15, 16, 18, 23, 24] that fractional calculus can better describe the dynamic
processes with memory effect than integer calculus.

Fractional calculus is introduced to describe the memory effect. Through the appli-
cation of fractional differential equations in dynamical systems in recent years [9, 11,
15, 23, 24], we can generalize system (4) into the following form in the sense of Caputo
derivative:

C
0D

κ
t I1(t) = Π1 − α1I1(t)S1(t)− uI1(t)S2(t)− dI1(t),

C
0D

κ
t I2(t) = Π2 − α2I2(t)S2(t)− dI2(t),

C
0D

κ
t S1(t) = α1I1(t)S1(t) + uI1(t)S2(t)− dS1(t)− β1S1(t),

C
0D

κ
t S2(t) = α2I2(t)S2(t)− dS2(t)− β2S2(t),

C
0D

κ
t R(t) = β1S1(t) + β2S2(t)− dR(t).

(5)
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It is reasonable to generalize system (4) to system (5) because the memory effect of
rumor propagation is considered. However, this approach does not take the time dimen-
sion into better account. The units on the left-hand side of system (5) are [Number] ×
[Unit of time]−κ, while the units on the right-hand side of system (5) are [Number] ×
[Unit of time]−1. In recent years, some scholars have considered the unity of fractional
differential equations, which can be observed in [1, 7].

Inspired by the unit problem of considering parameters in [7], we generalized the
2I2SR rumor propagation model, which was studied in [29], into fractional (0 < κ < 1)
differential equations. Firstly, system (4) is equivalent to the following integral equations:

I1(t) = I1(0) +

t∫
0

[
Π1 − α1I1(s)S1(s)− uI1(s)S2(s)− dI1(s)

]
ds,

I2(t) = I2(0) +

t∫
0

[
Π2 − α2I2(s)S2(s)− dI2(s)

]
ds,

S1(t) = S1(0) +

t∫
0

[
α1I1(s)S1(s) + uI1(s)S2(s)− dS1(s)− β1S1(s)

]
ds,

S2(t) = S2(0) +

t∫
0

[
α2I2(s)S2(s)− dS2(s)− β2S2(s)

]
ds,

R(t) = R(0) +

t∫
0

[
β1S1(s) + β2S2(s)− dR(s)

]
ds

(6)

with the initial conditions

I1(0) > 0, I2(0) > 0, S1(0) > 0, S2(0) > 0, R(0) > 0.

In order to consider the effect of memory effect on rumor spreading process, we
rewrite system (6) into the following form with memory effect:

I1(t) = I1(0) +

t∫
0

k(t, s)
[
Π1 − α1I1(s)S1(s)− uI1(s)S2(s)− dI1(s)

]
ds,

I2(t) = I2(0) +

t∫
0

k(t, s)
[
Π2 − α2I2(s)S2(s)− dI2(s)

]
ds,

S1(t) = S1(0) +

t∫
0

k(t, s)
[
α1I1(s)S1(s) + uI1(s)S2(s)− dS1(s)− β1S1(s)

]
ds,

Nonlinear Anal. Model. Control, 28(5):859–882, 2023
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S2(t) = S2(0) +

t∫
0

k(t, s)
[
α2I2(s)S2(s)− dS2(s)− β2S2(s)

]
ds,

R(t) = R(0) +

t∫
0

k(t, s)
[
β1S1(s) + β2S2(s)− dR(s)

]
ds,

where k(t, s) is the kernel function, and it has the following form:

k(t, s) =
1

Γ(κ)
(t− s)κ−1, κ ∈ (0, 1).

Remark 2. Compared with integer calculus, the memory of fractional calculus is mainly
reflected in the power law property of kernel function.

Considering the unity of the units on both sides of this equations and applying Defi-
nition 1, we obtain

I1(t)− I1(0) = 0D
−κ
t

[
Πκ

1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t)
]
,

I2(t)− I2(0) = 0D
−κ
t

[
Πκ

2 − ακ2I2(t)S2(t)− dκI2(t)
]
,

S1(t)− S1(0) = 0D
−κ
t

[
ακ1I1(t)S1(t) + uκI1(t)S2(t)− dκS1(t)− βκ1S1(t)

]
,

S2(t)− S2(0) = 0D
−κ
t

[
ακ2I2(t)S2(t)− dκS2(t)− βκ2S2(t)

]
,

R(t)−R(0) = 0D
−κ
t

[
βκ1S1(t) + βκ2S2(t)− dκR(t)

]
.

(7)

Applying Lemma 1 and the Caputo derivative of order κ to both sides of Eq. (7), the
following fractional-order 2S2IR rumor propagation model can be obtained:

C
0D

κ
t I1(t) = Πκ

1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t),
C
0D

κ
t I2(t) = Πκ

2 − ακ2I2(t)S2(t)− dκI2(t),
C
0D

κ
t S1(t) = ακ1I1(t)S1(t) + uκI1(t)S2(t)− dκS1(t)− βκ1S1(t),

C
0D

κ
t S2(t) = ακ2I2(t)S2(t)− dκS2(t)− βκ2S2(t),

C
0D

κ
t R(t) = βκ1S1(t) + βκ2S2(t)− dκR(t)

(8)

with the initial conditions

I1(0) > 0, I2(0) > 0, S1(0) > 0, S2(0) > 0, R(0) > 0.

After a simple analysis of model (8), we can easily find that both sides of the equations
have the same units. The specific parameters of this model are shown in Table 2. The
following discussion and analysis are based on model (8).

Remark 3. When κ → 1−, system (8) is transformed into system (4) without memory
effect. Furthermore, system (4) can be viewed as a special case of system (8), and it can be
seen that the order κ is an intuitive embodiment of the memory effect of fractional-order
system (8).
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Table 2. Descriptions of parameters for the model (8).

Symbols Description Units

Πi The immigration rate of Ii(t), i = 1, 2 [Number]1/κ × [Unit of time]−1

αi The probability of turning Ii(t) into Si(t) [Number]−1/κ × [Unit of time]−1

βi The probability of turning Si(t) into R(t) [Unit of time]−1

u The probability of turning I1(t) into S2(t) [Number]−1/κ × [Unit of time]−1

d The removal rate for each compartment [Unit of time]−1

4 Main results

In this section, we mainly prove the boundedness and uniqueness of the solutions of
system (8). Next, the sufficient conditions for the stability of equilibriums are obtained.
Furthermore, the necessary conditions for fractional optimal control are obtained.

4.1 Properties of the solutions

For convenience, let D+ = {(I1(t), I2(t), S1(t), S2(t), R(t)): I1(t) ∈ R+, I2(t) ∈ R+,
S1(t) ∈ R+, S2(t) ∈ R+, R(t) ∈ R+}.
Theorem 1. All the solutions of system (8), which start in D+, are bounded.

Proof. Define the function W (t) = I1(t) + I2(t) + S1(t) + S2(t) + R(t). Then we can
obtain

C
0D

κ
tW (t) + dκW (t)

= Πκ
1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t)

+Πκ
2 − ακ2I2(t)S2(t)− dκI2(t) + ακ1I1(t)S1(t)

+ uκI1(t)S2(t)− dκS1(t)− βκ1S1(t) + ακ2I2(t)S2(t)

− dκS2(t)− βκ2S2(t) + βκ1S1(t) + βκ2S2(t)− dκR(t)

+ dκ
(
I1(t) + I2(t) + S1(t) + S2(t) +R(t)

)
= Πκ

1 +Πκ
2 .

By Lemmas 2, 3 we can get

W (t) 6

(
Wt0 −

Πκ
1 +Πκ

2

dκ

)
Eκ
[
−dκ(t− t0)

]
+
Πκ

1 +Πκ
2

dκ
→ Πκ

1 +Πκ
2

dκ

as t→ +∞. Therefore, all the solutions of system (8), which start in D+, are confined to
the region

Θ =

{(
I1(t), I2(t), S1(t), S2(t), R(t)

)
∈ D+:

2∑
i=1

Ii(t) +

2∑
i=1

Si(t) +R(t) 6
Πκ

1 +Πκ
2

dκ

}
.

This completes the proof of theorem.
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Theorem 2. System (8) has a unique solution Y = (I1(t), I2(t), S1(t), S2(t), R(t))∈Z
for every (I10, I20, S10, S20, R0) ∈ Z, where Z={(I1(t), I2(t), S1(t), S2(t), R(t))∈R5:
max{|I1(t)|, |I2(t)|, |S1(t)|, |S2(t)|, |R(t)|} 6M}.

Proof. Consider a mapping H(Y ) = (H1(Y ), H2(Y ), H3(Y ), H4(Y ), H5(Y )), where

H1(Y ) = Πκ
1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t),

H2(Y ) = Πκ
2 − ακ2I2(t)S2(t)− dκI2(t),

H3(Y ) = ακ1I1(t)S1(t) + uκI1(t)S2(t)− dκS1(t)− βκ1S1(t),

H4(Y ) = ακ2I2(t)S2(t)− dκS2(t)− βκ2S2(t),

H5(Y ) = βκ1S1(t) + βκ2S2(t)− dκR(t).

For any Y, Ŷ ∈ Z,∥∥H(Y )−H(Ŷ )
∥∥

=
∥∥H1(Y )−H1(Ŷ )

∥∥+
∥∥H2(Y )−H2(Ŷ )

∥∥+
∥∥H3(Y )−H3(Ŷ )

∥∥
+
∥∥H4(Y )−H4(Ŷ )

∥∥+
∥∥H5(Y )−H5(Ŷ )

∥∥
=
∣∣Πκ

1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t)

− (Πκ
1 − ακ1 Î1(t)Ŝ1(t)− uκÎ1(t)Ŝ2(t)− dκÎ1(t)

)∣∣
+
∣∣Πκ

2 − ακ2I2(t)S2(t)− dκI2(t)−
(
Πκ

2 − ακ2 Î2(t)Ŝ2(t)− dκÎ2(t)
)∣∣

+
∣∣ακ1I1(t)S1(t) + uκI1(t)S2(t)− dκS1(t)− βκ1S1(t)

−
(
ακ1 Î1(t)Ŝ1(t) + uκÎ1(t)Ŝ2(t)− dκŜ1(t)− βκ1 Ŝ1(t)

)∣∣
+
∣∣ακ2I2(t)S2(t)− dκS2(t)− βκ2S2(t)

−
(
ακ2 Î2(t)Ŝ2(t)− dκŜ2(t)− βκ2 Ŝ2(t)

)∣∣
+
∣∣βκ1S1(t) + βκ2S2(t)− dκR(t)−

(
βκ1 Ŝ1(t) + βκ2 Ŝ2(t)− dκR̂(t)

)∣∣
6 2
∣∣ακ1I1(t)S1(t)− ακ1I1(t)Ŝ1(t) + ακ1I1(t)Ŝ1(t)− ακ1 Î1(t)Ŝ1(t)

∣∣
+ 2
∣∣uκI1(t)S2(t)− uκI1(t)Ŝ2(t) + uκI1(t)Ŝ2(t)− uκÎ1(t)Ŝ2(t)

∣∣
+ 2
∣∣ακ2I2(t)S2(t)− ακ2I2(t)Ŝ2(t) + ακ2I2(t)Ŝ2(t)− ακ2 Î2(t)Ŝ2(t)

∣∣
+
(
dκ + 2βκ1 )

∣∣S1(t)− Ŝ1(t)|+ (dκ + 2βκ2 )|S2(t)− Ŝ2(t)
∣∣

+ dκ
∣∣I2(t)− Î2(t)

∣∣+ dκ|R(t)− R̂(t)
∣∣

6
(
2ακ1

∣∣I1(t)
∣∣+ 2βκ1 + dκ)

∣∣S1(t)− Ŝ1(t)
∣∣

+
(
2ακ1

∣∣Ŝ1(t)
∣∣+ 2uκ|Ŝ2(t)

∣∣+ dκ)
∣∣I1(t)− Î1(t)

∣∣
+
(
2uκ

∣∣I1(t)
∣∣+ 2ακ2

∣∣I2(t)
∣∣+ 2βκ2 + dκ)

∣∣S2(t)− Ŝ2(t)
∣∣

+
(
2ακ2

∣∣Ŝ2(t)
∣∣+ βκ2 + dκ)

∣∣I2(t)− Î2(t)
∣∣+ dκ|R(t)− R̂(t)

∣∣.
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Let M1 = max{|I1(t)|, |I2(t)|, |Ŝ1(t)|, |Ŝ2(t)|}, then we have∥∥H(Y )−H(Ŷ )
∥∥ =

(
2ακ1M + 2βκ1 + dκ

)∣∣S1(t)− Ŝ1(t)
∣∣

+
(
2uκM + 2ακ2M + 2βκ2 + dκ

)∣∣S2(t)− Ŝ2(t)
∣∣

+
(
2ακ1M + 2uκM + dκ

)∣∣I1(t)− Î1(t)
∣∣

+
(
2ακ2M + dκ

)∣∣I2(t)− Î2(t)
∣∣+ dκ

∣∣R(t)− R̂(t)
∣∣.

Let

L = max
{

2ακ1M1 + 2βκ1 + dκ, 2uκM1 + 2ακ2M1 + 2βκ2 + dκ,

2ακ1M1 + 2uκM1 + dκ
}
.

Furthermore, we can obtain ‖H(Y ) − H(Ŷ )‖ 6 L‖Y − Ŷ ‖. This completes the proof
by applying Lemma 4.

4.2 Stability analysis

In this section, we will give the threshold Rα0 and discuss the stability of the equilibrium
of system (8). The main results and proofs are as follows.

Firstly, the threshold of system (8) is calculated by using the next-generation matrix
method. Now, we only need to investigate the following subsystem:

C
0D

κ
t I1(t) = Πκ

1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t),
C
0D

κ
t I2(t) = Πκ

2 − ακ2I2(t)S2(t)− dκI2(t),
C
0D

κ
t S1(t) = ακ1I1(t)S1(t) + uκI1(t)S2(t)− dκS1(t)− βκ1S1(t),

C
0D

κ
t S2(t) = ακ2I2(t)S2(t)− dκS2(t)− βκ2S2(t).

(9)

By calculation it is clear that the rumor-free equilibrium E0 = (Πκ
1 /d

κ, Πκ
2 /d

κ, 0, 0).
Let χ(t) = (I1(t), I2(t), S1(t), S2(t))T, then system (9) can be rewritten as

C
0D

κ
t χ(t) = F(χ)− V(χ),

where

F(χ) =


ακ1I1(t)S1(t) + uκI1(t)S2(t)

ακ2I2(t)S2(t)
0
0

 ,

V(χ) =


(dκ + βκ1 )S1(t)
(dκ + βκ2 )S2(t)

ακ1I1(t)S1(t) + uκI1(t)S2(t) + dκI1(t)−Πκ
1

ακ2I2(t)S2(t) + dκI2(t)−Πκ
2

 .

We can obtain the Jacobian matrices DF(χ) and DV(χ) at E0 as follows:

DF(χ) =

(
F 0
0 0

)
, DV(χ) =

(
V 0
A1 A2

)
,
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where

F1 =

(
ακ1Π

κ
1

dκ
uκΠκ1
dκ

0
ακ2Π

κ
2

dκ

)
, V1 =

(
dκ + βκ1 0

0 dκ + βκ2

)
,

A1 =

(
ακ1Π

κ
1

dκ
uκΠκ1
dκ

0
ακ2Π

κ
2

dκ

)
, A2 =

(
dκ 0
0 dκ

)
.

Thus,

F1V
−1
1 =

(
ακ1Π

κ
1

dκ(dκ+βκ1 )
0

0
ακ2Π

κ
2

dκ(dκ+βκ2 )

)
.

The threshold of system (8) is given by

Rκ0 =

2∑
i=1

ακiΠ
κ
i

dκ(dκ + βκi )
=

2∑
i=1

Rκ0i.

Remark 4. Rκ0 is a threshold quantity. When κ = 1,Rκ0 is the basic reproduction number
of model (8). It refers to the number of people that a ignorant can turn into a spreader
during the average period of transmission when everyone is ignorant at the initial stage of
rumor transmission.

Remark 5. In a multilingual environment, the system threshold Rκ0 is equal to the sum
of the thresholds Rκ0i of each group i. In this paper, Rκ01 and Rκ02 are thresholds in two
language environments, respectively. A detailed description can be found in [19].

Let Ī1(t) = I1(t)− I∗1 , Ī2(t) = I2(t)− I∗2 , S̄1(t) = S1(t)−S∗1 , S̄2(t) = S2(t)−S∗2 ,
R̄(t) = R(t)−R∗. The linear system of system (8) is

C
0D

κ
t Ī1(t) = (−ακ1S∗1 − uκS∗2 − dκ)Ī1(t)− ακ1I∗1 S̄1(t)− uκI∗1 S̄2(t),

C
0D

κ
t Ī2(t) = (−ακ2S∗2 − dκ)Ī2(t)− ακ2I∗2 S̄2(t),

C
0D

κ
t S̄1(t) = (ακ1S

∗
1 + uκS∗2 )Ī1(t) + (ακ1I

∗
1 − βκ1 − dκ)S̄1(t) + uκI∗1 S̄2(t),

C
0D

κ
t S̄2(t) = ακ2S

∗
2 Ī2(t) + (ακ2I

∗
2 − βκ2 − dκ)S̄2(t),

C
0D

κ
t R̄(t) = βκ1 S̄1(t) + βκ2 S̄2(t)− dκR̄(t).

Obviously, R(t) is independent of the first four equations, so we can just consider the first
four equations in the following study.

Theorem 3. The rumor-free equilibrium E0 of system (8) is locally asymptotically stable
when Rκ01 < 1 and Rκ02 < 1.

Proof. The characteristic matrix of system (8) at E0 = (Πκ
1 /d

κ, Πκ
2 /d

κ, 0, 0) is

∆(s) =


sκ + dκ 0

ακ1Π
κ
1

dκ
uκΠκ1
dκ

0 sκ + dκ 0
ακ2Π

κ
2

dκ

0 0 sκ − ακ1Π
κ
1

dκ + βκ1 + dκ
uκΠκ1
dκ

0 0 0 sκ − ακ2Π
κ
2

dκ + βκ2 + dκ

 .
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Hence, the characteristic equation that corresponds to system (8) is(
sκ + dκ

)(
sκ + dκ

)(
sκ − ακ1Π

κ
1

dκ
+ βκ1 + dκ

)(
sκ − ακ2Π

κ
2

dκ
+ βκ2 + dκ

)
= 0. (10)

Let λ = sκ, the roots of Eq. 10 are given by

λ1 = λ2 = −dκ, λ3 =
(
βκ1 + dκ

)(
Rκ01 − 1

)
, λ4 =

(
βκ2 + dκ)(Rκ02 − 1

)
.

Obviously, λ1 < 0, λ2 < 0, λ3 < 0 and λ4 < 0 when Rκ01 < 1 and Rκ02 < 1.
Furthermore, arg(λi) > π/2 > κπ/2, which means arg(si) > π/2, i = 1, 2, 3, 4. By
applying Lemma 6 E0 is locally asymptotically stable when Rκ01 < 1 and Rκ02 < 1.

Next, we discuss the stability of rumor-spreading equilibrium, system (8) satisfies the
following equations at E∗ = (I∗1 , I

∗
2 , S

∗
1 , S

∗
2 , R

∗):

Πκ
1 − ακ1I∗1S∗1 − uκI∗1S∗2 − dκI∗1 = 0,

Πκ
2 − ακ2I∗2S∗2 − dκI∗2 = 0,

ακ1I
∗
1S
∗
1 + uκI∗1S

∗
2 − dκS∗1 − βκ1S∗1 = 0,

ακ2I
∗
2S
∗
2 − dκS∗2 − βκ2S∗2 = 0.

(11)

When ακ1Π
κ
1 − dκ(dκ + βκ1 ) > 0, we can get E∗1 = (I∗1 , I

∗
2 , S

∗
1 , S

∗
2 , R

∗), where

I∗1 =
dκ + βκ1
ακ1

, I∗2 =
Πκ

2

dκ
, S∗1 =

dκ(Rκ01−1)

ακ1
, S∗2 = 0.

When ακ2Π
κ
2 − dκ(dκ + βκ2 ) > 0, we can obtain that E∗2 = (I∗1 , I

∗
2 , S

∗
1 , S

∗
2 , R

∗), where

I∗1 =
ακ2Π

κ
1

ακ1α
κ
2S
∗
1 + ακ2d

κ + uκdκ(Rκ02−1)
, I∗2 =

dκ+βκ2
ακ2

, S∗2 =
dκ(Rκ02−1)

ακ2
.

Combining the expressions of I∗1 , S∗2 and the third equation of system (11), it can be seen
that

a0(S∗1 )2 + b0(S∗1 ) + c0 = 0, (12)
where

a0 = −ακ1ακ2
(
dκ + βκ1

)
,

b0 = ακ2
(
ακ1Π

κ
1 − dκ

(
dκ + βκ1

))
− uκ

(
dκ + βκ1

)ακ2Πκ
2 − dκ(dκ + βκ2 )

dκ + βκ2
,

c0 = Πκ
1 u

κα
κ
2Π

κ
2 − dκ(dκ + βκ2 )

dκ + βκ2
.

The following results can be proved by simple calculation:

c0 > 0 ⇐⇒ ακ2Π
κ
2 − dκ

(
dκ + βκ2

)
> 0, c0 = 0

⇐⇒ ακ2Π
κ
2 − dκ

(
dκ + βκ2

)
= 0.

Nonlinear Anal. Model. Control, 28(5):859–882, 2023

https://doi.org/10.15388/namc.2023.28.32599


872 M. Ye et al.

So we discuss the roots of Eq. (12) in two different cases in the following study.

(i) For c0 > 0, Eq. (12) has a unique positive root S∗1 .
(ii) For c0 = 0, Eq. (12) is equivalent to a0(S∗1 )2 + v0S

∗
1 = 0 in which v0 =

ακ2 (ακ1Π
κ
1 − dκ(dκ + βκ1 )).

Theorem 4. The following results can be derived:

(i) If Rκ01 > 1, system (8) has a unique rumor-spreading equilibrium E∗1 .
(ii) If Rκ02 > 1, system (8) has a unique rumor-spreading equilibrium E∗2 .

Theorem 5. If Rκ01 > 1 and Rκ02 < 1 are satisfied, the rumor-spreading equilibrium E∗1
of system (8) is locally asymptotically stable.

Proof. By a simple calculation it can be obtained that the rumor-spreading equilibrium
E∗1 = ((dκ + βκ1 )/ακ1 , Π

κ
2 /d

κ, dκ(Rκ01 − 1)/ακ1 , 0). The characteristic matrix of sys-
tem (8) at E∗1 is

∆(s) =


sκ + dκ + ακ1S

∗
1 0 ακ1I

∗
1 uκI∗1

0 sκ + dκ 0 ακ2I
∗
2

−ακ1S∗1 0 sκ − ακ1I∗1 + (dκ + βκ1 ) uκI∗1
0 0 0 sκ − ακ2I∗2 + (dκ + βκ2 )

 .

Hence, the characteristic equation that corresponds to system (8) is[
sκ − ακ2I∗2 +

(
dκ + βκ2

)]
×
(
sκ + dκ

)[
s2κ +

(
dκ + ακ1S

∗
1

)
sκ + ακ1I

∗
1α

κ
1S
∗
1

]
= 0. (13)

Let λ = sκ, then substituting S∗1 , I∗2 into Eq. (13), we can get[
λ−

(
dκ + βκ2

)(
Rκ02 − 1

)](
λ+ dκ

)
×
{
λ2 +

ακ1Π
κ
1

dκ + βκ1
λ+

[
dκ
(
dκ + βκ1

)(
Rκ01 − 1

)]}
= 0.

Obviously, λi < 0 (i = 1, 2, 3, 4) when Rκ02 < 1 and Rκ01 > 1. At the same time,
arg(λi) > π/2 > κπ/2, which means arg(si) > π/2 (i = 1, 2, 3, 4). By applying
Lemma 6 E0 is locally asymptotically stable when Rκ02 < 1 and Rκ01 > 1 are satis-
fied.

We make the following hypotheses to obtain our result.

(H1) ακ1I
∗
1 − (dκ + βκ1 ) 6 0.

(H2) AuκI∗1S
∗
1 +Bακ2I

∗
2S
∗
2 −B(dκ + βκ2 )S∗2 6 0.

(H3) uκI∗1S
∗
2 − ακ1I∗1S∗1 − (dκ + βκ1 )S∗1 6 0.

Theorem 6. If Rκ02 > 1 and (H1)–(H3) are satisfied, the rumor-spreading equilibrium
E∗2 of system (8) is globally asymptotically stable.
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Proof. Lyapunov function is constructed as follows:

V (t) = A

(
I∗1g

(
I1(t)

I∗1

))
+B

(
I∗2g

(
I2(t)

I∗2

))
+A

(
S∗1g

(
S1(t)

S∗1

))
+B

(
S∗2g

(
S2(t)

S∗2

))
,

where A, B are positive constants, and g(y) = y − 1− ln y > 0 for y > 0. Let

x1 =
I1(t)

I∗1
, x2 =

I2(t)

I∗2
, y1 =

S1(t)

S∗1
, y2 =

S2(t)

S∗2
.

Next, differentiating V (t) along system (8), one has

C
0D

κ
t V (t) 6 A

(
1− 1

x1

)
C
0D

κ
t I1(t) +B

(
1− 1

x2

)
C
0D

κ
t I2(t)

+A

(
1− 1

y1

)
C
0D

κ
t S1(t) +B

(
1− 1

y2

)
C
0D

κ
t S2(t).

Combining Eq. (8) with Eq. (11), we have

C
0D

κ
t I1(t) = −ακ1

(
I1(t)S1(t)− I∗1S∗1

)
− uκ

(
I1(t)S2(t)− I∗1S∗2

)
− dκ

(
I1(t)− I∗1

)
= ακ1I

∗
1S
∗
1 (1− x1y1) + uκI∗1S

∗
2 (1− x1y2)− dκI∗1 (x1 − 1),

C
0D

κ
t I2(t) = −ακ2

(
I2(t)S2(t)− I∗2S∗2

)
− dκ

(
I2(t)− I∗2

)
= ακ2I

∗
2S
∗
2 (1− x2y2)− dκI∗2 (x2 − 1),

C
0D

κ
t S1(t) = ακ1

(
I1(t)S1(t)− I∗1S∗1

)
+ uκ

(
I1(t)S2(t)− I∗1S∗2

)
−
(
dκ + βκ1

)(
S1(t)− S∗1

)
= ακ1I

∗
1S
∗
1 (1− x1y1) + uκI∗1S

∗
2 (1− x1y2)− dκI∗1 (x1 − 1),

C
0D

κ
t S2(t) = ακ2

(
I2(t)S2(t)− I∗2S∗2

)
−
(
dκ + βκ2

)(
S2(t)− S∗2

)
= ακ1I

∗
1S
∗
1 (1− x1y1) + uκI∗1S

∗
2 (1− x1y2)− dκI∗1 (x1 − 1).

Furthermore, we can obtain

C
0D

κ
t V (t) 6 A

[
ακ1I

∗
1S
∗
1g(y1)− ακ1I∗1S∗1g

(
1

x1

)
− ακ1I∗1S∗1g(x1y1) + uκI∗1S

∗
2g(y2)

− uκI∗1S∗2g
(

1

x1

)
− uκI∗1S∗2g(x1y2)− dκI∗1g(x1)− dκI∗1g

(
1

x1

)]
+B

[
ακ2I

∗
2S
∗
2g(y2)− ακ2I∗2S∗2g

(
1

x2

)
− ακ2I∗2S∗2g(x2y2)

− dκI∗2g(x2)− dκI∗2g
(

1

x2

)]
+A

[
−ακ1I∗1S∗1g(x1)− ακ1I∗1S∗1g

(
1

y1

)
+ ακ1I

∗
1S
∗
1g(x1y1)
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+ uκI∗1S
∗
2g(x1y2)− uκI∗1S∗2g

(
x1y2
y1

)
+ uκI∗1S

∗
2g

(
1

y1

)
−
(
dκ + βκ1

)
S∗1g(y1)−

(
dκ + βκ1

)
S∗1g

(
1

y1

)]
+B

[
ακ2I

∗
2S
∗
2g(x2y2)− ακ2I∗2S∗2g(x2)− ακ2I∗2S∗2g

(
1

y1

)
−
(
dκ + βκ2

)
S∗2g(y2)−

(
dκ + βκ2

)
S∗2g

(
1

y2

)]
= A

(
−dκI∗1 − ακ1I∗1S∗1

)
g(x1) +B

(
−dκI∗2 − ακ2I∗2S∗2

)
g(x2)

+A
[
ακ1I

∗
1S
∗
1 −

(
dκ + βκ1

)
S∗1
]
g(y1)

+
[
AuκI∗1S

∗
1 +Bακ2I

∗
2S
∗
2 −B

(
dκ + βκ2

)
S∗2
]
g(y2)

+A
(
−ακ1I∗1S∗1 − dκI∗1 − uκI∗1S∗2

)
g

(
1

x1

)
+A

[
uκI∗1S

∗
2 − ακ1I∗1S∗1 −

(
dκ + βκ1

)
S∗1
]
g

(
1

y1

)
+B

[
−ακ2I∗2S∗2 −

(
dκ + βκ2

)
S∗2
]
g

(
1

y2

)
−AuκI∗1S∗2g

(
x1y2
y1

)
.

Choose appropriate A and B to make sure that

ακ1I
∗
1 −

(
dκ + βκ1

)
6 0,

AuκI∗1S
∗
1 +Bακ2I

∗
2S
∗
2 −B

(
dκ + βκ2

)
S∗2 6 0,

uκI∗1S
∗
2 − ακ1I∗1S∗1 −

(
dκ + βκ1

)
S∗1 6 0.

It can be seen that C0D
κ
t V (t) 6 0, and C

0D
κ
t V (t) = 0 if and only if(

I1(t), I2(t), S1(t), S2(t)
)

= (I∗1 , I
∗
2 , S

∗
1 , S

∗
2 ).

By Lemma 7 the rumor-spreading equilibriumE∗2 of system (8) is globally asymptotically
stable when Rκ02 > 1 is satisfied.

4.3 Fractional-order optimal control for 2I2SR rumor spreading model

Optimal control theory has a wide range of applications in biological systems, infectious
diseases, and rumor control. Therefore, considering the memory effect of the system, it
is necessary to study the fractional-order optimal control problem [11]. In this part, the
optimal control method can effectively suppress rumors in the expected time period at the
lowest cost. We formulate an optimal problem for model (8) to find a suitable compromise
between minimizing the number of the spreaders and the cost of the control. We introduce
Lebesgue square-integrable control function ui(t) ∈ ∆, where ∆ = {ui(t) is Lebesgue
measurable on (0, Tm], 0 6 ui(t) 6 1, t ∈ (0, Tm], i = 1, 2} denotes the set of
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admissible controls, and Tm is the ending time. The improved controlled model is as
follows:
C
0D

κ
t I1(t) = Πκ

1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t),
C
0D

κ
t I2(t) = Πκ

2 − ακ2I2(t)S2(t)− dκI2(t),
C
0D

κ
t S1(t) = ακ1I1(t)S1(t) + uκI1(t)S2(t)− dκS1(t)− βκ1S1(t)− u1(t)S1(t),

C
0D

κ
t S2(t) = ακ2I2(t)S2(t)− dκS2(t)− βκ2S2(t)− u2(t)S2(t),

C
0D

κ
t R(t) = βκ1S1(t) + βκ2S2(t)− dκR(t) + u1(t)S1(t) + u2(t)S2(t)

(14)

with the initial condition

I1(0) > 0, I2(0) > 0, S1(0) > 0, S2(0) > 0, R(0) > 0.

In order to study the optimal level of the number of spreaders and cost under the control
function u1(t) and u2(t), the objective function J(u1(t), u2(t)) is constructed as follows:

J
(
u1(t), u2(t)

)
=

Tm∫
0

[
ψ1S1(t) + ψ2S2(t) + φ1u

2
1(t) + φ2u

2
2(t)

]
dt, (15)

where ψ1, ψ2, φ1, φ2 are positive weights, φiu2i (t) (i = 1, 2) represents the average cost
of applying control ui(t) (i = 1, 2) to control and educate Si(t) (i = 1, 2).

The Lagrangian function is given by

L
(
S1(t), S2(t), u1(t), u2(t)

)
= ψ1S1(t) + ψ2S2(t) + φ1u

2
1(t) + φ2u

2
2(t).

To solve the optimal control problem, the Hamiltonian function of Eq. (15) is defined as

H
(
Ii(t), Si(t), R(t), ui(t), λj(t)

)
= L

(
S1(t), S2(t), u1(t), u2(t)

)
+ λ1(t)

[
Πκ

1 − ακ1I1(t)S1(t)− uκI1(t)S2(t)− dκI1(t)
]

+ λ2(t)
[
Πκ

2 − ακ2I2(t)S2(t)− dκI2(t)
]

+ λ3(t)
[
ακ1I1(t)S1(t) + uκI1(t)S2(t)− dκS1(t)− βκ1S1(t)− u1(t)S1(t)

]
+ λ4(t)

[
ακ2I2(t)S2(t)− dκS2(t)− βκ2S2(t)− u2(t)S2(t)

]
+ λ5(t)

[
βκ1S1(t) + βκ2S2(t)− dκR(t) + u1(t)S1(t) + u2(t)S2(t)

]
.

Let (I∗1 (t), I∗2 (t), S∗1 (t), S∗2 (t), R∗(t)) be the optimal solution with (u∗1(t), u∗2(t)) for
the controlled system (14). From [11] we can get the necessary conditions for optimal
control that λi(t) (i = 1, . . . , 5) satisfy

C
0D

κ
t λ1(Tm − t) = λ1(Tm − t)

(
−ακ1S∗1 (Tm − t)− uκS∗2 (Tm − t)− dκ

)
+ λ3(Tm − t)

(
ακ1S

∗
1 (Tm − t) + uκS∗2 (Tm − t)

)
,

C
0D

κ
t λ2(Tm − t) = λ2(Tm − t)

(
−ακ2S∗2 (Tm − t)− dκ

)
+ λ4(Tm − t)ακ2S∗2 (Tm − t),
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C
0D

κ
t λ3(Tm − t) = ψ1 − λ1(Tm − t)ακ1I∗1 (Tm − t)

+ λ3(Tm − t)
(
ακ1I

∗
1 (Tm − t)− dκ − βκ1 − u1(Tm − t)

)
+ λ5(Tm − t)

(
βκ1 + u1(Tm − t)

)
,

C
0D

κ
t λ4(Tm − t) = ψ2 − λ1(Tm − t)uκI∗1 (Tm − t)− λ2(Tm − t)ακ2I∗2 (Tm − t)

+ λ5(Tm − t)
(
βκ2 u2(Tm − t)

)
+ λ4(Tm − t)

(
ακ2I

∗
2 (Tm − t)− dκ − βκ2 − u2(Tm − t)

)
+ λ3(Tm − t)uκI∗1 (Tm − t),

C
0D

κ
t λ5(Tm − t) = λ5(Tm − t)dκ

with the terminal condition

λ1(Tm) = λ2(Tm) = λ3(Tm) = λ4(Tm) = λ5(Tm) = 0.

From [11] we have

∂H(t)

∂u1(t)

∣∣∣∣
u1(t)

= u∗1(t) = 2φ1u
∗
1(t)− λ3(t)S∗1 (t) + λ5(t)S∗1 (t) = 0, (16)

∂H(t)

∂u2(t)

∣∣∣∣
u2(t)

= u∗2(t) = 2φ2u
∗
2(t)− λ4(t)S∗2 (t) + λ5(t)S∗2 (t) = 0. (17)

Solving Eqs. (16), (17), we can obtain

u∗1(t) =
(λ3(t)− λ5(t))S∗1 (t)

2φ1
, u∗2(t) =

(λ4(t)− λ5(t))S∗2 (t)

2φ2
.

Furthermore, u∗1(t) and u∗2(t) can be given as follows:

u∗1(t) = min

{
max

{
(λ3(t)− λ5(t))S∗1 (t)

2φ1
, 0

}
, 1

}
,

u∗2(t) = min

{
max

{
(λ4(t)− λ5(t))S∗2 (t)

2φ2
, 0

}
, 1

}
.

Remark 6. In [13, 22, 28], rumor propagation models in multilingual environment are
established, and the stability of these systems is studied. Different from their work, a frac-
tional-order 2I2SR rumor model is proposed in multilingual environment in which the
memory effect in rumor propagation is considered by Caputo fractional derivative. More
importantly, the necessary conditions for fractional optimal control of rumor propagation
are obtained.

Remark 7. Compared with [11,15,23,24], not only a fractional 2I2SR rumor propagation
model is established in a multilingual environment and the stability conditions of the
fractional-order system are obtained, but also the unity of units on the left and right sides
of the generalized equation is taken into account, which is worth being considered in
future research.
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5 Numerical examples

To solve fractional differential equations, we mainly use predictor-corrector method, which
is described in [15].

5.1 Stability of rumor-free equilibrium E0

In this part, we selectΠ1 = 30,Π2 = 25, α1 = 0.002, α2 = 0.001, u = 0.001, d = 0.12,
β1 = 0.55, β2 = 0.45, κ = 0.96. By calculation it follows that Rκ01 = 0.7408, Rκ02 =
0.3727, and E0 = (200, 168, 0, 0, 0). Based on Theorem 3, E0 is locally asymptotically
stable when Rκ01 < 1 and Rκ02 < 1. The results are shown in Fig. 1.

5.2 Stability of rumor equilibrium E∗
1 and E∗

2

In order to discuss the stability of E∗1 , we select Π1 = 25, Π2 = 20, α1 = 0.003,
α2 = 0.001, u = 0.001, d = 0.06, β1 = 0.3, β2 = 0.35, κ = 0.95. By calculation it
follows that Rκ01 = 3.1886, Rκ02 = 0.8041, and E∗1 = (97, 249, 38, 0, 174). Based on
Theorem 5, E∗1 is locally asymptotically stable when Rκ01 > 1 and Rκ02 < 1. The results
are shown in Fig. 2.

(a) (b)

Figure 1. Local asymptotic stability of E0, Rκ01 = 0.7408 < 1, Rκ02 = 0.3727 < 1.

(a) (b)

Figure 2. Local asymptotic stability of E∗
1 , Rκ01 = 3.1886 > 1, Rκ02 = 0.8041 < 1.
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(a) (b)

Figure 3. Global asymptotic stability of E∗
2 , Rκ01 = 4.725 > 1, Rκ02 = 4.725 > 1.

(a) (b)

Figure 4. Global asymptotic stability of E∗
2 , Rκ01 = 0.4644 < 1, Rκ02 = 1.8421 > 1.

We will discuss the stability of E∗2 in the following two cases: (i) Rκ02 > 1, Rκ01 > 1;
(ii) Rκ02 > 1, Rκ01 < 1.

For case (i), we choose Π1 = 50, Π2 = 50, α1 = 0.001, α2 = 0.001, u = 0.0005,
d = 0.02, β1 = 0.5, β2 = 0.5, κ = 0.99. By calculation it follows that Rκ01 = 4.725,
Rκ02 = 4.725, and E∗2 = (334, 489, 78, 72, 3649). Based on Theorem 6, E∗2 is globally
asymptotically stable when Rκ01 > 1 and Rκ02 > 1. The results are shown in Fig. 3.

For case (ii), we choose Π1 = 30, Π2 = 35, α1 = 0.002, α2 = 0.005, u = 0.001,
d = 0.2, β1 = 0.45, β2 = 0.25, κ = 0.96. By calculation it follows that Rκ01 =
0.4644,Rκ02 = 1.8421, andE∗2 = (96, 77, 8, 29, 54). Based on Theorem 6,E∗2 is globally
asymptotically stable when Rκ01 < 1 and Rκ02 > 1. The results are shown in Fig. 4.

5.3 The effect of control ui(t) (i = 1,2) on system (8)

To test our theoretical results, we discuss the influence of different orders on system (14),
and the influence of control ui(t) (i = 1, 2) on the controlled system is simulated. Choose
Π1 = 25, Π2 = 25, α1 = 0.001, α2 = 0.001, u = 0.001, d = 0.01, β1 = 0.25,
β2 = 0.25, ψ1 = 1.5, ψ2 = 1.5, φ1 = 4, φ2 = 6.

Firstly, each state of uncontrolled (8) and controlled (14) system is compared, respec-
tively. The solutions are plotted in Fig. 5. It is clear that control variables ui(t) (i = 1, 2)
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(a) (b)

Figure 5. Comparison of the number of individuals in controlled and uncontrolled systems.

(a) (b)

Figure 6. The trajectories of optimal control ui(t) (i = 1, 2) and consumption J(t) with κ = 0.96.

have a great influence on rumor spreader Si(t) (i = 1, 2), which can effectively control
the rumor propagation. Next, the optimal control curve and the cost of official control
curve are given in Fig. 6.

6 Conclusions

A fractional-order 2I2SR rumor spreading model is investigated in this paper. Firstly, the
boundedness and uniqueness of the solutions of the fractional-order system are proved.
Then the next-generation matrix method is used to calculate the threshold. Based on
generalized fractional-order Routh–Hurwitz judgment, the local asymptotic stability of
the rumor-free equilibrium E0 and the rumor-spreading equilibrium E∗1 is studied. The
global asymptotic stability of rumor-spreading equilibrium E∗2 is discussed by means of
Lyapunov function method and invariance principle. It can be obtained by detailed proof
that if Rκ01 < 1 and Rκ02 < 1, E0 is locally asymptotically stable, if Rκ01 > 1 and
Rκ02 < 1 are satisfied, E∗1 is locally asymptotically stable, and if Rκ02 > 1, E∗2 is globally
asymptotically stable. Finally, the necessary conditions for fractional optimal control of
the rumor spreading model are obtained.
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