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Abstract. The so-called stretch-twist-fold flow consists in a Stokes flow depending on two
parameters defined in a unit closed ball B̄ that is associated with the motion of a fluid particle
coming from the dynamo theory, and it models a mechanism for studying the magnetic field of the
Earth and the Sun. Here for the first time, we classify all the local phase portraits of its equilibrium
points, and we provide the global phase portraits on the 2-dimensional sphere of the boundary of
the ball B̄.
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1 Introduction and statement of main results

The stretch-twist-fold flow is a special case of the Stokes flow coming from the dynamo
theory. More precisely, it is a two-parameter family of a three-dimensional incompress-
ible flow defined in the unit closed ball that is associated with the fluid particle motion
coming from the dynamo theory, and it was devised to represent the stretch-twist-fold
action that is believed to be most conductive of the so-called “fast dynamo action” in
magnetohydrodynamics; see for more details [11,17,18]. In other words, it is a model for
studying the origin, maintenance and amplification of the magnetic field of the celestial
bodies such as stars and planets.
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Phase portraits on the unit sphere of the stretch-twist-fold flow 1021

A prototype of the stretch-twist-fold mechanism of the magnetic field was introduced
in [22–24] and is the following 3-dimensional differential system:

x′ = az − 8xy,

y′ = 11x2 + 3y2 + z2 + bxz − 3,

z′ = −ax+ 2yz − bxy,
(1)

where x, y, z ∈ ma, a, b are positive real parameters related with the ratios of the inten-
sities of the stretch, twist and fold components of the flow. It describes that an initially
circular flux tube is subjected to stretch, twist and a fold sequence.

Note that system (1) is invariant under the symmetry S(x, y, z) = (−x, y,−z), so
the phase portrait of the differential system (1) is symmetric with respect to the y-axis.
Moreover, its vector field

X =
(
az − 8xy, 11x2 + 3y2 + z2 + bxz − 3, −ax+ 2yz − bxy

)
satisfies the incompressibility condition∇X = 0 on the open unit ball

B =
{

(x, y, z) ∈ R3: x2 + y2 + z2 < 1
}
,

which means that the system preserves the volume in its phase space, and soB is invariant
by the flow of X . Moreover, X·n|∂B = 0, that is, the vector field X is tangent to the
boundary ∂B, which is the unit sphere

S2 =
{

(x, y, z) ∈ R3: x2 + y2 + z2 = 1
}
.

Let f = f(x, y, z) = x2 + y2 + z2 − 1. Since

∂f

∂x
(az − 8xy) +

∂f

∂y

(
11x2 + 3y2 + z2 + bxz − 3

)
+
∂f

∂z
(−ax+ 2yz − bxy) = 6yf,

it follows that the sphere S2 is also invariant under the flow generated by the vector field
X; for more details, see [13, Chap. 8]. In particular, the existence of this invariant sphere
implies that the flow inside the open unit ball B remains always inside this ball. These
facts prevent the existence of strange attractors. However, this differential system can still
exhibits a rich variety of structures with chaotic and regular Lagrangian orbits intricately
interspersed among each other inside the unit ball; see [4–8].

System (1) has been studied intensively from the analytical and numerical points of
view such as the zero-Hopf bifurcation in [14], the integrability in [6, 15], the existence
of Smale horseshoes in [1,25], the existence of periodic solutions in [8,15] as well as the
existence of invariant tori in [8] to cite just a few. However, as far as the authors know,
until now a complete study of the local phase portrait of the equilibrium points of the
differential system (1) as well as the description of the flow of X on S2 have not been
done. For generalized version of system (1), see [3, 9, 12].
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1022 J. Llibre, C. Valls

The objective of this paper is double: first, to do a complete study of the local phase
portraits of all equilibrium points of the differential system (1), and second, to describe
the flow of the vector fieldX on the sphere S2 for all values of the positive real parameters
a and b.

Computing the equilibrium points of system (1), they are (whenever they are real)

p1 = (0, 1, 0), p2 = (0,−1, 0),

p3 =

(√
P

8C
,
Aa

32
,
A
√
P

32C

)
, p4 =

(
−
√
P

8C
,
Aa

32
,−A

√
P

32C

)
= S(p3),

p5 =

(√
Q

8C
,
Ba

32
,
B
√
Q

32C

)
, p6 =

(
−
√
Q

8C
,
Ba

32
,−B

√
Q

32C

)
= S(p5),

where

A = b−
√

64 + b2, B = b+
√

64 + b2, C =
√

2(100 + b2),

P = −a2(160 + bA) + 64(40 + bB),

Q = −a2(160 + bB) + 64(40 + bA).

Note that all these points when they exists, i.e., when they are real, are on the sphere S2.
Note that since p4 = S(p3) and p6 = S(p5) and the phase portrait of the differential

system (1) is invariant with respect to the symmetry S, it follows that the local phase
portraits of the equilibrium points p3 and p4 are equal, and the local phase portraits of the
equilibrium points p5 and p6 are equal, of course, when they exist.

We define

b1 =

√
4096− 2256a2 + 25a4 + (256 + 25a2)

√
256 + 68a2 + a4

50a2
,

b2 =
16− a2

a
, b3 =

25− a2

a
, b4 =

a2 − 16

a
, b5 =

a2 − 25

a
,

and we consider the sets of parameters

R1 =
{

(a, b): a ∈ (0, 4), 0 < b < b2
}
,

L1 =
{

(a, b): a ∈ (0, 4), b = b2,
}

R2 =
{

(a, b): a > 0, b > b2, b > b4
}
,

L2 =
{

(a, b): a > 4, b = b4
}
,

R3 =
{

(a, b): a > 4, b < b4
}
,

where Ri denotes regions, Li denotes lines, and all together form a partition of the plane
formed by the points (a, b) with a and b positive; see Fig. 1(a).

The equilibrium points of the differential system (1) are described in the next propo-
sition.
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Phase portraits on the unit sphere of the stretch-twist-fold flow 1023

Theorem 1. The differential system (1) has the following equilibrium points:

(i) p1, p2, p3, p4, p5 and p6 if (a, b) ∈ R1;
(ii) p1 = p5 = p6, p2, p3 and p4 if (a, b) ∈ L1;

(iii) p1, p2, p3 and p4 if (a, b) ∈ R2;
(iv) p1, p2 = p3 = p4 if (a, b) ∈ L2;
(v) p1 and p2 if (a, b) ∈ R3.

The straight line formed by the y-axis is invariant under the flow of the differential
system (1) containing a heteroclinic orbit, which travels inside the ball B from the equi-
librium point p1 to the equilibrium point p2. Indeed, when x = z = 0, we get that
(ẋ, ẏ, ż) = (0, 3(y2 − 1), 0).

Now we define the sets of parameters (see Fig. 1(b))

R1
1 =

{
(a, b): a ∈

(
0, 16

√
2

41

)
, 0 < b < b1

}
,

L0 =

{
(a, b): a ∈

(
0, 16

√
2

41

)
, b = b1,

}
R2

1 =
{

(a, b): a ∈ (0, 4), b1 < b < b2
}
,

L1 =
{

(a, b): a ∈ (0, 4), b = b2
}
,

R1
2 =

{
(a, b): a ∈

(
0,

√
41

2

)
, b2 < b < b3, b > b4

}
,

L1
3 =

{
(a, b): a ∈

(
0,

√
41

2

)
, b = b3

}
,

P =

(√
41

2
,

9√
82

)
,

L1
2 =

{
(a, b): a ∈

(
4,

√
41

2

)
, b = b4

}
,

R1
3 =

{
(a, b): a ∈ (4, 5), b4 < b < b3

}
,

L2
3 =

{
(a, b): a ∈

(√
41

2
, 5

)
, b = b3, b > b4

}
,

R2
2 =

{
(a, b): a > 0, b > b3, b > b4

}
,

L2
2 =

{
(a, b): a >

√
41

2
, b = b4

}
,

R2
3 =

{
(a, b): a >

√
41

2
, b5 < b < b4, b > b3

}
,

L4 =
{

(a, b): a > 5, b = b5
}
,

R3
3 =

{
(a, b): a > 5, b < b5

}
.
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(a) (b)

Figure 1. Bifurcation diagram on the number of equilibrium points (a); on the local phase portraits at the
equilibrium points (b) in the parameter plane (a, b) with a and b positive.

The local phase portraits of the equilibrium points of the differential system (1) are
described in the next theorem. For the definitions of hyperbolic, semihyperbolic equi-
librium points, saddle, focus, node, saddle-node, see [13] and Section 2. We recall that
a nondiagonalizable node is a node with equal eigenvalues whose Jordan normal form
does not diagonalize.

Theorem 2. The local phase portraits of the differential system (1) in its equilibrium
points are:

(i) In the region R1
1:

p1 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative;
p5 and p6 are hyperbolic stable foci on S2, and their eigenvalue in the direction
inside the ball B is positive.

(ii) In the line L0:
p1 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative;
p5 and p6 are hyperbolic stable nondiagonalizable nodes on S2, and their eigen-
value in the direction inside the ball B is positive.

(iii) In the region R2
1:

p1 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative;
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p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative;
p5 and p6 are hyperbolic stable nodes on S2, and their eigenvalue in the direction
inside the ball B is positive.

(iv) In the line L1:
p1 is a semihyperbolic stable node on S2, and its eigenvalue in the direction
inside the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative.

(v) In the region R1
2:

p1 is a hyperbolic stable node on S2, and its eigenvalue in the direction inside the
ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative.

(vi) In the line L1
2:

p1 is a hyperbolic stable node on S2, and its eigenvalue in the direction inside the
ball B is positive;
p2 is a semihyperbolic unstable node on S2, and its eigenvalue in the direction
inside the ball B is negative.

(vii) In the region R3
3:

p1 is a hyperbolic stable node on S2, and its eigenvalue in the direction inside the
ball B is positive;
p2 is a hyperbolic unstable node on S2, and its eigenvalue in the direction inside
the ball B is negative.

(viii) In the line L1
3:

p1 is a hyperbolic stable nondiagonalizable node on S2, and its eigenvalue in the
direction inside the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative.

(ix) In the point P :
p1 is a hyperbolic stable nondiagonalizable node on S2, and its eigenvalue in the
direction inside the ball B is positive;
p2 is a semihyperbolic unstable node on S2, and its eigenvalue in the direction
inside the ball B is negative.

(x) In the line L2
3:

p1 is a hyperbolic stable nondiagonalizable node on S2, and its eigenvalue in the
direction inside the ball B is positive;
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p2 is a hyperbolic unstable node on S2, and its eigenvalue in the direction inside
the ball B is negative.

(xi) In the region R2
2:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative;
p3 and p4 are hyperbolic unstable foci on S2, and their eigenvalue in the direction
inside the ball B is negative.

(xii) In the line L2
2:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a semihyperbolic unstable node on S2, and its eigenvalue in the direction
inside the ball B is negative.

(xiii) In the region R1
3:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a hyperbolic unstable node on S2, and its eigenvalue in the direction inside
the ball B is negative.

(xiv) In the line L4:
p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a hyperbolic unstable nondiagonalizable node on S2, and its eigenvalue in
the direction inside the ball B is negative.

(xv) In the region R2
3:

p1 is a hyperbolic stable focus on S2, and its eigenvalue in the direction inside
the ball B is positive;
p2 is a hyperbolic unstable focus on S2, and its eigenvalue in the direction inside
the ball B is negative.

From Theorem 2 and by the Hartman–Grobman theorem (see, for instance, [10]) we
note that the segment of the invariant y-axis with endpoints p1 and p2 is contained in the
unstable manifold of the equilibrium point p1 and in the stable manifold of the equilibrium
point p2.

Again, from Theorem 2 and by the Hartman–Grobman theorem it follows that at each
equilibrium point on the sphere S2 of the differential system (1), there is either a stable or
an unstable manifold of at most dimension two contained inside the open ball B.

In the next three theorems, we describe the dynamics on the invariant sphere S2 of
the flow of the differential system (1) in function of the positive parameters a and b. We
have numerical evidences that the differential system (1) has no periodic orbits on the
sphere S2 (see the Appendix). So we do the next conjecture.

Conjecture 1. For all positive values of the parameters a and b, the differential system (1)
on the sphere S2 has no periodic orbits.

https://www.journals.vu.lt/nonlinear-analysis
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It is known that the stretch-twist-fold flow has periodic orbits in the open ball B; see,
for instance, [8, 15].

For definitions of separatrix, canonical region, strip flow and spiral or nodal flow, see,
for instance, [13, Sect. 1.9] or Section 3.

Let ϕ(t, p) be an orbit of a vector field X on the sphere S2 such that ϕ(0, p) = p. We
define the set

ω(p) =
{
q ∈ S2: there exist {tn} with tn →∞ and ϕ(tn)→ q when n→∞

}
.

In a similar way, we define the set

α(p) =
{
q ∈ S2: there exist {tn} with tn → −∞ and ϕ(tn)→ q when n→∞

}
.

The sets ω(p) and α(p) are called the ω-limit set and the α-limit set of p, respectively.

Theorem 3. Assume that the differential system (1) has no periodic orbits on the invariant
sphere S2, and that (a, b) ∈ L2∪R3. Then every orbit on S2 different from the equilibrium
points p1 and p2 has α-limit in p2 and ω-limit in p1. Removing the two equilibria, we
obtain one canonical region with a spiral or nodal flow; see Fig. 2(a).

Theorem 4. Assume that the differential system (1) has no periodic orbits on the invariant
sphere S2, and that (a, b) ∈ L1∪R2. Then one of the two stable separatrices of the saddle
p2 comes from the unstable equilibrium p3, and the other from the unstable equilibrium
p4, and the two unstable separatrices of p2 go to the stable equilibrium p1. Removing the
four separatrices of the saddle p2 and all the equilibria, we obtain two canonical regions
with strip flows. In one canonical region, every orbit has α-limit at p3 and ω-limit at p1.
In the other canonical region, every orbit has α-limit at p4 and ω-limit at p1; see Fig. 2(b).

Theorem 5. Assume that the differential system (1) has no periodic orbits on the invariant
sphere S2. Then for the flow on the sphere S2 and for some values (a, b) ∈ R1, one of
the two stable separatrices of the saddle p2 comes from the unstable equilibrium p3, and
the other from the unstable equilibrium p4, and one unstable separatrix of p2 goes to
the stable equilibrium p5 and the other goes to the stable equilibrium p6. One of the
two unstable separatrices of the saddle p1 goes to the stable equilibrium p5, and the
other goes to the stable equilibrium p6, and one of the stable separatrix of p1 comes
from the unstable equilibrium p3, and the other comes from the unstable equilibrium p4.
Removing the separatrices of the two saddles p1 and p2 and all the equilibria, we obtain
four canonical regions with strip flows. In a canonical region, every orbit has α-limit at p3
and ω-limit at p5. In other canonical region, every orbit has α-limit at p3 and ω-limit at
p6. In another canonical region, every orbit has α-limit at p4 and ω-limit at p5. Finally, in
the fourth canonical region, every orbit has α-limit at p4 and ω-limit at p6; see Fig. 2(c).

We note that Theorems 3 and 4 characterize completely the topological phase portraits
of the differential system (1) when the parameters (a, b) ∈ L1 ∪R2 ∪L2 ∪R3, but when
the parameters (a, b) ∈ R1, we have proved in Theorem 5 that for some values of such
parameters, its phase portrait is topologically equivalent to the phase portrait of Fig. 2(c).
We have numerical evidence that the following conjecture must hold.
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(a) (a, b) ∈ L2 ∪R3 (b) (a, b) ∈ L1 ∪R2

(c) (a, b) ∈ R1

Figure 2. The phase portrait of system (1). The thick lines are formed by the separatrices of the saddles, and
the thin lines are some orbits, which are not separatrices.

Conjecture 2. For all values of the parameters (a, b) ∈ R1, the phase portrait of the
differential system (1) on the sphere S2 is topologically equivalent to the one of Fig. 2(c).

We recall the stereographic projection from the south pole. We identify R2 as the
tangent plane to the sphere S2 at the point (0, 0,−1), and we denote the points of R2 as
(u, v) = (u, v,−1). Let π : R2 → S2 \ {(0, 0, 1)} be the diffeomorphism given by

π(u, v) =

(
x =

2u

1 + u2 + v2
, y =

2v

1 + u2 + v2
, z =

u2 + v2 − 1

1 + u2 + v2

)
.

That is, π is the inverse map of the stereographic projection π−1 : S2 \ {(0, 0, 1)} → R2

defined by

π−1(x, y, z) =

(
u =

x

1− z
, v =

y

1− z

)
.

2 The equilibria of system (1)(1)(1)

In this section, we prove Theorems 1 and 2.

Proof of Theorem 1. First, we note that P = 0 if and only if b = (a2 − 16)/a (i.e.,
P vanishes on L2), and that Q = 0 if and only if b = (16 − a2)/a (i.e., Q vanishes
on L1).

Since P and Q are positive in the region R1, for the values of the parameters (a, b)
in this region, the differential system (1) has the six equilibria p1, p2, p3, p4, p5 and p6.
Therefore, statement (i) of Theorem 1 is proved.
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Since P > 0 and Q = 0 on the line L1, it follows that p1 = p5 = p6, p2, p3 and p4.
This completes the proof of statement (ii) of Theorem 1.

Since P > 0 and Q < 0 in the region R2, for the values of the parameters (a, b)
in this region, the differential system (1) has the four equilibria p1, p2, p3 and p4, and
consequently, statement (iii) of Theorem 1 follows.

Since P = 0 and Q < 0 on the line L2, it follows that p1, p2 = p3 = p4. This
completes the proof of statement (iv) of Theorem 1.

Finally, since P < 0 and Q < 0 in the region R2, for the values of the parameters
(a, b) in this region, the differential system (1) has the two equilibria p1 and p2. This
proves statement (v) of Theorem 1.

In summary, Theorem 1 is proved.

In what follows, we recall some basic definitions and results that we shall need for
proving Theorem 2.

An equilibrium point of a differential system or vector field in a 2-dimensional man-
ifold is hyperbolic if the real part of its two eigenvalues are nonzero. The local phase
portraits of the hyperbolic equilibrium points in dimension two are classified; see, for
instance, [13, Thm. 2.15].

An equilibrium point of a differential system or vector field in a 2-dimensional man-
ifold is semihyperbolic if it has only one eigenvalue equal to zero. The semihyperbolic
equilibrium points only can be saddles, nodes or saddle-nodes; see, for instance, [13,
Thm. 2.19].

We recall that each isolated equilibrium point of a continuous differential system or
vector field in a 2-dimensional manifold has associated a unique integer number called its
(topological) index. The nodes and foci have index 1, the saddles have index −1, and the
saddle-nodes have index 0; for more details, see [13, Chap. 6].

The next theorem is well known, and for a proof, see, for instance, [2, Sect. 36] or [13,
p. 179].

Theorem 6 [Poincaré–Hopf theorem]. For every continuous vector field on the sphere S2
with a finite number of equillibrium points, the sum of the indices of its equilibrium points
is 2.

Proof of Theorem 2. The Jacobian matrix of the differential system (1) is −8y −8x a
22x+ bz 6y 2z + bx
−a− by 2z − bx 2y

 .

The equilibrium points p3 and p4 exist in the regions R1 ∪ L1 ∪ R2. The Jacobian
matrix evaluated at these two equilibrium points has the same characteristic polynomial

P34(λ) =
3

256

(
a
(
a2
(
b2 + 32

)
− 512

)√
b2 + 64− a3b

(
b2 + 64

))
+

1

128

(
a2
(
13b2 + 544

)
− 64

(
b2 + 64

)
− b
(
13a2 + 64

)√
b2 + 64

)
λ− λ3.

Nonlinear Anal. Model. Control, 28(5):1020–1036, 2023

https://doi.org/10.15388/namc.2023.28.33088


1030 J. Llibre, C. Valls

Therefore, the Jacobian matrix evaluated at both equilibrium points have the same eigen-
values. It is easy to check that the independent term of this characteristic polynomial
does not vanish if (a, b) ∈ R1 ∪ L1 ∪ R2. The discriminant of this cubic characteristic
polynomial is negative if (a, b) ∈ R1 ∪ L1 ∪ R2, hence, this polynomial has only one
real root and two complex roots. Since the independent term of the polynomial P34(λ)
does not vanish, in order to see that the real root of this polynomial is always negative
when (a, b) ∈ R1 ∪ L1 ∪ R2, it is sufficient to compute the roots of this polynomial
in a point (a, b) ∈ R1 ∪ L1 ∪ R2. Since the system formed by the coefficients of the
polynomial P34(λ) + (λ − r)(λ2 + ω2) has no solution in the real variables r, ω and
(a, b) ∈ R1 ∪ L1 ∪ R2, it follows that the real part of the two complex eigenvalues
of the polynomial P34(λ) never vanish. So, in order to see that the real part of the two
complex eigenvalues is always positive, it is sufficient to see that for a particular value of
(a, b) ∈ R1 ∪ L1 ∪ R2. Hence, the equilibrium points p3 and p4 are always hyperbolic.
Moreover, by [13, Thm. 2.15] and taking into account that p3 and p4 are on the invariant
sphere S2, they are always hyperbolic unstable foci on S2, and their eigenvalue in the
direction inside the ball B is negative.

The equilibrium points p5 and p6 exist in the region R1. The Jacobian matrix evalu-
ated at these two equilibrium points have the same characteristic polynomial

P56(λ) = − 3

256

(
a
(
a2(b2 + 32)− 512

)√
b2 + 64 + a3b

(
b2 + 64

))
+

1

128

(
a2
(
13b2 + 544

)
− 64

(
b2 + 64

)
+ b
(
13a2 + 64

)√
b2 + 64

)
λ− λ3.

Therefore, the Jacobian matrix evaluated at both equilibrium points have the same eigen-
values. It is easy to check that the independent term of this characteristic polynomial
does not vanish if (a, b) ∈ R1. So these points are always hyperbolic. Moreover, it is
easy to check that the discriminant D of this cubic characteristic polynomial is negative
if (a, b) ∈ R1

1, zero if (a, b) ∈ L0, and positive if (a, b) ∈ R2
1.

Using for the polynomial P56(λ) the same kind of arguments than the ones used
in the study of the roots of the polynomial P34(λ), we obtain that when D < 0, the
polynomial P56(λ) has only one positive real root and two complex roots, and the real
part of the complex roots is negative. Hence, the equilibrium points p5 and p6 are always
hyperbolic. Furthermore, by [13, Thm. 2.15] and taking into account that p5 and p6 are on
the invariant sphere S2, they are always hyperbolic stable foci on S2, and their eigenvalue
in the direction inside the ball B is positive.

When D = 0, the two complex roots become a negative double real root, and the
remaining real root continues being positive. Therefore, by [13, Thm. 2.15] taking into
account that p5 and p6 are on the invariant sphere S2, they are always hyperbolic stable
nondiagonalizable nodes on S2, and their eigenvalue in the direction inside the ball B is
positive.

When D > 0, the previous negative double real root splits into two distinct negative
real roots, and the remaining real root continues being positive. Hence, by [13, Thm. 2.15]
taking into account that p5 and p6 are on the invariant sphere S2, they are always hyper-
bolic stable nodes on S2, and their eigenvalue in the direction inside the ballB is positive.
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Computing the eigenvalues of the Jacobian matrix at p1 and p2, we get that they are

λ1 = 6, λ2 = −3−
√

25− a2 − ab, λ3 = −3 +
√

25− a2 − ab
and

λ1 = −6, λ2 = 3−
√

25− a2 + ab, λ3 = 3 +
√

25− a2 + ab,

respectively. Then in the region R1 = R1
1 ∪ L0 ∪ R2

1, it is easy to check that p1 is
a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball B is positive;
and that p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball
B is negative. This completes the proof of statements (i), (ii) and (iii) of Theorem 2.

In the lineL1 the equilibrium p1 is semihyperbolic on S2 having an eigenvalue positive
and the other zero, and its eigenvalue in the direction inside the ball B is positive; and
p2 is a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball B is
negative. On this line, we only have the four equilibrium points pi for i = 1, 2, 3, 4. We
know that p3 and p4 are foci on S2, and that p2 is a saddle, so the sum of the indices
of these three equilibria is 1. Therefore, by the Poincaré–Hopf theorem the index of the
semihyperbolic equilibrium p1 must be 1, and consequently, p1 must be a semihyperbolic
stable node. This completes the proof of statements (iv) of Theorem 2.

In the region R1
2 the equilibrium p1 becomes a hyperbolic stable node on S2, and its

eigenvalue in the direction inside the ball B is positive; and p2 is a hyperbolic saddle on
S2, and its eigenvalue in the direction inside the ball B is negative. This completes the
proof of statements (v) of Theorem 2.

In the line L1
2 the equilibrium p1 continues being a hyperbolic stable node on S2, and

its eigenvalue in the direction inside the ball B is positive; but p2 becomes a semihy-
perbolic equilibrium on S2 with a positive real eigenvalue and a zero eigenvalue, and its
eigenvalue in the direction inside the ball B is negative. Since in the line L1

2 the unique
equilibrium points are p1 and p2 and the index of p1 is 1, by the Poincaré–Hopf theorem
the index of the semihyperbolic equilibrium p2 is also 1. So p2 is a semihyperbolic
unstable node on S2. This completes the proof of statements (vi) of Theorem 2.

In the region R3
3 the equilibrium p1 continues being a hyperbolic stable node on S2,

and its eigenvalue in the direction inside the ball B is positive; and p2 becomes a hyper-
bolic unstable node on S2, and its eigenvalue in the direction inside the ball B is negative.
So statement (vii) of Theorem 2 is proved.

In the line L1
3 the equilibrium p1 becomes a hyperbolic stable nondiagonalizable

node on S2, and its eigenvalue in the direction inside the ball B is positive; and p2 is
a hyperbolic saddle on S2, and its eigenvalue in the direction inside the ball B is negative.
Therefore, statement (viii) of Theorem 2 is proved.

In the point P the equilibrium p1 is a hyperbolic stable nondiagonalizable node on S2,
and its eigenvalue in the direction inside the ball B is positive; and p2 is a semihyperbolic
equilibrium on S2 with a positive eigenvalue and a zero eigenvalue, and its eigenvalue in
the direction inside the ball B is negative. By the Poincaré–Hopf theorem p2 is a semihy-
perbolic unstable node on S2. This completes the proof of statement (ix) of Theorem 2.

In the line L2
3 the equilibrium p1 is a hyperbolic stable nondiagonalizable node on S2,

and its eigenvalue in the direction inside the ball B is positive; and p2 is a hyperbolic
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unstable node on S2, and its eigenvalue in the direction inside the ball B is negative. This
completes the proof of statement (x) of Theorem 2.

In the region R2
2 the equilibrium p1 is a hyperbolic stable focus on S2, and its eigen-

value in the direction inside the ball B is positive; and p2 is a hyperbolic saddle on S2,
and its eigenvalue in the direction inside the ball B is negative. Hence, statement (xi) of
Theorem 2 is proved.

In the line L2
2 the equilibrium p1 is a hyperbolic stable focus on S2, and its eigenvalue

in the direction inside the ball B is positive; and p2 is a semihyperbolic equilibrium on
S2 with a positive eigenvalue and a zero eigenvalue, and its eigenvalue in the direction
inside the ballB is negative. Again, by the Poincaré–Hopf theorem p2 is a semihyperbolic
unstable node on S2. This completes the proof of statement (xii) of Theorem 2.

In the region R1
3 the equilibrium p1 is a hyperbolic stable focus on S2, and its eigen-

value in the direction inside the ballB is positive; and p2 is a hyperbolic unstable node on
S2, and its eigenvalue in the direction inside the ball B is negative. Therefore, statement
(xiii) of Theorem 2 is proved.

In the line L4 the equilibrium p1 is a hyperbolic stable focus on S2, and its eigenvalue
in the direction inside the ball B is positive; and p2 is a hyperbolic unstable nondiagonal-
izable node on S2, and its eigenvalue in the direction inside the ball B is negative. This
completes the proof of statement (xiv) of Theorem 2.

In the region R2
3 the equilibrium p1 is a hyperbolic stable focus on S2, and its eigen-

value in the direction inside the ball B is positive; and p2 is a hyperbolic unstable focus
on S2, and its eigenvalue in the direction inside the ball B is negative. So statement (xv)
of Theorem 2 is proved. This completes the proof of Theorem 2.

3 Proofs of Theorems 3, 4 and 5

We recall the Poincaré–Bendixson theorem on the sphere S2. For a proof, see the more
general proof of this theorem for a compact region of the plane provided in [13, Sect. 1.7]
or see [20].

Theorem 7 [Poincaré–Bendixson theorem I]. Let ϕ(t, p) be an orbit of a C1 vector
field X on the sphere S2. Assume that X has finitely many equilibrium points. Then one
of the following statements holds:

(i) If ω(p) does not contains equilibrium points, then ω(p) is a periodic orbit.
(ii) If ω(p) contains both regular and equilibrium points, then ω(p) is formed by

a set of orbits, every one of which tends to one of the equilibrium points in ω(p)
as t→ ±∞.

(iii) If ω(p) does not contain regular points, then ω(p) is a unique equilibrium point.

A separatrix of a vector field on the sphere S2 is an equilibrium point, or a limit cycle,
or an orbit on the boundary of a hyperbolic sector at an equilibrium point. The set of all
separatrices is closed (see [19]), and we denote it by ΣX . An open connected component
of S2 \ ΣX is a canonical region of X . It is known that the flow on a canonical region is
topologically equivalent to one of the following three flows (see [16, 19, 21]):
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(i) The flow defined on R2 by the differential system ẋ = 1, ẏ = 0, which we
denote by strip flow.

(ii) The flow defined on R2\{0} by the differential system given in polar coordinates
r′ = 0, θ′ = 1, which we denote by annulus flow.

(iii) The flow defined on R2\{0} by the differential system given in polar coordinates
r′ = r, θ′ = 0, which we denote by spiral or nodal flow.

Proof of Theorem 3. By assumptions the differential system (1) has no periodic orbits
on the invariant sphere S2, and from Theorem 2 if (a, b) ∈ L2 ∪ R3, then the unique
separatrices of the system are the two equilibrium points p1 and p2, being p1 a stable
equilibrium and p2 an unstable equilibrium. Therefore, the flow on the canonical region
S2 \ {p1, p2} is a spiral or nodal flow. This completes the proof of the theorem.

Proof of Theorem 4. By hypotheses the differential system (1) has no periodic orbits on
the invariant sphere S2, and from Theorem 2 if (a, b) ∈ L1 ∪ R2, the system has the
equilibrium points pi for i = 1, 2, 3, 4, being p1 a stable equilibrium, p2 a saddle, and
p3 and p4 are unstable equilibria. By the Poincaré–Bendixson theorem the two stable
separatrices of the saddle p2 come from the unstable equilibrium p3, and the other from
the unstable equilibrium p4, and the two unstable separatrices of p2 go to the stable
equilibrium p1. Removing the four separatrices of the saddle p2 and the four equilibria,
we obtain two canonical regions with strip flows. In one canonical region, every orbit
distinct from the equilibrium points p3 and p1 has α-limit in p3 and ω-limit in p1. In
the other canonical region, every orbit distinct from the equilibrium points p4 and p1 has
α-limit in p4 and ω-limit in p1. So the proof of the theorem is done.

Proof of Theorem 5. By hypotheses the differential system (1) has no periodic orbits on
the invariant sphere S2, and by Theorem 2 if (a, b) ∈ R1, then the system has the
equilibrium points pi for i = 1, . . . , 6, being p1 and p2 two saddles, p3 and p4 two
unstable equilibria, and p5 and p6 two stable equilibria. Then near the line L1 but inside
the regionR1, by continuity we have that the two stable separatrices of the saddle p2 come
one from the unstable equilibrium p3 and the other from the unstable equilibrium p4. Since
the equilibrium points p5 and p6 bifurcate from the equilibrium point p1, it follows that
one of the two unstable separatrices of the saddle p1 goes to the stable equilibrium p5, and
the other goes to the stable equilibrium p6. On the line L1 the two unstable separatrices of
the saddle p2 go to the stable equilibrium p1. Again, by continuity one unstable separatrix
of p2 must go to the stable equilibrium p5, and the other separatrix must go to the stable
equilibrium p6. Note that it is not possible that both unstable separatrices go either to p5
or to p6 because the local phase portraits at the points p5 and p6 are the same due to the
symmetry S of the differential system (1). It only remains to know the α-limit of the two
stable separatrices of the saddle p1. Due to the previous results (see Fig. 2(c)), one comes
from the unstable equilibrium p3, and the other comes from the unstable equilibrium p4.
This completes the proof of the theorem.

We note that we have computed numerically many phase portraits of the differential
system (1) for different values of (a, b) ∈ R1, and always we have obtained phase portraits
topologically equivalent to the one described in Theorem 5.
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Appendix: Some numerical computations

A polynomial differential system on the sphere S2

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z),

through the stereographic projection π−1, becomes the following rational differential
system:

u̇ =
1 + u2 + v2

2
(P̄ + uR̄), v̇ =

1 + u2 + v2

2
(Q̄+ vR̄) (2)

on the plane R2, where

F̄ = F

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

1 + u2 + v2

)
.

If t denotes the independent variable in the above differential system, then that system
becomes polynomial introducing the new independent variable s through ds = (1 +u2 +
v2)m−1dt.

Now the differential system (1) written in the form (2) is

u̇ = −a− 2au2 − 36uv − 4bu2v − au4 + 4u3v + 4uv3 + av4,

v̇ = −2
(
1 + bu− 18u2 + auv − bu3 + buv2 + u4 + au3v + auv3 − v4

)
.

(3)

We draw the phase portraits of the polynomial differential system (3) in the plane R2 in
the Poincaré disc, i.e., roughly speaking, we identify the plane R2 with the interior of the
unit disc and its boundary the circle S1 with the infinity of R2; for more details on the so
called Poincaré compactification, see [13, Chap. 5]. Identifying the circle S1 of the infinity
to a point, we have the phase portrait of the differential system (1) on the sphere S2.

In Fig. 3(a), we provide the phase portrait in the region L2 ∪ R3, in Fig. 3(b), we
provide the phase portrait in the region L1∪R2, and in Fig. 4, we provide a phase portrait
in the region R1.

(a) (a, b) = (6, 2) (b) (a, b) = (4, 8)

Figure 3. The phase portrait of system (2).
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Figure 4. The phase portrait of system (2), (a, b) = (2, 1).
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