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Abstract. In this paper, we propose a toxin-producing predator–prey model with threshold
harvesting and study spatiotemporal dynamics of the model under the homogeneous Neumann
boundary conditions. At first, the persistence property of solutions to the system is investigated.
Then the explicit requirements for the existence of nonconstant steady state solutions are derived by
studying the relevant characteristic equation. These steady states occur from related constant steady
states via steady state bifurcation. Throughout the analysis of the amplitude equations of Turing
pattern by the multiple scale method, pattern formation can be found. Finally, we display numerical
simulations to verify the theoretical outcomes.
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1 Introduction

Environmental protection and ecologically sustainable development have always been
our concerns. However, in recent years, there have been a lot of take-outs and express
deliveries around us. They do bring convenience to our life. But at the same time, they
cause a lot of rubbish in the city and pollute the environment [1,12]. In addition, a variety
of chemicals and industrial waste gas will also release many toxic substances, which
directly affect human health. He et al. [6] studied the impact of atmosphere pollution
on the risk of respiratory infection. They also pollute water, land, and air [13, 28], and
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indirectly lead to the species extinction. The effects of pollutants on a single-species
population were discussed, and some sufficient requirements were obtained to guarantee
the endurance of the population in [27]. So it is necessary to study the impact of toxic
substances.

At present, some literatures, such as [3, 4, 8, 11, 14, 16–19, 22–26], have studied the
effects of toxins on different ecosystem species. [4] indicated that once some external
toxic substances directly infected the prey, then the predator consuming polluted prey was
indirectly influenced by the toxicant. So we use θ1u

3 to mark the infection of the prey by
some external toxicant, and θ2v

2 to signify the infection of the predator by this infected
prey for food. Because of d(θ1u

3)/du = 3θ1u
2 > 0, d(θ2v

2)/dv = 2θ2v > 0, the
toxicant growth is accelerated with more prey eating such polluted food. It is analogical
to the predator. As 0 < θ2 < θ1 < 1, so the toxicant has less effect on the predator than
on the prey.

Most predator–prey models with harvesting only considered constant, linear, or non-
linear functions such as fishery harvesting [28] and [1, 2, 7, 9, 10]. However, it is not
very realistic as pointed out by Rebaza [21]. Based on the above analysis, the harvesting
is assumed proportional to the prey density after the prey gets to the threshold because
the facilities for harvesting or resource protection are limited. It keeps constant after the
population density reaches T .

We present the toxin-producing predator–prey model with threshold harvesting:

∂u

∂t
= d1∆u+ ru

(
1− u

K

)
−muv −H(u)− θ1u

3, (x, t) ∈ Ω × (0,+∞),

∂v

∂t
= d2∆v + cmuv − ηv − θ2v

2, (x, t) ∈ Ω × (0,+∞),

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(1)

where u = u(x, t), v = v(x, t) denote the population densities of the prey and predator
at location x and time t, respectively. d1 > 0 and d2 > 0 are the diffusion coefficients of
the prey and predator, respectively. r is the prey intrinsic growth rate. K is the carrying
capacity. m is their encounter rate. c is the conversion rate of predation, and η is the
death rate, respectively. r, K, m, c, η, θ1, and θ2 are positive. The Laplacian operator ∆
describes the spatial dispersal with passive diffusion. The harvesting function

H(u) =

{
Eu, 0 < u < T,

h, u > T.

Here T is the harvesting threshold, h = ET , and E is the harvesting effort. Assume that
0 < T < 1 to investigate the influence of the threshold harvesting. Ω ⊂ RN is a bounded
domain with N > 1, and n is the normal vector that goes out of the bounded domain Ω.
The homogeneous Neumann boundary conditions indicate that there is no population flux
across the boundaries.
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By transformations ũ = u/K, ṽ = v/K, r̃ = r/(mK), η̃ = η/(cmK), T̃ = T/K,
Ẽ = E/(mK), h̃ = h/(mK2), θ̃1 = Kθ1/m, θ̃2 = θ2/m, t̃ = mKt, x̃ =

√
mKx and

dropping the tildes, (1) turns to

∂u

∂t
= d1∆u+ ru(1− u)− uv −H(u)− θ1u

3, (x, t) ∈ Ω × (0,+∞),

∂v

∂t
= d2∆v + cv(u− η)− θ2v

2, (x, t) ∈ Ω × (0,+∞),

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(2)

and |Ω| is the Lebesgue measure of Ω.
In this paper, we aim to observe how the harvesting and toxins influence the species

by exploring spatiotemporal dynamics of system (2). The full text is organised as below.
In Section 2, the permanence of (2) is studied. In Section 3, the existence of nonnegative
equilibria is analyzed. In Section 4, stability, Turing instability, and Turing patterns are
explored. Section 5 focuses on the nonexistence, existence of special solutions, and bi-
furcation analysis. In Section 6, numerical simulations are shown to verify our theoretical
research. Finally, we summarize our conclusions.

2 Permanence

In this section, the existence and boundedness of the solution to system (2) are proved.
By utilizing the conclusion in [31] the lemma is gained below.

Lemma 1.
(i) If u0(x) and v0(x) are nonnegative, then (2) has a unique solution (u(x, t), v(x, t))

such that u(x, t) > 0, v(x, t) > 0 with t ∈ (0,∞).
(ii) The solution (u(x, t), v(x, t)) satisfies

lim sup
t→+∞

max
x∈Ω

u(x, t) 6 1, lim sup
t→+∞

max
x∈Ω

v(x, t) 6
c

θ2
.

Now, it turns out that system (2) is permanent. This means that whatever the diffusion
coefficients are, both species will always exist together anytime anywhere.

Theorem 1. If

r > max{E, 2
√
rh}+

c

θ2
+ θ1 and η < max{M1,M2},

where

M1 =
(r− c

θ2
− θ1) +

√
(r − c

θ2
− θ1)2−4rh

2r
, M2 =

rθ2−c−Eθ2−θ1θ2

rθ2
,

then system (2) is permanent.
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Proof. Suppose u0(x) > 0, v0(x) > 0. By (2) we have

∂u

∂t
− d1∆u > ru(1− u)− uṽ −H(u)− θ1ũ

2u, x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0.

It implies that if 0 6 u 6 T and r − c/θ2 − θ1 > E, then

lim inf
t→+∞

min
Ω

u(·, t) >M2. (3)

If u > T and r − c/θ2 − θ1 > 2
√
rh, then

lim inf
t→+∞

min
Ω̄

u(·, t) >M1. (4)

Therefore, there exists a t3 > 0, and u(·, t) > max{M1,M2} + ε2 := u for ε2 > 0,
t ∈ [t3,+∞).

Similarly, by (2), if u > η, then

lim inf
t→+∞

Ωmin v(·, t) > c(u− η)

θ2
. (5)

By Lemma 1 and (3)–(5) system (2) is permanent.

Remark 1. Theorem 1 demonstrates that the prey and predator would exist together when
the prey intrinsic rate r is larger enough, and the predator death rate η is more minor
sufficiently.

3 Existence of nonnegative equilibria

Obviously, system (2) has an extinction equilibrium E0 = (0, 0). At first, we analyze the
predator-free equilibrium below.

Proposition 1.
(i) If 0 < u∗1 6 T , r > E, then system (2) has a unique boundary equilibrium

E∗1 = (u∗1, 0).
(ii) If u∗k > T , G(û) > h, then system (2) has two boundary equilibria E∗k = (u∗k, 0),

k = 2, 3; If u∗4 > T , G(û) = h, then system (2) has a unique boundary
equilibrium E∗4 = (u∗4, 0). Here G(u) = ru(1 − u) − θ1u

3, G(û) is the local
maximum of G(u).

Proof. We consider roots of equation G(u)−H(u) = 0.
Since H(u) is a piecewise function, there are equations below:

ru(1− u)− θ1u
3 − Eu = 0 (6)

and
ru(1− u)− θ1u

3 − h = 0, (7)

https://www.journals.vu.lt/nonlinear-analysis
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where h = ET . By (6) we get θ1u
2 + ru+ (E− r) = 0. If 0 < u∗1 6 T , r > E, then (6)

has a unique positive solution u∗1 = (−r+
√
r2 − 4θ1(E − r) )/(2θ1). If r 6 E, then (6)

has no positive solution. Similarly, by the Descartes’s rule, (7) has solutions u∗2, u
∗
3. It is

clear that G′(u) = r− 2ru− 3θ1u
2. Obviously, G′(0) = r > 0, G′(1) = −r− 3θ1 < 0,

G′′(u) = −2r−6θ1u < 0. SoG′(u) = 0 has one positive root marked as û ∈ (0, 1). This
indicates that G(u) has different monotonicity in (0, û) and (û, 1). Its local maximum is
G(û) in (0, 1). Thus, (7) has two positive roots asG(û) > h, a positive root asG(û) = h,
and no positive roots as G(û) < h. The number of positive roots in (0, 1) for different θ1

and h are shown in Fig. 1(a). All possible equilibria are denoted as E∗k = (u∗k, 0), k =
1, 2, 3, 4.

Remark 2. From the above results, if r > E or h 6 G(û), then system (2) always exists
the boundary equilibrium. So the threshold harvesting and the toxins increase the system
complexity. We can find that under the threshold harvesting and the toxins, system (2)
possesses from zero to four boundary equilibria, but it has at most two boundary equilibria
without threshold harvesting.

Next, we analyze the interior equilibrium.

Proposition 2.
(i) If 0 < u∗ 6 T and r + cη/θ2 > E, then system (2) has a unique interior

equilibrium E∗ = (u∗, v∗).
(ii) If u∗k > T and R(ũ) > h, then system (2) has two interior equilibria E∗k =

(u∗k, v
∗
k), k = 2, 3; If u∗4 > T andR(ũ) = h, then system (2) has a unique interior

equilibrium E∗4 = (u∗4, v
∗
4). Here R(u) = (r + cη/θ2)u− (r + c/θ2/u

2 − θ1u
3,

R(ũ) is the local maximum of R(u).

The proof is omitted, it is analogous to that of Proposition 1. The number of positive
roots in (0, 1) for different h is shown in Fig. 1(b).

u

G
(u

)-
h

0

0

(a)

u

R
(u

)-
h

0

0

(b)

Figure 1. The number of positive roots in (0, 1) for different θ1 and h.
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Remark 3. With the above derivation, if the harvesting effect E is smaller enough than
the prey intrinsic growth rate r, then the prey and the predator can coexist.

4 Stability and Turing patterns

4.1 Local stability

In this section, the local stability of system (2) is discussed. System (2) can be rewritten
as

∂u

∂t
= d1∆u+ ru(1− u)− uv − θ1u

3 −
[
Eu+ ρ(h− Eu)

]
,

∂v

∂t
= d2∆v + cv(u− η)− θ2v

2,

(8)

where

ρ =

{
0, 0 6 u 6 T,

1, u > T.

By linearization (8) reduces to(
φt
ψt

)
= L

(
φ
ψ

)
= D

(
∆φ
∆ψ

)
+ J(u∗, v∗)

(
φ
ψ

)
,

where

D =

(
d1 0
0 d2

)
, J(u∗, v∗) =

(
A(u∗, v∗) B(u∗, v∗)
C(u∗, v∗) D(u∗, v∗)

)
.

A(u∗, v∗) = r − 2ru∗ − v∗ − 3θ1u
∗2 − (1− ρ)E,

B(u∗, v∗) = −u∗, C(u∗, v∗) = cv∗,

D(u∗, v∗) = cu∗ − cη − 2θ2v
∗.

Let 0 = µ0 < µ1 < µ2 < · · · < µk < · · · → ∞ be the eigenvalues of −∆ on Ω. Define

(i) S(µi) is the space of eigenfunctions with µi ∈ C1(Ω) for i = 1, 2, 3, . . . , m(µi)
is the algebraic multiplicity of µi, that is, m(µi) = dimS(µi);

(ii) Xij := {cφij : c ∈ R2}, where {φij} is the orthonormal base of S(µi) for j =
1, 2, 3, . . . , c is the constant vector;

(iii) X := {(u, v) ∈ [C1(Ω)]
2
: ∂u/∂n = ∂v/∂n = 0}, Xi = ⊕m(µi)

j=1 Xij , and
X = ⊕∞i=1Xi, Xi is the invariant set of operator L.

If λ is an eigenvalue of operator L, then it must be an eigenvalue of matrix −µiD +
J(u∗, v∗) for each i > 0. Thus, we consider characteristic equation

λ2 − Tiλ+Di = 0, i ∈ N0, (9)

https://www.journals.vu.lt/nonlinear-analysis
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where

Ti = −µi(d1 + d2) +A(u∗, v∗) +D(u∗, v∗),

Di = d1d2µ
2
i −

[
A(u∗, v∗)d2 +D(u∗, v∗)d1

]
µi

+
[
A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)

]
=
[
d1µi −A(u∗, v∗)

][
d2µi −D(u∗, v∗)

]
−B(u∗, v∗)C(u∗, v∗).

Obviously, if r < E, then

A(0, 0) = r − E, B(0, 0) = C(0, 0) = 0, D(0, 0) = −cη.

So the steady state (0, 0) is stable.
If 0 < u∗1 6 T , r > E, where u∗1 = (−r +

√
r2 + 4θ1(r − E))/(2θ1),

A(u∗1, 0) = r − 2ru∗1 − 3θ1 u
∗2
1 −E < 0, B(u∗1, 0) = −u∗1,

C(u∗1, 0) = 0, D(u∗1, 0) = cu∗1 − cη,

and u∗1 < η, then Ti < 0, Di > 0, and the steady state (u∗1, 0) is stable.
By similar analysis, if u∗i > T (i = 2, 3), G(û) > h, and Ti < 0, Di > 0, then the

steady states (u∗i , 0) (i = 2, 3) are stable. If Ti < 0, Di > 0, then the steady state (u∗4, 0)
is stable.

Next, the stability of the positive equilibrium can be gained. If 0 < u∗ 6 T , r+cmη/
θ2 > E, then (2) has one unique positive solution (u∗, v∗). Since

A(u∗, v∗) < 0, B(u∗, v∗) = −u∗, C(u∗, v∗) = cv∗, D(u∗, v∗) < 0,

so the steady state (u∗, v∗) is stable.
If ū∗i > T (i = 2, 3), R(ũ) > h, and

A(ū∗i , v̄
∗
i ) < 0, B(ū∗i , v̄

∗
i ) = −ū∗i , C(ū∗i , v̄

∗
i ) = cv̄∗i , D(ū∗i , v̄

∗
i ) < 0,

then (ū∗i , v̄
∗
i ) (i = 2, 3) are stable.

If ū∗4 > T , R(ũ) = h, and

A(ū∗4, v̄
∗
4) < 0, D(ū∗4, v̄

∗
4) < 0,

then the steady state (ū∗4, v̄
∗
4) is also stable.

So the results below can be obtained according to the above discussion.

Theorem 2. The following statements are true for system (2):

(i) If r < E, then the extinct equilibrium point (0, 0) is stable.
(ii) If 0 < u∗1 < max{T, η}, r > E, and A(u∗1, 0) < 0, then the boundary

equilibrium point (u∗1, 0) is stable; If T < u∗i < η (i = 2, 3), G(û) > h, and
A(u∗i , 0) < 0, then (u∗i , 0) (i = 2, 3) are stable; If T < u∗4 < η, G(û) = h, and
A(u∗4, 0) < 0, then (u∗4, 0) is stable.
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(iii) If 0 < u∗ 6 T , r + cmη/θ2 > E, A(u∗, v∗) < 0, and D(u∗, v∗) < 0, then
(u∗, v∗) is stable; If ū∗i > T (i = 2, 3), R(ũ) > h, A(ū∗i , v̄∗i ) < 0, and
D(ū∗i , v̄

∗
i ) < 0, then (ū∗i , v̄

∗
i ) (i = 2, 3) are stable; If ū∗4 > T , R(ũ) = h,

A(ū∗4, v̄
∗
4) < 0, D(ū∗4, v̄

∗
4) < 0, then the steady state (ū∗4, v̄

∗
4) is also stable.

Remark 4. From the above content, when the harvesting effort E is bigger than the prey
intrinsic growth rate r, two species can be extinct. When the harvesting effortE is smaller
than the prey intrinsic growth rate r and the threshold T is larger enough, the prey can
exist, but the predator can be extinct. When the harvesting effort E is smaller sufficient
than the prey intrinsic growth rate r, two species can coexist.

4.2 Global stability

In the following, we obtain the global asymptotic stability of the trivial steady state
solution by constructing a suitable Lyapunov functional.

Theorem 3. If

r < E, r − 2rT − 3θ1T
2 < 0, and rT (1− T )− θ1T

3 < h,

then the trivial steady state (0, 0) is globally asymptotically stable for system (2).

Proof. Define the following Lyapunov functional:

W (u, v) =

∫
Ω

udx+
1

c

∫
Ω

v dx.

Then

d

dt
W
(
u(x, t), v(x, t)

)
=

∫
Ω

[
ru(1− u)− uv −H(u)− θ1u

3
]

dx+
1

c

∫
Ω

(
cuv − cηv − θ2v

2
)

dx

=

∫
Ω

[
ru(1− u)−H(u)− θ1u

3
]

dx− 1

c

∫
Ω

(cηv + θ2v
2
)

dx.

It can be obtained from those conditions r<E, r−2rT−3θ1T
2<0, rT (1−T )−θ1T

3<h
for all u > 0,

ru(1− u)− θ1u
3 6 H(u).

Thus, dW (u, v)/dt is nonnegative and the derivative is zero if and only if (u, v) =
(0, 0). So the trivial steady state (0, 0) to (2) is globally asymptotically stable by [5] and
Theorem 2.

Remark 5. Theorem 3 means that two species will be extinct as E and T are larger
enough. So the lower harvesting can lead to population survival.
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4.3 Turing instability

In the subsection, the necessary conditions for the emergence of Turing instability are
given. It is well known that once the prey density diffuses more slowly, so Turing insta-
bility occurs.

At first, we consider the following system:

du

dt
= ru(1− u)− uv −H(u)− θ1u

3,

dv

dt
= cv(u− η)− θ2v

2.

(10)

It is known that if a positive steady state solution E∗ = (u∗, v∗) is an asymptotically
stable state to system (10), but is unstable with respect to the solution to spatial system (2),
then Turing instability occurs. Denoting

k1 =
∆1 −

√
∆2

1 +∆2

2d1d2
, k2 =

∆1 +
√

∆2
1 +∆2

2d1d2
,

where
∆1 =

[
A(u∗, v∗)d2 +D(u∗, v∗)d1

]
,

∆2 = 4d1d2

[
A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)

]
,

and we can obtain the following results.

Theorem 4. Assume that the following conditions hold:

A(u∗, v∗) +D(u∗, v∗) < 0, (11)
A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗) > 0, (12)

A(u∗, v∗)d2 +D(u∗, v∗)d1 < 0, (13)

0 <
d1

d2
<
∆3 −

√
∆2

3 −A2(u∗, v∗)D2(u∗, v∗)

D2(u∗, v∗)
. (14)

Then the positive constant steady state solution E∗ = (u∗, v∗) of system (2) is Turing
unstable if 0 < k1 < µi < k2 for some µi, where

∆3 = A(u∗, v∗)D(u∗, v∗)− 2B(u∗, v∗)C(u∗, v∗).

Proof. According to the previous discussions, the characteristic equation of system (10)
at the positive steady state solution E∗ = (u∗, v∗) is as follows:

λ2 −
[
A(u∗, v∗) +D(u∗, v∗)

]
λ

+
[
A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)

]
= 0,

the positive steady state solution E∗ = (u∗, v∗) of system (10) is asymptotically stable if
conditions (11)–(14) hold.
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For spatial system (2), we have

Di =
[
d1µi −A(u∗, v∗)

][
d2µi −D(u∗, v∗)

]
−B(u∗, v∗)C(u∗, v∗)

= d1d2µi
2 −

[
d1D(u∗, v∗) + d2A(u∗, v∗)

]
µi

+A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗).

If there exists a µi such that 0 < k1 < µi < k2, thenDi < 0. Therefore,Di takes the min-
imum value at µi = µmin = (d1D(u∗, v∗)+d2A(u∗, v∗))/(2d1d2) when d1D(u∗, v∗)+
d2A(u∗, v∗) > 0. This condition implies that

D2(u∗, v∗)

A2(u∗, v∗)

d2
1

d2
2

+
4B(u∗, v∗)C(u∗, v∗)− 2A(u∗, v∗)D(u∗, v∗)

A2(u∗, v∗)

d1

d2
+ 1 > 0. (15)

Hence, Di is negative. Thus, (15) is the criteria for Turing instability of system (2). From
(15) we have

0 <
d1

d2
<
∆3 −

√
∆2

3 −A2(u∗, v∗)D2(u∗, v∗)

D2(u∗, v∗)
,

denoting∆3 = A(u∗, v∗)D(u∗, v∗)−2B(u∗, v∗)C(u∗, v∗), which means that one eigen-
value of Eq. (9) has positive real part, thus Turing instability occurs.

4.4 Turing patterns

Here we analyze the patterns and judge their stability. Now assume that E∗ = (u∗, v∗) is
an internal equilibrium. Let

u = u∗ + ε1, v = v∗ + ε2. (16)

Substituting (16) into system (2) and by the Taylor expansion, the linear perturbation
equations are obtained as follows:

∂A

∂t
= JA + DLA, (17)

where

A =

(
ε1

ε2

)
, J =

(
A(u∗, v∗) B(u∗, v∗)
C(u∗, v∗) D(u∗, v∗)

)
,

D =

(
d1 0
0 d2

)
, L =

(
∆ 0
0 ∆

)
.

Let (
ε1

ε2

)
=

3∑
q=1

(
c1q
c2q

)
exp(λkt+ ik · r), (18)
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where λk is the growth rate of perturbations, i is the imaginary unit, k is the wave number,
and r is the directional vector.

Substitute Eq. (18) into the perturbation equation (17) to obtain the characteristic
equation

λk

(
c1q
c2q

)
=

(
A(u∗, v∗)− k2d1 B(u∗, v∗)

C(u∗, v∗) D(u∗, v∗)− k2d2

)(
c1q
c2q

)
.

So dispersion relation is
λ2
k − trk λk +∆k = 0, (19)

the solutions of Eq. (19) are λk = (trk ±
√

tr2
k −4∆k)/2, which determine the stability

of Eq. (17), and where

trk = A(u∗, v∗) +D(u∗, v∗)− k2(d1 + d2)

= tr(J)− k2(d1 + d2),

∆k = A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)

− k2
[
D(u∗, v∗)d1 +A(u∗, v∗)d2

]
+ k4d1d2.

Conditions for the occurrence of Hopf bifurcation are Re(λk) = 0 and Im(λk) 6= 0.
So tr(J) ≡ 0, det(J) > 0, k = 0, and ∂ Re(λ)/∂d1 6= 0. While λ0 = (tr0±√

tr2
0−4∆0)/2 < 0 and ∆k < 0 are conditions for the occurrence of Turing bifurcation,

which requires
tr0 < 0, ∆0 > 0.

Minimize ∆k = 0 for k = kT > 0 with

k2
T =

D(u∗, v∗)d1 +A(u∗, v∗)d2

2d1d2
. (20)

Afterwards, substitute Eq. (20) into ∆k = 0 and get

∆kT = ∆0 −
[D(u∗, v∗)d1 +A(u∗, v∗)d2]

2

4d1d2
= 0,

which is

k2
T =

√
∆0

d1d2
=

√
A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)

d1d2
. (21)

So we get the critical value of Turing bifurcation parameter

d1T =
∆ +

√
∆2 − 4A2(u∗, v∗)D2(u∗, v∗)d2

2

2D2(u∗, v∗)

about d1 by substituting Eq. (21) into ∆k = 0, where

∆ = [A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)]d2.
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Now we judge the stability of different patterns by dividing the control parameter
interval for these patterns. For these purposes, we analyze the amplitude equation. To get
it, we need the multiple scale method in [20]. Select d1 as a control parameter and d1T as
the bifurcation threshold. Patterns of (2) can be described as the models of wave vectors
(kj,−kj) (j = 1, 2, 3) intersecting with each other of 2π/3 and |kj| = kT .

Each stable steady Turing pattern corresponds to a solution, and each amplitude Ai
can be written as Ai = ρi exp(iθi) in which ρi = |Ai| and ϕi are the phase angles of Ai.
Subsequently, substitute Ai = ρi exp(iθi) into system

τ0
∂ϕ

∂t
= −hρ

2
1ρ

2
2 + ρ2

1ρ
2
3 + ρ2

2ρ
2
3

ρ1ρ2ρ3
, (22)

τ0
∂ρ1

∂t
= µρ1 + hρ2ρ3 cos θ −

(
g1ρ

2
1 + g2

(
ρ2

2 + ρ2
3

))
ρ2

1, (23)

τ0
∂ρ2

∂t
= µρ2 + hρ1ρ3 cos θ −

(
g1ρ

2
2 + g2

(
ρ2

1 + ρ2
3

))
ρ2

2, (24)

τ0
∂ρ3

∂t
= µρ3 + hρ1ρ2 cos θ −

(
g1ρ

2
3 + g2

(
ρ2

2 + ρ2
3

))
ρ2

1 (25)

in which θ = θ1 + θ2 + θ3. The system composed of Eqs. (22)–(25) has five solutions.
The first solution is ρ1 = ρ2 = ρ3 = 0, which always exists and will be unstable

when µ satisfies µ < µ2 = 0. The second solution to the system is ρ1 =
√
µ/g1,

ρ2 = ρ3 = 0, which exists when µ > µ2 = 0 is satisfied and will be stable when µ >
µ3 = h2g1/(g1 − g2)2 corresponding to stripe patterns. When µ > µ1 is held, we have
the other two solutions: ρ1 = ρ2 = ρ3 = (|h| ±

√
h2 + 4(g1 + 2g2)µ)/(2(g1 + 2g2)),

which are spot patterns. We mark (|h|+
√
h2 + 4(g1 + 2g2)µ)/(2(g1 + 2g2)) and (|h|−√

h2 + 4(g1 + 2g2)µ)/(2(g1 + 2g2)) by ρ+
i and ρ−i , respectively. The former solution

ρ+
i is stable as µ < µ4, while ρ−i is unstable. The mixed patterns are ρ1 = |h|/(g2 − g1),
ρ2 = ρ3 =

√
(µ− g1ρ2

1)/(g1 + g2), which exist when g2 > g1 is satisfied, but are
always unstable. See the detailed derivation process in [29].

5 Steady state solutions

Now the conditions for some special solutions will be discussed. The elliptic system is

−d1∆u = ru(1− u)− uv −H(u)− θ1u
3, x ∈ Ω,

−d2∆v = cv(u− η)− θ2v
2, x ∈ Ω,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω.

(26)

The solutions below refer to the classical solutions in C2(Ω)
⋂
C1(Ω). From [30] The-

orems 5 and 6 are gained, where the detailed derivation processes are analogous to [30].
So we omit them.
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5.1 Predator-free nonconstant solutions

In this subsection, the predator-free nonconstant solutions to system (26) are considered:

−d1∆u = ru(1− u)−H(u)− θ1u
3, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω.

(27)

First, the following maximum principle [15] is introduced.

Lemma 2. Let the bounded Lipschitz domain Ω ∈ Rn and g ∈ C(Ω × R). Suppose
Z ∈ H1(Ω) is a weak solution to the inequalities

∆z + g
(
x, z(x)

)
> 0, x ∈ Ω,

∂z

∂n
6 0, x ∈ ∂Ω,

and there exists a constant K such that g(x, z) < 0 for z > K, then z 6 K a.e. in Ω.

Theorem 5. If µi, i ∈ N0, are the eigenvalues of −∆, then the following statements are
factual:

(i) All nontrivial solutions to system (27) satisfy 0 < u < 1.
(ii) If d̃1 = r+E+3θ1K

2 with d1 > d̃1, then system (27) has no nonconstant steady
state solutions.

5.2 Nonexistence of nonconstant positive solutions

In this subsection, the nonexistence of nonconstant positive solutions to system (26) will
be analyzed.

Lemma 3. If (u(x), v(x)) is a nonnegative solution to system (26), then (u(x), v(x)) is
a predator-free solution to (27), or it meets 0 < u(x) < 1, 0 < v(x) < c/θ2.

Theorem 6. If

d∗ = max

{
A1

µ1
,
A2

µ2

}
and d∗ < min{d1, d2},

where

A1 = r + E + 3θ1K
2 +

m

2
+

c2

2θ2
, A2 =

m

2
+ c+

c2

2θ2
− cη,

then system (26) has no nonconstant solutions.

5.3 Existence of nonconstant positive solutions

While other parameters are fixed as the diffusion coefficients d1 and d2 are changed, we
study the existence of these solutions to system (26) by the Leray–Schauder degree theory.
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Denote u = (u, v) and

Φ(u) =

(
ru(1− u)− uv −H(u)− θ1u

3

cv(u− η)− θ2v
2

)
,

then (26) can be rewritten as

−D∆u = Φ(u), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω,

or equivalently,

F(d1,d2;u) = u− (I −∆)−1
{
D−1Φ(u) + u

}
= 0, (28)

where (I −∆)
−1 is the inverse of I − ∆ with the homogeneous Neumann boundary

conditions.
From (28) we have

Fu(E∗) = I − (I −∆)−1
{
D−1Fu(E∗) + I

}
= 0,

where E∗ is the unique positive constant steady state solution to (2). So

index
(
F (·), E∗

)
= (−1)γ ,

where γ is the number of negative eigenvalues of Fu(E∗). λ is an eigenvalue of the
matrix

Bj = I − 1

1 + µj

[
D−1Φu(E∗) + I

]
=

1

1 + µj

[
µjI −D−1Φu(E∗)

]
.

Denote

H(d1, d2;µ) = det
[
µI −D−1Φu(E∗)

]
=

1

d1d2
det
[
µD − Φu(E∗)

]
, (29)

which means that if H(d1, d2;µ) 6= 0, then H(d1, d2;µ) is negative as the number of
negative eigenvalues of Fu(E∗) is odd.

Lemma 4. Suppose H(d1, d2;µ) 6= 0 for all i > 0, then

index
(
F (·), E∗

)
= (−1)γ , γ =

∑
i>0, H(d1,d2;µ)<0

m(µi),

where m(µi) is the algebraic multiplicity of µi.

By the direct calculation we have

det
[
µD − Φu(E∗)

]
= d1d2µ

2 −
(
A(u∗, v∗)d2 +D(u∗, v∗)d1

)
µ

+A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)

= 0. (30)
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Obviously, nonnegative roots of (29) exist as(
A(u∗, v∗)d2 +D(u∗, v∗)d1

)2
− 4
(
A(u∗, v∗)D(u∗, v∗)−B(u∗, v∗)C(u∗, v∗)

)
> 0

A(u∗, v∗)d2 +D(u∗, v∗)d1 > 0.

Assume that µ+, µ− are two roots of (29), and the following conclusion is established.

Theorem 7. Assume that A(u∗, v∗)d2 +D(u∗, v∗)d1 > 0 and there exist i, j ∈ N such
that 0 6 µj < µ− < µj+1 6 µi < µ+ < µi+1, and

∑i
k=j+1m(µk) is odd, then (26)

has at least one nonconstant positive solution.

Proof. Define

At(u) , (−∆ + I)
−1

(
u+ ( 1−t

d∗ + t
d1

)f1(u, v)

v + ( 1−t
d∗ + t

d1
)f2(u, v)

)
,

where d∗ is defined in Theorem 6, and t ∈ [0, 1].
The positive solutions to the problem

At(u) = u in Ω,
∂u

∂n
= 0 on ∂Ω

are contained in Λ = {(u, v) ∈ X: C−1 < u, v < C on Ω}. Note that u is a positive
solution to system (26) if and only if it is a positive solution of (30) with t = 1. u∗ is the
unique positive constant solution to (30) for any t ∈ [0, 1]. According to the choice of d∗

in Theorem 6, we have that E∗ is the only fixed point of A0.

deg(I −A0, Λ, 0) = deg(I −A0, E
∗) = 1

since F = I − H(·, 1). If (26) has no other solutions, except the constant one E∗, then
we have

deg
(
I −A1, Λ, (0, 0)

)
= deg(F,E∗) = (−1)

∑i
k=j+1m(µk) = −1.

On the other hand, by the homotopy invariance of the topological degree

deg(I −A0, Λ, 0) = deg(I −A1, Λ, 0).

The result is contradicted and therefore the theorem holds.

Remark 6. Theorem 7 implies that diffusion terms can cause steady states to system (26)
under certain parametric restrictions as d2 is larger enough.

5.4 Bifurcation

In this section, the bifurcation of (2) and (26) is investigated. Let other parameters be
fixed and consider d2 > 0 as the bifurcation parameter.

From (9), if there exist an integer k0 > 0 and d∗2 > 0 such that

Tk0(d∗2) = 0, Dk0(d∗2) > 0, Tk(d∗2) 6= 0, Dk(d∗2) 6= 0, k 6= k0,
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and for the unique pair of complex eigenvalue α(d2) ± iω(d2) of (9), the derivative
α′(d∗2) 6= 0, then (d∗2, E

∗) is Hopf bifurcation point. This implies that a lot of spatially
periodic solutions emanate from E∗.

If there exist k0 and ds2 > 0 such that

Dk0

(
ds2
)

= 0, Tk
(
ds2
)
6= 0, Dk

(
ds2
)
6= 0, k 6= k0,

and the derivative D′k0(ds2) 6= 0, then (ds2, E
∗) is a point of steady state bifurcation.

Theorem 8. Assume that B(u∗, v∗)C(u∗, v∗) < A(u∗, v∗)D(u∗, v∗), then conclusions
below are factual.

(i) IfA(u∗, v∗)+D(u∗, v∗) > 0 and µk(d1+d2)−A(u∗, v∗)−D(u∗, v∗) > 0, then
E∗ is unstable for any d2 > 0. If there exist β∗1 , β

∗
2 , andA(u∗, v∗)+D(u∗, v∗) =

0 when β1 = β∗1 , β2 = β∗2 , then the Hopf bifurcation occurs at E∗, and there are
homogeneous periodic solutions near E∗.

(ii) Let k0 be the largest positive integer as µk(d1+d2)−A(u∗, v∗)−D(u∗, v∗) > 0,
and dk1 6= dk2(k1 6= k2), 1 6 k1, k2 < k0. If 0 < A(u∗, v∗) + D(u∗, v∗) <
d1µ1, then (dS2k, E

∗) is the steady state bifurcation point, where

dS2k =
B(u∗, v∗)C(u∗, v∗)

[d1µk −A(u∗, v∗)]µk
+
D(u∗, v∗)

µk
, 1 6 k 6 k0. (31)

(iii) Let k0 be defined as in (ii), d2 = min16k6k0 dk, d2k1 6= d2k2 whenever k1 6= k2,
1 6 k1, k2 6 k0, then (dS2k, E

∗) is the steady state bifurcation point, and E∗ is
unstable with 0 < d2 < d̄2.

(iv) Let k0 be defined as in (ii), and d2k1 6= d2k2 whenever k1 6= k2, 1 6 k1, k2 6 k0.
If 0 < A(u∗, v∗) +D(u∗, v∗) < d1µ1, B(u∗, v∗)C(u∗, v∗) < 0, then (dS2k, E

∗)
is the steady state bifurcation point. If

max

{
A(u∗, v∗)−

√
−B(u∗, v∗)C(u∗, v∗)

d1
,
A(u∗, v∗) +D(u∗, v∗)

2d1

}
< µ1 < min

{
A(u∗, v∗) +

√
−B(u∗, v∗)C(u∗, v∗)

d1
,
A(u∗, v∗)

d1

}
,

then (dH2k, E
∗) is Hopf bifurcation point for 1 6 k 6 k0, where

dH2k =
A(u∗, v∗) +D(u∗, v∗)

µk
− d1.

Proof. (i) From the assumption and by (9), for any d2 > 0, k > 1, we have

−Tk(d2) = µk(d1 + d2)−A(u∗, v∗)−D(u∗, v∗) > 0,

Dk(d2) =
(
d1µk −A(u∗, v∗)

)(
d2µk −D(u∗, v∗)

)
−B(u∗, v∗)C(u∗, v∗) > 0.
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However, −T0(d2) < 0, D0(d2) > 0. Thus, only a pair of eigenvalues have positive real
parts, while the others have negative real parts. So E∗ is linearly unstable with d2 > 0.
ForA(u∗, v∗)+D(u∗, v∗) = 0, T0 = 0, D0 > 0, then (9) owns a pair of purely imaginary
roots, and Hopf bifurcation generates.

(ii) The condition means that −Tk(d2) > 0, k > 0. So −Tk(dk) > 0, Dk(dk) = 0.
From the assumption d2k1 6= d2k2 , k1 6= k2, 1 6 k1, k2 6 k0, it is easy to see that
Dk(k1) 6= 0, k1, k > 1, k1 6= k. With k 6 k0, there exists

D′k(d2k) = µk
[
d1µk −A(u∗, v∗)

]
6= 0.

Therefore, (d2k, E
∗) is the steady state bifurcation point for the fixed 1 6 k 6 k0.

(iii) The existence is similar to (ii), and the details are omitted. The second part will
be verified. In fact, for d2 < d2, k > 1, we have Dk(d2) > 0, −Tk(d2) > 0. Moreover,
D0(d2) > 0, −T0(d2) < 0, which imply that the conclusion is valid.

(iv) The existence is omitted. By the assumption we have T1(dH21) = 0, Tk(dH21) 6= 0,
k > 0, and −T0(d20) < 0. In addition, D0(d20) 6= 0 for all d20 > 0. Clearly,

D1(dH21) =
[
d1µ1 −A(u∗, v∗)

][
A(u∗, v∗)− d1µ1

]
−B(u∗, v∗)C(u∗, v∗)

= −d2
1µ

2
1 + 2d1µ1A(u∗, v∗)−A(u∗, v∗)

2 −B(u∗, v∗)C(u∗, v∗).

Obviously, if condition (31) holds, then D1(dH21) > 0. Moreover, if µ1 > (A(u∗, v∗) +
D(u∗, v∗))/2d1, then dDk/dµk > 0. Thus, Dk(dH21) > D1(dH21) > 0. Therefore, Eq. (9)
has conjugate complex eigenvalues

λ =
1

2

{
T1(d2)± i

√
T 2

1 (d2)− 4D2
1(d2)

}
.

Clearly, Re′(λ) = µ1/2 6= 0.
As a result, (dH21, E

∗) is Hopf bifurcation point, which indicates that (2) has a lot of
inhomogeneous periodic solutions near E∗.

Remark 7. In (ii), if there exist µi (i = 1, 2, 3, . . .) such that 0 < k1 < µi < k2, then
Turing instability appears, where k1, k2 are the roots ofDk = (d1µk−A(u∗, v∗))(d2µk−
D(u∗, v∗))−B(u∗, v∗)C(u∗, v∗) = 0.

Remark 8. If dH2k = dS2k, Turing–Hopf bifurcations occur, which means that (2) oscillates
both spatially and temporally.

6 Numerical simulations

Finally, we display numerical simulations to exemplify our previous results.

6.1 Effect of the toxin θ2 and the threshold harvesting T on the essential dynamics

Fix r = 0.7, h = 0.06, f = 1, η = 0.05, θ1 = 0.9. Figure 2 manifests that θ2 affects the
number of the equilibria. Figure 3 shows that h can also change the number of positive
equilibria. The rise of h cannot make the prey density, and the predator density coexist.
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Figure 2. The blue curves are the prey isoclines, and the red lines are the predator isoclines. For θ2 = 0.7,
there are two equilibria. For θ2 = 0.57, there is one equilibrium. For θ2 = 0.1, there is no equilibrium.

Figure 3. The blue curves are the prey isoclines, and the red lines are the predator isoclines. For h = 0.06,
there are two equilibria. For h = 0.0659, there is one equilibrium. For h = 0.07, there is no equilibrium.

Figure 4. The trivial state steady solution to system (2) is globally asymptotically stable.

Take r = 0.6, T = E = 0.7, θ1 = 0.25, h = 1, θ2 = 0.2. So r − 2rT − 3θ1T
2 =

−0.39 < 0, rT (1− T )− θ1T
3 = 0.09 < h, and Fig. 4 is consistent with Theorem 3.

In this subsection, the distinct spatially properties of solutions are obtained by choos-
ing different harvesting threshold T . r = 0.7, θ1 = 0.9, η = 0.05, d1 = 0.008,
d2 = 1, Ω = (0, π). With T = 0.5, so u∗ = 0.5085 > T , and the positive solution
is stable as shown in Fig. 5. But it loses its stability owing to inhomogeneous spatial
perturbation u∗ = 0.4492 < T in Fig. 6. With T = 0.3, β2 = 0.003, the positive steady
state is unstable with u∗ = 0.162 < T in Fig. 7, but the positive steady state is locally
asymptotically stable with u∗ = 0.33 > T , h = 0.003, θ2 = 0 in Fig. 8. It can be seen
that the presence of the toxin β2 alters the dynamic behavior of (2). The homogeneous
periodic solution of (2) in Fig. 9 can be obtained, which is consistent with Theorem 8.
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Figure 5. E∗ ≈ (0.5085, 0.0917) is stable with T = 0.5, u∗ = 0.5085 > T , h = 0.01, θ2 = 0.0005.

Figure 6. E∗ ≈ (0.4492, 0.2316) is unstable with T = 0.5, E = 0.2, u∗ = 0.4492 < T , θ2 = 0.01.

Figure 7. E∗ ≈ (0.162, 0.56) is unstable with T = 0.3, u∗ = 0.162 < T , E = 0.003, θ2 = 0.002.

Figure 8. E∗ ≈ (0.33, 0.3759) is stable with T = 0.3, u∗ = 0.33 > T , h = 0.003, θ2 = 0.
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Figure 9. Numerical simulation on the dynamics of the bifurcating periodic solution to system (2) with η =
0.21, h = 0.001, θ2 = 0.00001, d1 = 4, d2 = 0.1.

6.2 Effect of the toxin θ2 on the pattern formations

In this subsection, different spatial patterns of the prey are observed by varying θ2 reflect-
ing the effects of the toxin on the prey. Figure 10 shows the spatial pattern of the prey
at t = 20000 by choosing r = 0.7, h = 0.001, θ1 = 0.9, c = 1, η = 0.05, d1 = 0.1,
d2 = 6. When θ2 is set as 0, that is to say, there is no toxin on the predator, the stationary
state pattern is presented. It looks irregular. With the increase of θ2, it can be seen that the
random initial distribution leads to the formation of coexistence of the spotted patterns,
the spotted patterns and the fewer spotted patterns, and the stripe-like patterns exist. For

(a) θ2 = 0 (b) θ2 = 0.001

(c) θ2 = 0.005 (d) θ2 = 0.006

Figure 10. Patterns of the prey density for system (2).
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few toxins, the distribution of the prey exhibits spotted patterns, which means that the
population is isolated with low density surrounded by high quantity, representing the prey
dominance of the spatial domain. Further increase in the toxin results in the disappearance
of hole patterns, and only stripe patterns remain present in the domain.

6.3 Effect of the diffusion rate d2 on the pattern formations

In Fig. 11, fix r = 0.7, h = 0.001, θ1 = 0.9, c = 1, η = 0.05, θ2 = 0.005, d1 = 0.1.
There are patterns by varying d2. It shows a transformation from labyrinth patterns to spot
patterns with intermediate states stripe patterns and mixed patterns. As d2 = 0.17, the
labyrinth patterns will dominate. When d2 = 0.2, the spot and stripe patterns exist. As d2

grows to 0.4, the labyrinth patterns occur. With further increase of d2, only stripe patterns

(a) d2 = 0.17 (b) d2 = 0.25

(c) d2 = 0.3 (d) d2 = 0.4

(e) d2 = 1.5 (f) d2 = 1.7 (g) d2 = 5

Figure 11. Patterns of the prey density for system (2) at time t = 20000.
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occur. When d2 becomes larger, mixed patterns appear. At last, we set d2 as 5, and the
spot patterns arise. For intermediate values of d2, the formation of the labyrinth patterns
are prevalent. With the high diffusion rate, a mixture of stripe and hole patterns emerges,
and a high-density prey gradually masters the regions. The values of d2 can affect the
cohabitation of them.

7 Conclusion

In the article, the dynamics of a predator–prey system containing toxic substances and
the threshold harvesting are studied. We have established sufficient conditions for the
permanence of (2), implying that both densities exist together. The stabilities of some
nonnegative solutions are analyzed. Some sufficient conditions for some special solutions
are also established. Meanwhile, we have studied Turing patterns and the bifurcation
analysis.

We deliberate pattern dynamics of the system via the multiple scale analysis. By
simulation results we find that the different patterns are due to d2 and θ2. The patterns can
explain the prey and predator distribution in reality, and the dynamic complexity during
the ecological environment.

There will be some questions: other environmental factors such as seasonal changes
are not considered in our paper. We leave these open issues for future investigation.
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