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Abstract. In the piece of this note, we mention various Suzuki-type fuzzy contractive inequalities
in 1-Z-complete fuzzy metric-like spaces for uniqueness and existence of a fixed point and prove
a few fuzzy fixed point theorems, which are appropriate generalizations of some of the latest famed
results in the literature. Mainly, we generalize fuzzy Θ-contraction in terms of Suzuki-type fuzzy
Θ-contraction and also fuzzy Υ -contractive mapping in view of Suzuki-type. For this new group
of Suzuki-type functions, acceptable conditions are formulated to ensure the existence of a unique
fixed point. The attractive beauty of this fuzzy distance space lies in the symmetry of its variables,
which play a crucial role in the construction of our contractive conditions to ensure the solution.
Furthermore, a lot of considerable examples are presented to illustrate the significance of our results.
In the end, we have discussed an application in an extensive way for the solution of a nonlinear
fractional differential equation via Suzuki-type fuzzy contractive mapping.

Keywords: fuzzy Θ-contraction, Suzuki-type fuzzy Θ-contractive mapping, 1-Z-complete fuzzy
metric-like space, nonlinear fractional differential equation.

1 Introduction

The theory of fuzzy sets was initiated by Zadeh [15] in 1965 in his influential note,
which is based on the membership function. The membership value of any member from
a nonempty set X belongs to a continuous closed interval [0, 1], not on the Aristotelian
set {0, 1}. In 1975, Kramosil and Michalek [6] inaugurated the idea of a fuzzy metric
space, which was further enhanced by George and Veeramani [2] in 1994 by defining
Hausdorff topology in this fuzzy distance space and also proving “every metric induces
a fuzzy metric”.
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Furthermore, Harandi [1] introduced the concept of metric-like space by generalizing
the concepts of metric space, partial metric space, and symmetric space, and giving
some weak contraction conditions to put up new fixed point results. Later, Shukla and
Abbas [10] in 2014 fuzzified the concepts of Harandi [1] and discovered the notion of
a fuzzy metric-like space as a generalization of fuzzy metric space in the sense of George
and Veeramani [2]. In fuzzy metric-like spaces, the membership degree of closeness of
members x and y in space when x = y is not identical, and this means the fuzzy-
self distance may not be unity. Shukla and Abbas [10] gave many examples of this
space and established several propositions. Also, provide satisfactory examples of the
definitions of convergence of a sequence, the Cauchy sequence, and the completeness of
this fuzzy distance space. Again, Shukla, Gopal, and Hierro [11] modified the concepts
of convergence of a sequence, completeness, and Cauchy sequence in this fuzzy space in
the sense of George and Veeramani [2] and gave the definitions of 1-M-convergence of
a sequence, 1-M Cauchy sequence, and 1-M completeness property in a more general
way.

In this writing, Suzuki-type fuzzy Θ-contractive conditions in 1-Z-complete fuzzy
metric-like spaces have been discussed, and some fuzzy results have been discovered to
get a unique fixed point. Here the concept of Suzuki-type fuzzy Θ1 and Θ2-contractive
conditions has been formulated, where the conclusion part of the fuzzy contractive con-
dition is a Θ-contraction, and the hypothesis parts are different. We will prove at the end,
with examples, that both concepts are independent. As well as the fuzzy Υ -contractive
condition given by Mihet [8], it has been generalized in the Suzuki-type as a corollary.
In the last section, we discuss an application to the solution of the nonlinear fractional
differential equation.

2 Preliminaries

First, we remind some of the elementary concepts of fuzzy metric-like spaces.

Definition 1. (See [15].) A fuzzy set A is a membership function with domain X and
codomain [0, 1], where X is a nonempty set.

Definition 2. (See [9].) A continuous triangular norm (t-norm in short) is a binary
mapping ~ : [0, 1]× [0, 1]→ [0, 1] if

(i) ~ satisfies commutative law, that is, l~m = m~ l, and associative law, that is,
l ~ (m~ n) = (l ~m) ~ n;

(ii) ~ is continuous;
(iii) 1 ~ l = l;
(iv) l ~m6qn~ p whenever l 6 n and m 6 p

for all l,m, n, p ∈ [0, 1].

Shukla and Abbas [10] have declared the definition of a fuzzy metric-like space in the
given manner.
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Definition 3. (See [10].) The ordered triplet (X,Z,~) is called a fuzzy metric-like space,
where X is an arbitrary nonempty set, and t-norm ~ is continuous binary mapping, if the
membership function Z : X2 × (0,+∞)→ [0, 1] satisfies the given assertions:

(i) Z(α, β, s) > 0;
(ii) if Z(α, β, s) = 1, then α = β;

(iii) Z(α, β, s) = Z(β, α, s) (symmetry);
(iv) Z(α, η, t+ s) > Z(α, β, t) ~ Z(β, η, s) (triangle inequality);
(v) Z(α, β, ·) : (0,+∞)→ [0, 1] is continuous

for all α, β, η ∈ X and s, t > 0.

Remark 1. Symmetry defined in metric space is generalized by Kramosil and Michalek
[6] in fuzzy setting, which is adopted by George and Veeramani [2], which means that
the membership degree of closeness in the middle of α and β with regards to s is the
same as the degree of closeness in the middle of β and α with regards to s. If we change
assertion (ii) of Definition 3 by Z(α, β, s) = 1 if and only if α = β, then the ordered
tripled (X,Z,~) becomes a fuzzy metric [2].

Definition 4. (See [11].) Suppose {ζn} is any sequence of a fuzzy metric-like space
(X,Z,~). Then for all s > 0 and n,m ∈ N,

(i) {ζn} is said to be a 1-Z-convergent to some ζ ∈ X if

lim
n→+∞

Z(ζn, ζ, s) = 1;

(ii) {ζn} is said to be a 1-Z Cauchy sequence if

lim
n,m→+∞

Z(ζn, ζm, s) = 1;

(iii) the space (X,Z,~) is said to have 1-Z-completeness property if every 1-Z Cauchy
sequence in X converges to some ζ ∈ X such that Z(ζ, ζ, s) = 1.

Shukla, Gopal, and Hierro [11] introduced a new kind of control function known as
family of Θ-function, which has been used to define the notion of fuzzy Θ-contraction.
Such ΘB-class of mappings will include continuous and discontinuous.

Definition 5. (See [10].) Suppose thatΘB indicates a group of mappingΘ : [0, 1]→ [0, 1]
holding the assertions:

(i) Θ is increasing;
(ii) limn→+∞Θn(ω) = 1 for every ω ∈ (0, 1).

If Θ ∈ ΘB, then ω < Θ(ω) for all ω ∈ (0, 1) and Θ(1) = limω→1− Θ
n(ω) = 1.

Example 1. (See [10].) The below written mappings Θ : [0, 1]→ [0, 1] are few members
of the family ΘB:
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(i) Θ(ω) = 1;
(ii) Θ(ω) = 2ω/(ω + 1);

(iii) Θ(ω) = ωk;
(iv) Θ(ω) = 1− k(1− ω);
(v) Θ(ω) = ω/(k + k(1− ω)), where k ∈ (0, 1);

(vi) Let Θ : [0, 1]→ [0, 1] be any discontinuous function defined by

Θ(ω) =

{
aω if ω ∈ [0, b],

1 if ω ∈ (b, 1],

where b and a are nonnegative real numbers such that b < 1, a > 1, and ab < 1.

Definition 6. (See [11].) Suppose that (X,Z,~) is a fuzzy metric-like space. A self-map
A : X→ X is said to be a Θ-contraction if there exists Θ ∈ ΘB such that

Θ
(
Z(ζ, η, s)

)
6 Z(Aζ,Aη, s)

for all ζ, η ∈ X and all s > 0.

By above such class Shukla, Gopal, and Hierro [11] linkup the notations of various
fuzzy inequalities.

In the literature of the crisp theory of fixed points, there are a lot of generalization of
the Banach contraction result, but a remarkable and most interesting generalization was
given by Suzuki [14] in 2007. Moreover, in discrete mathematics, we have learned the
truth value of some conditional statements, like, if p and q are given statements, then the
statement “if p, then q”, denoted as p implies q (or p =⇒ q), is called a conditional state-
ment or implication, where p is a hypothesis, and q is a conclusion. Suzuki-type contrac-
tive conditions follow the truth value of statements that p implies q. Suzuki [14] adopted
this concept and discovered a contraction as a tool to obtain a fixed point for a self-map.

Later, Khojasteh, Shukla, and Radenović [4] introduced the simulation function β :
[0,+∞] × [0,+∞] → R and the notion of Z-contraction. Later, Kumar, Gopal, and
Bhudhiyi [7] adopted Suzuki idea to generalize Z-contraction and introduced a new con-
cept of Suzuki-typeZ-contraction in a complete metric space. The main motivational idea
to introduce Suzuki-type contraction in the settings of fuzzy metric-like space has been
inspired by the articles [3, 7, 12] and [13]. Now we are ready to present our main results.

3 Main results

First, we generalize fuzzy Θ-contraction in the view of Suzuki-type fuzzy Θ-contraction.

Definition 7. A self-map A : X → X defined on a fuzzy metric-like space (X,Z,~) is
said to be a Suzuki-type fuzzy Θ1-contractive mapping if there exists Θ ∈ ΘB such that

Z(ζ,Aζ, s) > q · Z(ζ, η, s) =⇒ Z(Aζ,Aη, s) > Θ
(
Z(ζ, η, s)

)
, (1)

where q ∈ (0, 1), for all ζ, η ∈ X and all s > 0.
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The above definition of Suzuki-type fuzzy Θ1-contractive condition motivates for the
following definition to obtain constructed sequence is a 1-Z Cauchy sequence.

Definition 8. A self-mapA defined on a fuzzy metric-like space (X,Z,~) is said to have
featureMk1 if for any Picard sequence {ζn = Aζn−1, n ∈ N} with initial value ζ0 ∈ X,
there exist subsequences {ζnk} and {ζmk} of {ζn} such that

lim
k→+∞

Z(ζmk , ζnk , s) = a(s) ∈ (0, 1],

where mk > nk > k, k ∈ N, and q ∈ (0, 1), then

Z(ζmk , ζmk+1, s) > q · Z(ζmk , ζnk , s)

for all s > 0 holds.

Now we present an explanatory example in the support of Definition 8.

Example 2. Consider X = [0, 1]. Define a membership function Z : X2 × (0,+∞) →
[0, 1] by

Z(ζ, η, s) =

{
1, ζ = η = 0,

e−max(ζ,η)/s otherwise.

(X,Z,~) is a fuzzy metric-like space (not a fuzzy metric space) with product t-norm.
Define a map A : X→ X such that

A(α) =

{
1, α ∈ {0, 1},
√
α otherwise.

Let ζn = 1− 1/n, n ∈ N, be a sequence. Consider 3k > 2k > k such that ζmk = ζ3k =
1− 1/(3k) and ζnk = ζ2k = 1− 1/(2k). Since

lim
k→+∞

Z(ζmk , ζnk , s) = Z

(
1− 1

3k
, 1− 1

2k
, s

)
∈ (0, 1],

then Z(ζ3k, ζ3k+1, s) > q · Z(ζ3k, ζ2k, s) where q = 1/2, Definition 7 holds.

Next, we give another definition, which provides the facility to obtain fixed point.

Definition 9. A self-mapA defined on a fuzzy metric-like space (X,Z,~) is said to have
feature (Mk2) if for any 1-Z-convergent sequence {ζn} converging to ζ∗,

A(ζn, ζn+1, s) > q · A(ζn, ζ
∗, s),

where n ∈ N and q ∈ (0, 1).

Now we are ready to put our major outcomes.
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Theorem 1. Suppose that A : X → X is a Suzuki-type fuzzy Θ1-contractive mapping in
a 1-Z-complete fuzzy metric-like space. Then A has a unique fixed point ζ∗ in X, and for
every ζ0 ∈ X, the Picard sequences {ζn}, where ζn = Aζn−1 for all n ∈ N, converge to
the fixed point of A, provided that A has propertiesMk1 ,Mk2 and Z(ζ∗, ζ∗, s) = 1 for
all s > 0.

Proof. Assume thatA is a Suzuki-typeΘ1-contractive mapping with regards toΘ ∈ ΘB.
Let ζ0 ∈ X and define a sequence by Picard iteration process {ζn} such as ζn = Aζn−1

for all n ∈ N.
If ζn = ζn−1, then Aζn−1 = ζn = ζn−1 for all n ∈ N, that is, ζn−1 is a fixed point

for self-mapA. So, no need to prove further. Thus, we consider ζn 6= ζn−1 for all n ∈ N,
that is, no successive terms of {ζn} are identical.

First, we must need to show that {ζn} is a Cauchy sequence.
Let

Ik = inf
{
Z(ζm, ζn, s): m,n > k

}
,

where k ∈ N, the sequence {Ik} is monotonically increasing and bounded above se-
quences in [0, 1]. Thus the sequence {Ik} is monotonically bounded, therefore it is con-
vergent, that is, there exists I ∈ [0, 1] such that

lim
k→+∞

Ik = I.

Next, we must present I = 1. We use contrapositive procedure. Let us suppose I < 1.
By the definition of Ik for every k ∈ N, there exist two subsequences {ζmk} and {ζnk}
of {ζn} such that mk > nk > k and

Ik 6 Z(ζmk , ζnk , s) < Ik +
1

k
. (2)

Taking limit as k tends to +∞, in (2), we get

lim
k→+∞

Z(ζmk , ζnk , s) = I.

Since self-map A is a Suzuki-type fuzzy Θ1-contractive with regards to Θ ∈ ΘB and by
the propertyMk1 , for mk > nk > k, k ∈ N, we have

Z(ζmk−1, ζmk , s) > q · Z(ζmk−1, ζnk−1, s)

=⇒ Z(ζmk , ζnk , s) > Θ
(
Z(ζmk−1, ζnk−1, s)

)
.

Again,

Z(ζmk , ζnk , s) > Θ
(
Z(ζmk−1, ζnk−1, s)

)
> Θ2

(
Z(ζmk−2, ζnk−2, s)

)
.

Inductively, we can have

Z(ζmk , ζnk , s) > Θnk
(
Z(ζ0, ζmk−nk , s)

)
for all nk ∈ N.

Nonlinear Anal. Model. Control, 28(5):932–948, 2023
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Now taking that k tends to +∞ and using definition 5, we obtain

lim
k→+∞

Ik = I = 1,

we get a contradiction. Thus
lim

n,m→+∞
Z(ζn, ζm, s) = 1.

Therefore {ζn} is a 1-Z Cauchy sequence in X. By 1-Z-completeness property of the
space (X,Z,~) there exists ζ∗ ∈ X such that

lim
n→+∞

Z(ζn, ζ
∗, s) = lim

n,m→+∞
Z(ζn, ζm, s) = Z(ζ∗, ζ∗, s) = 1.

Next, we prove that ζ∗ is a fixed point of A. Using propertyMk2 and Θ(s) > s for all
s > 0,

Z

(
ζn−1, ζn,

s

2

)
> q · Z

(
ζn−1, ζ

∗,
s

2

)
=⇒ Z

(
Aζn−1,Aζ∗,

s

2

)
> Θ

(
Z

(
ζn−1, ζ

∗,
s

2

))
=⇒ Z

(
ζn,Aζ∗,

s

2

)
> Θ

(
Z

(
ζn−1, ζ

∗,
s

2

))
> Z

(
ζn−1, ζ

∗,
s

2

)
=⇒ Z

(
ζn,Aζ∗,

s

2

)
> Z

(
ζn−1, ζ

∗,
s

2

)
.

By the triangle inequality and using above inequality we have

Z(ζ∗,Aζ∗, s)

> Z

(
ζ∗, ζn,

s

2

)
~ Z

(
ζn,Aζ∗,

s

2

)
> Z

(
ζ∗, ζn,

s

2

)
~ Z

(
ζn−1, ζ

∗,
s

2

)
.

Letting limit as n tends to +∞, we can deduce that Z(ζ∗,Aζ∗, s) = 1 impliesAζ∗ = ζ∗.
Next, we claim that fixed point ζ∗ is unique. Let v ∈ X is another fixed point ofA, that

is, Av = v and for any s1 > 0 such that Z(ζ∗, v, s1) < 1, we have 1 = Z(ζ∗, ζ∗, s1) =
Z(ζ∗,Aζ∗, s1) > q · Z(ζ∗, v, s1). Since

Z(ζ∗,Aζ∗, s1) > q · Z(ζ∗, v, s1)

=⇒ Z(Aζ∗,Av, s1) > Θ
(
Z(ζ∗, v, s1)

)
=⇒ Z(ζ∗, v, s1) > Θ(Z

(
ζ∗, v, s1)

)
> Z(ζ∗, v, s1),

a contradiction. Thus ζ∗ is a unique fixed point of A, also, it verifies Z(ζ∗, ζ∗, s) = 1 for
all s > 0.

The significance of our findings and the accuracy of our generalization are demon-
strated by the following example in which we will show that Suzuki-type fuzzy Θ1-
contractive mapping may also be discontinuous.
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Example 3. Let X = N ∪ {0}. Define ~ by l ~m = l ·m and a membership function
Z : X2 × (0,+∞)→ [0, 1] by

Z(α, β, s) =


α
β3 , α 6 β,
β
α3 , β 6 α,
1
2 , α = β = 0,

where α, β ∈ X. Then (X,Z,~) is a 1-Z-complete fuzzy metric-like space. Define a self-
map A : X→ X such that

A(γ) =

{
1, γ ∈ {0, 1},
0, γ ∈ X− {0, 1}.

Define Θ : [0, 1]→ [0, 1] be any discontinuous function

Θ(ω) =

{
3ω, ω ∈ [0, 1

4 ],

1, ω ∈ ( 1
4 , 1],

where a and b nonnegative real numbers such that 3=a>1, 1/4=b<1, ab=3/4<1.
Consider q = 1/2 and take the following cases to verify the Suzuki-typeΘ1-contractive

mapping.
Case 1. If γ1 = 1 and γ2 = 1, Z(1, 1, s) > q · Z(1, 1, s), that is, 1 > 1/2 implies

Z(A1,A1, s) > Θ(Z(1, 1, s)) implies 1 = Z(1, 1, s) > Θ(Z(1, 1, s)) = Θ(1) = 1.
Inequality holds.

Case 2. If γ1 = 0 and γ2 = 0, Z(0, 1, s) > q · Z(0, 0, s), that is, 0 > 1/4, hypothesis
of inequality (1) does not hold, so that no need to further investigation, but even then
1 = Z(1, 1, s) > Θ(Z(1, 1, s)) = Θ(1) = 1, conclusion part of inequality (1) holds. So,
inequality (1) holds for this case.

Case 3. For all γ1 and γ2 ∈ X − {0, 1} such that γ1 6 γ2 or γ2 6 γ1, Z(γ1, 0, s) >
Z(γ1, γ2, s)/2, that is, 0 > (γ1/γ

3
2)/2 does not hold. Now Z(Aγ1,Aγ2, s) >

Θ(Z(γ1, γ2, s)), that is, Z(0, 0, s) > Θ(γ1/γ
3
2).

Let us consider γ1 = 2 and γ2 = 2. So, Z(0, 0, s) > Θ(γ1/γ
3
2) implies 1/2 > 3/4,

which is not possible.
Thus inequality (1) holds for this case also.

To understand the beauty of Suzuki-type fuzzy contractive conditions, we need to
verify contraction conditions for those points for which the hypothesis of the contractive
condition is satisfied, as well as the conclusion part. For those points where the hypothesis
does not hold, there is no need to verify the conclusion part. But the interesting part of
Example 3 is that for those points, the hypothesis does not hold, and even the conclusion
part does not hold. So, by this, we can prove with the help of the above Example 3 that
the self-map A is Suzuki-type fuzzy Θ1-contractive but not a fuzzy Θ-contraction in the
sense of [11]. Also, (X,Z,A, Θ) has featuresMk1 ,Mk2 , trivially. Thus, every assertion
of Theorem 1 holds. So, γ = 1 is the unique fixed point.

Nonlinear Anal. Model. Control, 28(5):932–948, 2023
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Mihet [8] introduced fuzzy Υ -contractive mappings in fuzzy metric space. Let Φ be
the category of all functions Υ : [0, 1]→ [0, 1] such that Υ is continuous, nondecreasing,
and Υ (t) > t for all t ∈ (0, 1). The category Φ is known to be contained in the family
ΘB (see [11]). In the line of this, we can obtain a few corollaries.

Corollary 1. Suppose a self-mapA : X→ X defined on a 1-Z-complete fuzzy metric-like
space (X,Z,~) satisfies

Z(ζ,Aζ, s) > q · Z(ζ, η, s) =⇒ Z(Aζ,Aη, s) > Υ
(
A(ζ, η, s)

)
,

where Υ ∈ Φ, q ∈ (0, 1), for all ζ, η ∈ X with propertiesMk1 ,Mk2 . Then A has unique
fixed point u ∈ X, and Z(u, u, s) = 1.

Proof. The proof is similar to that of Theorem 1.

Corollary 2. Suppose a self-mapA : X→ X defined on a 1-Z-complete fuzzy metric-like
space (X,Z,~) satisfies

Z(ζ,Aζ, s) > q · Z(ζ, η, s) =⇒ Z(Anζ,Anη, s) > Θ
(
Z(ζ, η, s)

)
,

where q ∈ (0, 1), for all ζ, η ∈ X, s > 0 and with propertiesMk1 ,Mk2 . Then A has
a unique fixed point u ∈ X, and Z(u, u, s) = 1.

Now prove our other theorem in the view of Suzuki-type contraction, which is a
generalization of Theorem 2 given in [11].

Theorem 2. Suppose that a self-mapA defined on a 1-Z-complete fuzzy metric-like space
(X,Z,~), and a function g : (0,+∞)→ (0,+∞) is such that Z(ζ, η, g(s)) > Z(ζ, η, s)
and limn→+∞ Z(ζ, η, gn(s)) = 1 for all ζ, η ∈ X, s > 0.

(i) For all ζ, η ∈ X, s > 0, and q ∈ (0, 1), mapping A satisfies

Z(ζ,Aζ, s) > q · Z(ζ, η, s) =⇒ Z(Aζ,Aη, s) > Z
(
ζ, η, g(s)

)
; (3)

(ii) A has the propertiesMk1 andMk2 .

Then A has a unique fixed point ζ∗ ∈ X and Z(ζ∗, ζ∗, s) = 1 for all s > 0.

Proof. Formulation of Picard sequence {ζn} is similar to Theorem 1 such that no consec-
utive terms of sequence {ζn} are same. We must show that {ζn} is a Cauchy sequence.

For this, let
Ik = inf

{
Z(ζm, ζn, s): m,n > k

}
,

where k ∈ N, the sequence {Ik} is monotonically increasing and bounded above se-
quences in [0, 1]. Thus the sequence {Ik} is monotonic bounded, therefore it is conver-
gent, that is, there exists I ∈ [0, 1] such that

lim
k→+∞

Ik = I.

https://www.journals.vu.lt/nonlinear-analysis
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We must show I = 1. Taking a contrary, let us suppose I < 1. By the definition of Ik for
every k ∈ N there exist subsequences {ζmk} and {ζnk} of {ζn} such that mk > nk > k
and

Ik 6 Z(ζmk , ζnk , s) < Ik +
1

k
.

Taking k tends to +∞, we get

lim
k→+∞

Z(ζmk , ζnk , s) = I.

Since A satisfies contraction (3) and by the propertyMk1 , for mk > nk > k, k ∈ N, we
have

Z(ζmk−1, ζmk , s) > q · Z(ζmk−1, ζnk−1, s)

=⇒ Z(ζmk , ζnk , s) > Z
(
ζmk−1, ζnk−1, g(s)

)
.

Again,

Z(ζmk , ζnk , s) > Z
(
ζmk−1, ζnk−1, g(s)

)
> Z

(
ζmk−2, ζnk−2, g

2(s)
)
.

By induction

Z(ζmk , ζnk , s) > Z
(
ζ0, ζmk−nk , g

nk(s)
)

for all nk ∈ N.

Letting limit k tends to +∞,
lim
k→∞

Ik = I = 1,

we get a contradiction. Thus

lim
n,m→+∞

Z(ζn, ζm, s) = 1.

Thus {ζn} is a 1-Z Cauchy sequence in X. By 1-Z-completeness of the space (X,Z,~)
there exist ζ∗ ∈ X such that

lim
n→+∞

Z(ζn, ζ
∗, s) = lim

n,m→+∞
Z(ζn, ζm, s) = Z(ζ∗, ζ∗, s) = 1. (4)

Next, we must show that ζ∗ is a fixed point of A. Using the featureMk2 , we can have

Z

(
ζn−1, ζn,

s

2

)
> q · Z

(
ζn−1, ζ

∗,
s

2

)
=⇒ Z

(
Aζn−1,Aζ∗,

s

2

)
> Z

(
ζn−1, ζ

∗, g

(
s

2

))
=⇒ Z

(
ζn,Aζ∗,

s

2

)
> Z

(
ζn−1, ζ

∗, g

(
s

2

))
> Z

(
ζn−1, ζ

∗,
s

2

)
=⇒ Z

(
ζn,Aζ∗,

s

2

)
> Z

(
ζn−1, ζ

∗,
s

2

)
.
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By the triangle inequality we have

Z(ζ∗,Aζ∗, s)

> Z

(
ζ∗, ζn,

s

2

)
~ Z

(
ζn,Aζ∗,

s

2

)
> Z

(
ζ∗, ζn,

s

2

)
~ Z

(
ζn−1, ζ

∗,
s

2

)
.

Using (4), we can deduce that Z(ζ∗,Aζ∗, s) = 1 implies Aζ∗ = ζ∗.
Next, we claim that fixed point ζ∗ is unique. Taking contrary, suppose v ∈ X is

another fixed point of A, that is, Av = v, and for any s1 > 0 such that Z(ζ∗, v, s1) < 1,
1 = Z(ζ∗, ζ∗, s1) = Z(ζ∗,Aζ∗, s1) > q · Z(ζ∗, v, s1). Since

Z(ζ∗,Aζ∗, s1) > q · Z(ζ∗, v, s1)

=⇒ Z(Aζ∗,Av, s1) > Z
(
ζ∗, v, g(s1)

)
=⇒ Z(ζ∗, v, s1) > Z

(
ζ∗, v, g(s1)

)
> Z(ζ∗, v, s1)

is a contradiction, thus ζ∗ is a unique fixed point of A, and it verifies Z(ζ∗, ζ∗, s) = 1 for
all s > 0.

Now we give another contraction condition by changing our hypothesis in the Suzuki-
type view.

Definition 10. A mapping A : X → X defined on a fuzzy metric-like space (X,Z,~) is
said to be a Suzuki-type fuzzy Θ2-contraction if there exists Θ ∈ ΘB such that

Z(ζ,Aζ, s) > Z

(
ζ, η,

s

2

)
=⇒ Z(Aζ,Aη, s) > Θ

(
Z(ζ, η, s)

)
(5)

for all ζ, η ∈ X and for all s > 0.

In the view of above Definition 10, it is essential to define when the sequence {ζn} is
a 1-Z Cauchy sequence.

Definition 11. A self-map A defined on a fuzzy metric-like space (X,Z,~) is said to
have feature Ml1 if for any Picard sequence {ζn = Aζn−1, n ∈ N} with initial value
ζ0 ∈ X, there exist two subsequences {ζnk} and {ζmk} of {ζn} such that if

lim
k→+∞

Z(ζmk , ζnk , s) = a(s) ∈ (0, 1],

where mk > nk > k, k ∈ N, and q ∈ (0, 1), then

Z(ζmk , ζmk+1, s) > Z

(
ζmk , ζnk ,

s

2

)
holds for all s > 0.

Now we need the following definition to ensure that the self-map A has a fixed point.
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Definition 12. A self-map A defined on a fuzzy metric-like space (X,Z,~) is said to
have feature (Ml2) if for any 1-A-convergent sequence {ζn} converging to ζ∗,

Z(ζn, ζn+1, s) > Z

(
ζn, ζ

∗,
s

2

)
,

where n ∈ N and s > 0.

Theorem 3. Suppose that A : X→ X be a Suzuki-type fuzzy Θ2-contractive mapping in
a 1-Z-complete fuzzy metric-like space. Then A has a unique fixed point ζ∗ in X, and for
every ζ0 ∈ X, the Picard sequences {ζn}, where ζn = Aζn−1, n ∈ N, converge to the
fixed point of A, provided that A has propertiesMl1 ,Ml2 and Z(ζ∗, ζ∗, s) = 1 for all
s > 0.

Proof. The proof is similar to that of Theorem 1.

Example 4. Let X = {1, 2, 4}. Define a membership function Z in X2 × (0,+∞) with
product t-norm by

Z(γ1, γ2, s) =

{
γ1
γ3
2
, γ1 6 γ2,

γ2
γ3
1
, γ2 6 γ1.

is a 1-Z-complete fuzzy metric-like space but not fuzzy metric space. Consider the
mapping A : X→ X such that

A(γ1) =

{
1, γ1 = 1, 2,

2, x = 4.

Consider Θ(ω) > ω, where ω > 0. For γ1 = 4 and γ2 = 4, the hypothesis is not
satisfied, the rest of the points satisfy condition (5). ThusA is Suzuki-typeΘ2-contractive
mapping, and γ = 1 is the unique fixed point of A.

Example 4 shows that A is Suzuki-type Θ2-contractive mapping but Θ-contraction
given in [11] also. Now we present an example in support of only Suzuki-type fuzzy Θ2-
contractive conditions, which are not fuzzy Θ-contractions. In this way, we can ensure
that our generalization of fuzzy Θ-contraction in terms of Suzuki-type Θ-contraction is
genuine.

Example 5. Let X=[0, 1]. Define a membership function Z :X2× (0,+∞)→ [0, 1] with
product t-norm by

Z(γ1, γ2, s) =

{
1, γ1 = γ2 = 0,
γ1+γ2

2 otherwise.

Then (X,Z,~) is a 1-Z-complete fuzzy metric-like space. Define A : X→ X such that

A(γ) =

{
0, γ ∈ {0, 1

2},
1− γ, γ ∈ X− {0, 1

2}.
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TakeΘ ∈ ΘB such thatΘ(s) > s for all s ∈ (0, 1). Consider the sequence γn = 1/n,
n ∈ N, and consider 3k > 2k > k such that γmk = γ3k = 1/(3k) and γnk = γ2k =
1/(2k). We can see that Definitions 11 and 12 hold, trivially.

Next, we have to show that A satisfies the contraction condition (5). For this, we use
the hypothesis

Z(γ1,Aγ1, s) > Z

(
γ1, γ2,

s

2

)
=⇒ 1 > γ1 + γ2

for some γ1, γ2 ∈ X, the inequality

Z(Aγ1,Aγ2, s) > Θ
(
Z(γ1, γ2, s)

)
=⇒ Z(1− γ1, 1− γ2, s) > Θ

(
γ1 + γ2

2

)
>
γ1 + γ2

2

=⇒ 1 > γ1 + γ2

for those points for which hypothesis is satisfied. For some γ1, γ2∈X such that γ1+γ2>1,
the hypothesis is not satisfied as well as conclusion (1 > γ1+γ2) still not holds. So, this is
one of a suitable example, which shows that a selfA is Suzuki-type fuzzy Θ2-contraction
but not a fuzzy Θ-contraction given by [11].

One more observation in the sense of Definition 7 is that self-map A is not a Suzuki-
type Θ1-contraction. Also, (X,Z,A, Θ) possess features Ml1 ,Ml2 , thus all the condi-
tions of the above Theorem 3 satisfied by the self-map A. Hence γ = 0 is a unique fixed
point of A.

4 Application to fractional calculus

In the application part, we have mentioned a theorem for ensuring the solution of a non-
linear fractional differential equation with few boundary conditions via Suzuki-type fuzzy
Θ-contraction.

The Caputo derivative of fractional order α for a continuous function g : [0,+∞)→R
is defined as

CDαg(t1) =
1

Γ(n− α)

t∫
0

(t1 − s1)n−α−1gn(s1) ds1

(n − 1 < α < n, n = [α] + 1), where [α] indicates integer part of real number α, and
gamma function is denoted by Γ (see [5]).

Consider the nonlinear fractional differential equation with boundary condition

CDα(ζ(t1)) + ξ
(
t1, ζ(t1)

)
= 0 0 6 t1 < 1, α < 1, (6)

ζ(0) = 0 = ζ(1), where ζ ∈ C([0, 1],R), the set of all continuous function from [0, 1]
into R is indicated by C([0, 1],R), and ξ : [0, 1] × R → R is also continuous function.
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Remind that analogous Green function with problem (6) is written by

G(t1, s1) =

{
(t1(1− s1))α−1 − (t1 − s1)α−1 if 0 6 s1 6 t1 6 1,
(t1(1−s1))α−1

Γα if 0 6 t1 6 s1 6 1.

Let X = C([0, 1],R) be a metric spaces endowed with the metric

ρ
(
ζ(t1), η(t1)

)
=
∥∥ζ(t1)− η(t1)

∥∥
∞ = sup

t1∈[0,1]

∣∣ζ(t1)− η(t1)
∣∣

for all ζ(t1), η(t1) ∈ X.
Define a membership function Z : X× X× (0,+∞)→ [0, 1] by

Z(ζ(t1), η(t1), s) = e−ρ(ζ(t1),η(t1))/s for all ζ(t1), η(t1) ∈ X and s > 0,

the ordered tripled (X,Z,~) is a 1-Z fuzzy metric-like space endowed with the product
t-norm, and also, space is a fuzzy metric.

Now we insert the main theorem of this section in the form of an application.

Theorem 4. Assume that

(i) for all t1 ∈ [0, 1], a, b ∈ R, s > 0, τ ∈ (0, 1), and q ∈ (0, 1),

Z
(
ζ(t1),Aζ(t1), s

)
> q · Z

(
ζ(t1), η(t1), s

)
=⇒ |ξ(t1, a)− ξ(t1, b)| 6 τ · |a− b|;

(ii) a self-map A : C([0, 1],R)→ C([0, 1],R) defined by

Aζ(t1) =

1∫
0

G(t1, s1) · ξ
(
s1, ζ(s1)

)
ds1;

(iii) for each t1 ∈ [0, 1] and ζ(t1), η(t1) ∈ C([0, 1],R), if {ζn(t1)} is a sequence in
C([0, 1],R) and {ζmk(t1)}, {ζnk(t1)} be two subsequences of {ζn(t1)} such that

lim
k→+∞

∣∣ζmk(t1)− ζnk(t1)
∣∣→ a(k) ∈ R+

=⇒ − loge q +
∣∣ζmk(t1)− ζnk(t1)

∣∣ > ∣∣ζmk(t1)− ζmk+1
(t1)

∣∣
for mk > nk > k, k ∈ N, and q ∈ (0, 1);

(iv) for each t1 ∈ [0, 1], if {ζn(t1)} is a sequence in C([0, 1],R) such that{
ζn(t1)

}
→ ζ∗(t1) ∈ C

(
[0, 1],R

)
=⇒ − loge q +

∣∣ζn(t1)− ζ∗(t1)
∣∣ > ∣∣ζn(t1)− ζn+1(t1)

∣∣
for all n ∈ N and q ∈ (0, 1).

Then problem (6) has at least one solution.
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Proof. We may see that ζ(t1) ∈ X is solution of (6), if ζ∗(t1) is the solution of the
equation

ζ(t1) =

1∫
0

G(t1, s1)ξ
(
s1, ζ(s1)

)
ds1 for all t1 ∈ [0, 1].

Then the solution of problem (6) is equivalent to calculating ζ∗(t1) ∈ X which will be
a fixed point of self-mapA. With assumptions (i) and (ii) for all different ζ(t1), η(t1) ∈ X
such that Z(ζ(t1), η(t1), s) > 0 for all t1 ∈ [0, 1] and s > 0,

∣∣Aζ(t1)−Aη(t1)
∣∣ =

∣∣∣∣∣
1∫

0

G(t1, s1)ξ
(
s1, ζ(s1)

)
ds1 −

1∫
0

G(t1, s)ξ
(
s1, η(s1)

)
ds1

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

G(t1, s1)
[
ξ
(
s1, ζ(s1)

)
− ξ
(
s1, η(s1)

)]
ds1

∣∣∣∣∣
6

1∫
0

G(t1, s1)
∣∣ξ(s1, ζ(s1)

)
− ξ
(
s1, η(s1)

)∣∣ds1

6

1∫
0

G(t1, s1) ds1 · τ
∣∣ζ(s1)− η(s1)

∣∣
6

1∫
0

G(t1, s1) ds1 · τ sup
s1∈[0,1]

∣∣ζ(s1)− η(s1)
∣∣

6 τ
∥∥ζ(t1)− η(t1)

∥∥
∞

implies that∥∥Aζ(t1)−Aη(t1)
∥∥
∞ = sup

t1∈[0,1]

∣∣Aζ(t1)−Aη(t1)
∣∣ 6 τ

∥∥ζ(t1)− η(t1)
∥∥
∞

=⇒ ‖Aζ(t1)−Aη(t1)‖∞
s

6 τ
‖ζ(t1)− η(t1)‖∞

s

=⇒ −τ ‖ζ(t1)− η(t1)‖∞
s

6
−‖Aζ(t1)−Aη(t1)‖∞

s

=⇒ e−τ‖ζ(t1)−η(t1)‖∞/t =
(
e−‖ζ(t1)−η(t1)‖∞/s

)τ
6 e−‖Aζ(t1)−Aη(t1)‖∞/s

=⇒
(
Z
(
ζ(t1), η(t1), s

))τ
6 Z

(
Aζ(t1),Aη(t1), s

)
.

Consider a function Θ : [0, 1] → [0, 1] defined by Θ(l) = lτ , where τ ∈ (0, 1) for all
l ∈ [0, 1], which belongs to the class ΘB.

Θ
(
Z
(
ζ(t1), η(t1), s

))
6 Z

(
Aζ(t1),Aη(t1), s

)
.

Therefore, A is Suzuki-type fuzzy Θ1-contractive mapping.
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For a sequence {ζn(t1)} in C([0, 1],R) and {ζmk(t1)}, {ζnk(t1)} be two subse-
quences of {ζn(t1)} such that mk > nk > k, k ∈ N, by using assumption (iii)

lim
k→+∞

Z
(
ζmk(t1), ζnk(t1), s

)
= lim
k→+∞

e−|ζmk (t1)−ζnk (t1)|/s

= lim
k→+∞

e−a(k)/s = a(s) ∈ (0, 1]

implies that

Z
(
ζmk(t1), ζmk+1(t1), s

)
= e−|ζmk (t1)−ζmk+1

(t1)|/s

> q · e−|ζmk (t1)−ζnk (t1)|/s

= q · Z
(
ζmk(t1), ζnk(t1), s

)
Therefore, propertyMk1 holds true.

If a sequence {ζn(t1)} in C([0, 1],R) such that ζn(t1) → ζ(t1) in C([0, 1],R) by
using assumption (iv),

Z
(
ζn(t1), ζn+1(t1), s

)
= e−|ζn(t1)−ζn+1(t1)|/s

> q · e−|ζn(t1)−ζ(t1)|/s

= q · Z
(
ζn(t1), ζ(t1), s

)
.

Therefore, propertyMk2 holds true. Hence all the conditions of Theorem 1 are satisfied.
Thus we conclude that there exists ζ∗(t1) ∈ C([0, 1],R) such that Aζ∗(t1) = ζ∗(t1) and
ζ∗(t1) is the solution of (6). This completes the proof.

5 Conclusions

The concepts of fuzzy mathematics provide a facility to convert existing results from
the literature of fixed point theory into fuzzy settings, and it is very difficult to interpret
crisp metric contraction conditions into fuzzy contractions. In spite of this, fuzzy fixed
point theory becomes more generalized as compared to crisp metric fixed point theory.
In addition, symmetry in fuzzy metric spaces and their generalized spaces provides us
with the facility to ensure the existence of solutions to the various mathematical problems
that arise through researchers. In this article, we have introduced various independent
Suzuki-type fuzzy contractive conditions, which are generalizations of existing results in
the literature. The paper includes a comprehensive set of examples to show the importance
of the theorems and illustrate that our coding technique for inequalities is powerful.
Further hope with this technique is that researchers can extend more results in terms of
Suzuki-type views with applications in crisp distance spaces. Further, it will be interesting
to apply these concepts in more fuzzy spaces, which are also applicable for set-valued
mappings, multi-valued mappings, for cyclic maps, etc.
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