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Abstract. In this paper, we investigate the effect of hemivariational inequalities on the approximate
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by using multivalued maps, sectorial operators of type (P, η, r, γ), fractional calculus, and the
fixed point theorem. Initially, we introduce the idea of mild solution for fractional hemivariational
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example is provided in support of the main results we acquired.
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1 Introduction

Fractional differential systems and fractional calculation have both played an important
role in mathematics over the last few decades. Fractional calculus is thought-about as
a generalization of classical calculus. Some fundamental problems cannot be solved using
difference calculus of integer order, but they can be solved using fractional-order differ-
ential equations. There are numerous definitions for derivatives and integrals of arbitrary
order. Even though in the beginning, fractional calculus was just a strictly mathematical
idea, in modern times, its use has unfolded into many distinct fields of technological
know-how such as mechanics, signal processing, control theory, fluid flow, biological
engineering challenges, image processing, viscoelasticity, porous media, theology, and
other fields have been significant. For further details, we refer to books and articles
[8–11, 14, 19, 25, 31, 32]. Researchers discussed the Hölder regularity result for nonau-
tonomous fractional evolution very recently [5]. The existence and singularity of global
mild solutions for a class of nonlinear fractional reaction–diffusion equations with delay
were developed in [34] by making use of the theory of resolvent operators, the Banach
contraction mapping principle, the solution operator, and the convex-power condensing
operator.

In 1981, Panagiotopoulos established the concept of hemivariational inequality, which
he used to tackle nonconvex and nonsmooth superpotential problems [16,17]. After, in [2],
the author investigated the optimization, nonsmooth analysis, and geometry problems.
Using multivalued analysis and a surjectivity outcome forL-generalized pseudomonotone
operators, the researcher examined the existence of solutions for parabolic hemivaria-
tional inequalities in [12]. The authors of [13] expressed the existence, uniqueness, and
regularity results of the dynamical hemivariational inequality using evolution inclusions,
contact problems, Clarke subdifferential, and quasistatic processes. A rising number of
researchers have recently made major contributions to the field of hemivariational in-
equality. In [3, 7, 9, 9–11, 22, 23, 29], the authors used semigroup theory, cosine families,
Hilfer fractional derivative, stochastic systems, Sobolev-type, fractional derivative of or-
der 1 < r < 2, and neutral systems to prove the existence of the functional evolution
hemivariational inequality and its exact and approximate controllability results.

Controllability notation has shown to be a valuable resource for control system analy-
sis and innovation. To solve these problems, fractional derivatives with variable significa-
tions can be used. They are employed in a wide range of fields such as economics, biology,
power systems, chemical outgrowth control, electronics, transportation, space technology,
engineering, physics, robotics, and chemistry. As indicated by the researchers’ papers
[7,9,10,23,33], resolving these types of challenges has become a major project for young
academics. Many scholars have recently argued the approximate control problems defined
as evolution inclusions, integro-differential equations, impulsive functional inclusions,
neutral functional differential equations, and semilinear functional equations as evidenced
by research publications [3, 7, 11, 20, 22, 29].

The authors [4, 33] established fractional differential systems of order α ∈ (1, 2)
as well as control problems employing various fixed point theorems, cosine families,
the measure of noncompactness, the Laplace transform, nonlocal conditions, and mild
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solutions. Furthermore, controllability results for Caputo fractional derivative with delay
of order 1 < r < 2, as well as integrodifferential equations, cosine operators, and
fixed-point techniques, were examined using Laplace transform [23]. Many researchers
have studied on fractional differential systems of order r ∈ (1, 2) employing cosine
families, infinite delay, Volterra–Fredholm integrodifferential systems, hemivariational
inequalities, various fixed point theorems, and generalized Clarke’s subdifferential type
[22]. In [3], researchers developed fractional delay stochastic differential inclusions of
order r ∈ (1, 2) by referring to the Wiener process, Sobolev-type, integrodifferential
systems, control systems, fixed point theorems, and cosine families.

Several investigators have lately made substantial developments in the area of frac-
tional derivatives with sectorial operators. Using a sectorial operator of type (M, θ, α, µ),
the researchers of [25] examined the existence results for impulsive fractional derivative.
In addition, the researchers proved the impulsive fractional differential equations of order
0 < α < 1 and α ∈ (1, 2) in [26] by utilizing the fixed point technique, fractional partial
differential equations, and mild solutions. In [27], the authors looked into the existence
and uniqueness of fractional differential equations of order α ∈ (1, 2). In [20], Gronwall’s
inequality and sectorial operators are used to analyze optimal control outcomes for frac-
tional evolution equations of order (1, 2). The authors of [28] utilized upper and lower
solution techniques to find extremal solutions of fractional partial differential equations
of order α ∈ (1, 2). Hausdorff measure of noncompactness, sectorial operators, and
Mittag-Leffler function were applied. The existence of positive mild solutions for Caputo
fractional evolution systems of order 1 < α < 2 was also addressed by the authors
in [24]. Very recently, in [21], the authors developed the existence and optimal control
results for fractional differential equations and inclusions of order 1 < r < 2 by referring
to the sectorial operators of type (P, η, r, γ), Volterra–Fredholm-type integrodifferential
systems, Sobolev-type, Lagrange problem (P ), and different fixed point theorems.

Our article makes the following valuable contribution: semigroup theory, mild solu-
tions, and other methods are commonly used to investigate fractional differential systems
of order 0 < r < 1 with or without delay. In our study, the main motivation is to evaluate
the mild solution as well as results for approximate controllability for the given system by
using sectorial operator of type (P, η, r, γ), Caputo fractional derivative of order 1<r<2,
generalized Clarke’s subdifferential, hemivariational inequality, nonlocal conditions, con-
trol systems, and, in particular, fixed point theorem for multivalued maps.

Examine the approximate controllability results for the following Caputo fractional
hemivariational inequality of order 1 < r < 2 with sectorial operators in Hilbert space as
motivated by the foregoing results:〈

−CDr
t z(t) +Az(t) +Bx(t), k

〉
Z +G0

(
t, z(t); k

)
> 0,

t ∈ [0, T ], for all k ∈ Z,
z(0) = z0, z′(0) = z1.

(1)

Here the state z(·) takes values in separable Hilbert space Z with the norm |·|. 〈·, ·〉Z rep-
resents the scalar product of the separable Hilbert space. The Caputo fractional derivative
of order r ∈ (1, 2) is expressed by −CDr

t z(t); A : D(A) ⊂ Z → Z denotes secto-
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rial operator of type (P, η, r, γ) on Z. G0(t, z(·); ·) is the generalized Clarke directional
derivative [2] of a locally Lipschitz function G(·, ·) : Z → R. The control function x is
given in L2(0, T ;H), where H stand for Hilbert space. Furthermore, the bounded linear
operator B from H into Z.

We list the significant of the derived main result of Caputo fractional hemivariatioal
inequality of order 1 < r < 2 as follows:

(i) For the first time in literature, the existence of mild solution for fractional hemi-
variatioal inequality of order 1<r<2 with sectorial operator of type (P, η, r, γ)
involving Caputo fractional derivative is investigated.

(ii) New set of sufficient conditions is established for approximate controllability
results for fractional hemivariatioal inequality of order 1 < r < 2 with sectorial
operator of type (P, η, r, γ) in separable Hilbert spaces.

(iii) The properties of generalized Clarke subdifferentials is adopted to prove the
existence and approximate controllability results for the given systems.

(iv) The fixed point theorem of multivalued maps is effectively used to establish the
existence of mild solutions. Furthermore, we discussed the nonlocal fractional
hemivariatioal inequality of order 1 < r < 2.

(v) Obtained theoretical result is verified through an example.

This article has been divided into several sections. In Section 2, we review certain
foundational concepts and the preparation process results. In Section 3, we look into
the existence of mild solution for system (2) by applying the fixed point theorem of
multivalued analysis and some essential properties. Further, in Section 4, we investigate
the approximate controllability results for the considered fractional control system (2).
Moreover, we develop our system (2) with nonlocal conditions in Section 5. Finally, an
example is given for establishing the law based on the key results.

2 Preliminaries

In this section, we give some basic definitions related to some fundamental fractional
calculus, approximate controllability, multivalued maps, and sectorial operators of type
(P, η, r, γ), which are essential for the proof of our results.

We assume that X is a Banach space with the norm ‖·‖X , X∗ stands for its dual, and
(·, ·)X denotes the duality pairing between X∗. C(0, T ;X) denotes the Banach space of
all continuous functions from [0, T ] intoX with the norm ‖z‖C(0,T ;X) =supt∈[0,T ]‖z(t)‖.

Definition 1. (See [31, Defs. 1.5, 1.6].) The Riemann–Liouville fractional integral of
order β ∈ R+ with the lower limit zero for g : [0,∞)→ R+ is given by

Iβg(t) =
1

Γ(β)

t∫
0

g(s)

(t− s)1−β
ds, t > 0,

if the right-hand side is point-wise defined on [0,∞).
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Definition 2. (See [31, Defs. 1.5, 1.6].) The Riemann–Liouville fractional derivative of
order β ∈ R+ with the lower limit zero for g is defined by

LDβg(t) =
1

Γ(j − β)

dj

dtj

t∫
0

g(s)(t− s)j−β−1 ds, t > 0, j − 1 < β < j.

Definition 3. (See [31, Def. 1.8].) Caputo fractional derivative of order β ∈ R+ with the
lower limit zero for g is given by

CDβg(t) = LDβ

(
g(t)−

j−1∑
i=0

g(i)(0)

i!
ti

)
, t > 0, j − 1 < β < j, β ∈ R+.

Definition 4. (See [27, Def. 2.3].) Let A : D ⊆ Z → Z be a closed and linear operator.
A is said to be sectorial operator of type (P, η, r, γ) if there exists γ ∈ R, 0 < η < π/2,
and P > 0 such that the r-resolvent of A exists outside the sector

γ + Sη =
{
η + µr: µ ∈ C(0, T ;Z),

∣∣Arg
(
−µr

)∣∣ < η
}

and ∥∥(µrI −A)−1∥∥ 6
P

|µr − γ|
, µr /∈ γ + Sη.

Further, if A is a sectorial operator of type (P, η, r, γ), then it is not difficult to see
thatA is the infinitesimal generator of a r-resolvent family {Kr(t)}t>0 in a Banach space,
where

Kr(t) =
1

2πi

∫
c

eµrR
(
µr, A

)
dµ,

c is a suitable path satisfying µr /∈ γ + Sη for µ ∈ c.

Theorem 1. (See [27, Thm. 3.3].) If A is a sectorial operator of type (P, η, r, γ), then the
following estimates on ‖Sr(t)‖ hold:

(i) If γ > 0, for ψ ∈ (0, π), we get

∥∥Sr(t)∥∥ 6
M1(η, ψ)P exp{[M1(η, ψ)(1 + γtr)][(1 + sinψ

sin(ψ−η) )
1/r − 1]}

π sin1+1/r η
×
(
1 + γtr

)
+

Γ(r)P

π(1 + γtr)| cos π−ψr |r sin η sinψ

for t > 0, where M1(η, ψ) = max{1, sin η/ sin(ψ − η)}.
(ii) If γ < 0, for 0 < ψ < π, we get∥∥Sr(t)∥∥ 6

(
eP [(1 + sinψ)1/r − 1]

π| cosψ|1+1/r
+

Γ(r)P

π| cosψ|| cos π−ψr |r

)
1

1 + |γ|tr

for t > 0.
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Theorem 2. (See [27, Thm. 3.4].) If A is a sectorial operator of type (P, η, r, γ), then the
following estimates on ‖Kr(t)‖, ‖Qr(t)‖ hold:

(i) If γ > 0, for ψ ∈ (0, π), we get

∥∥Kr(t)
∥∥ 6

P [(1 + sinψ
sin(ψ−η) )

1/r − 1]

π sin η

(
1 + γtr

)1/r
tr−1

× exp{[M1(η, ψ)(1 + γtr)]1/r}

+
Ptr−1

π(1 + γtr)| cos π−ψr |r sin η sinψ
,

∥∥Qr(t)∥∥ 6
P [(1 + sinψ

sin(ψ−η) )
1/r − 1]M1(η, ψ)

π sin η(r+2)/r

(
1 + γtr

)(r−1)/r
tr−1

× exp{[M1(η, ψ)(1 + γtr)]1/r}

+
PrΓ(r)

π(1 + γtr)| cos π−ψr |r sin η sinψ

for t > 0, where M1(η, ψ) = max{1, sin η/sin(ψ − η)}.
(ii) If γ < 0, for ψ ∈ (0, π), we get

∥∥Kr(t)
∥∥ 6

(
eP [(1 + sinψ)1/r − 1]

π| cosψ|
+

P

π| cosψ|| cos π−ψr |

)
tr−1

1 + |γ|tr
,

∥∥Qr(t)∥∥ 6

(
eP [(1 + sinψ)1/r − 1]t

π| cosψ|1+2/r
+

rΓ(r)P

π| cosψ|| cos π−ψr |

)
1

1 + |γ|tr

for t > 0.

We also introduce some basic definitions and results of multivalued maps. For more
details on multivalued maps, we refer to book [6].

Definition 5. (See [9, p. 3].)

(i) A multivalued map G : X → 2X \ {∅} := P(X) is convex-valued (closed-
valued) if G(z) is convex (closed) for every z ∈ X .

(ii) A multivalued map G is called upper semicontinuous on X if for any z ∈ X ,
G(z) is a nonempty, closed subset ofX and if for any open setM ofX containing
G(z), there exists an open neighborhood J of z such that

G(J) ⊆M.

(iii) A multivalued map G is said to be completely continuous if G(M) is relatively
compact for any bounded subset M ⊆ X .

https://www.journals.vu.lt/nonlinear-analysis
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(iv) Let (W, E) be a measurable space, and let (X, d) be a separable metric space.
A multivalued map G : [0, T ]→ P(X) is called measurable if for any closed set
K ⊆ X , we have

G−1(K) =
{
t ∈ [0, T ]: G(t) ∩K 6= ∅

}
∈ E .

Now, let us proceed to the definition of the generalized gradient of Clarke’s subdiffer-
ential for a locally Lipschitz functional q : X → R (see [6]). We denote by q0(u, v) the
Clarke generalized directional derivative of q at u in the direction v, i.e.,

q0(u, v) := lim
κ→0+

sup
α→z

q(α+ κv)− q(α)

κ
.

The generalized Clarke subdifferential of q at u is the subset of X∗ defined by

∂q(u) :=
{
u∗ ∈ X∗: q0(u, v) > 〈u∗, v〉 for every v ∈ X

}
.

Lemma 1. (See [2, Prop. 2.1.2].) Assume that q is a locally Lipschiz of rank J close to
u. Then

(i) A nonempty set ∂q(u) is convex, weak∗-compact subset of X∗, and ‖u∗‖X∗ 6 J
for every u∗ ∈ ∂q(u);

(ii) For any v ∈ X , one has q0(u, v) = max{〈u∗, v〉: for every u∗ ∈ ∂q(u)}.

In the sequel, we will analyze the existence of mild solutions and approximate con-
trollability results for the following semilinear inclusion:

CDr
t z(t) ∈ Az(t) +Bx(t) + ∂G

(
t, z(t)

)
, t ∈ [0, T ],

z(0) = z0, z′(0) = z1,
(2)

where CDr
t z(t) stands for Caputo fractional derivative of order r ∈ (1, 2); A denotes

sectorial operator of type (P, η, r, γ) defined from the domain D(A) ⊂ Z into Z; ∂G
denotes the generalized Clarke subdirectional derivative [2] of a locally Lipschitz function
G(·, ·) :Z→ R; the control function x is given inL2(0, T ;H), and the admissible controls
set H denotes a Hilbert space; moreover B is the bounded linear operator from H into Z.

We show that every solution to (2) is also a solution to (1). Based on the definition
of solution for (2), if z ∈ C(0, T ;Z) is a solution of system (2), then there exists g(t) ∈
∂G(t, z(t)) such that g ∈ L2(0, T ;Z) and

CDr
t z(t) = Az(t) +Bx(t) + g(t), t ∈ [0, T ],

z(0) = z0, z′(0) = z1.

Consequently, 〈
−CDr

t z(t) +Az(t) +Bx(t), k
〉
Z +

〈
g(t); k

〉
Z = 0,

t ∈ [0, T ], for all k ∈ Z,
z(0) = z0, z′(0) = z1.
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Hence, g ∈ ∂G(t, z(t)) and 〈g(t); k〉Z 6 G0(t, z(t); k), and we get〈
−CDr

t z(t) +Az(t) +Bx(t), k
〉
Z +G0

(
t, z(t); k

)
> 0,

t ∈ [0, T ], for all k ∈ Z,
z(0) = z0, z′(0) = z1.

Therefore, in order to study the hemivariational inequality (1), we only need to deal with
the semilinear inclusion (2). According to the book [18], we may define a mild solution
of problem (2) as follows.

Definition 6. A function z ∈ C(0, T ;Z) is called a mild solution of system (2) if there
exists the function g ∈ L2(0, T ;Z) such that g(t) ∈ ∂G(t, z(t)) for a.e. t ∈ [0, T ] and

z(t) = Sr(t)z0 +Qr(t)z1 +

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bx(s) ds,

where

Sr(t) =
1

2πi

∫
c

eµrµr−1R(µr, A) dµ,

Qr(t) =
1

2πi

∫
c

eµrµr−2R(µr, A) dµ,

Kr(t) =
1

2πi

∫
c

eµrR(µr, A) dµ

with c being a suitable path such that µr /∈ γ + Sη for µ in c.

Set

UT (G) =
{
z(T ) ∈ Z: z(·) is a mild solution of system (2) corresponding

to a control x ∈ L2(0, T ;H) with initial values z0, z1 ∈ Z
}
,

which is said to be reachable set of system (1). If G = 0, then this system is called the
corresponding linear system of (1). Let UT (0) represents the reachable set of the linear
system.

Definition 7. (See [9, Def. 2.6].) System (1) is called approximately controllable on [0, T ]
if UT (G) = Z, where UT (G) denotes the closure of UT (G). Then the corresponding
linear system is approximately controllable on [0, T ] if UT (0) = Z.

Theorem 3. (See [9, Thm. 2.8].) Let X be a Banach space and Ω : X → 2X be
a compact convex-valued, upper semicontinuous multivalued map such that there exists
a closed neighborhood M of zero for which Ω(M) is a relatively compact set. If the set

Φ =
{
z ∈ X: ϕz ∈ Ω(z) for some ϕ > 1

}
is bounded, then Ω has a fixed point.

https://www.journals.vu.lt/nonlinear-analysis
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3 Existence results

The purpose of this section is to study the existence of mild solutions for the fractional
differential system (2). Before starting and proving the main results of this section, we
impose the following.

It is simple to show that they are bounded because of the estimations on Sr(t), Qr(t),
and Kr(t) in Theorems 1 and 2.

(H1) The linear operatorA, which is a sectorial accretive operator of type (P, η, r, γ),
generates the compact r-resolvent families Sr(t), Qr(t), and Kr(t) for any t ∈
[0, T ], and there exists P̂ > 0 such that

sup
06t6T

∥∥Sr(t)∥∥ 6 P̂ , sup
06t6T

∥∥Qr(t)∥∥ 6 P̂ , sup
06t6T

∥∥Kr(t)
∥∥ 6 P̂ .

(H2) The multivalued function G : [0, T ]× Z→ R such that

(i) the function t 7→ G(t, z) is measurable for any z ∈ Z;
(ii) the function z 7→ G(t, z) is locally Lipschitz for any t ∈ [0, T ];

(iii) there exists a function ω ∈ L2([0, T ],R+) and a constant h > 0 such that∥∥∂G(t, z)
∥∥
Z = sup

{
‖g‖Z: g ∈ ∂G(t, z)

}
6 ω(t) + h‖z‖Z

for any z ∈ Z and for any t ∈ [0, T ].

Using [9, 11], we define for all z ∈ L2(V,Z) an operator V : L2(V,Z)→ 2L
2(V,Z) as

follows:

V(z) =
{
z ∈ L2(V,Z): z(t) ∈ ∂G

(
t; z(t)

)
, a.e. t ∈ V = [0, T ]

}
.

Lemma 2. (See [12].) If hypotheses (H1)–(H2) are satisfied, then for any z ∈ L2(0, T ;Z),
the set V(z) has nonempty, convex, and weakly compact values.

Lemma 3. (See [13].) If (H1)–(H2) are satisfied, the operator V fulfills: if zi → z ∈
L2(0, T ;Z), yi → y weakly in L2(0, T ;Z) and yi ∈ V(zi), then we obtain y ∈ V(z).

Theorem 4. If (H1)–(H2) are satisfied, then (2) has a mild solution on [0, T ].

Proof. For x ∈ L2(0, T ;H) and for every z ∈ C(0, T ;Z) ⊂ L2(0, T ;Z), from Definition
6 one can consider the multivalued map Ω : C(0, T ;Z)→ 2C(0,T ;Z) as follows:

Ω(z) =

{
m ∈ C(0, T ;Z): m(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bx(s) ds, g ∈ V(z)

}
.

Nonlinear Anal. Model. Control, 28(6):1037–1061, 2023
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Then our problem is reduced to find the fixed point of Ω. For this, we shall verify that
Ω satisfies all the assumptions of Theorem 3. Now, Ω(z) is convex by the convexity of
V(z). We divided our proof into the steps below for reader convenience.

Step 1. Ω maps bounded subsets into bounded subsets in C(0, T ;Z). As for every
z ∈ Bp = {z ∈ C(0, T ;Z): ‖z‖C 6 p, p > 0}, λ ∈ Ω(z), we obtain g ∈ V(z) such that

λ(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bx(s) ds, t ∈ [0, T ]. (3)

Using (H2)(iii), we get∥∥λ(t)
∥∥
Z 6

∥∥Sr(t)z0∥∥Z +
∥∥Qr(t)z1∥∥Z

+

t∫
0

∥∥Kr(t− s)g(s)
∥∥
Z ds+

t∫
0

∥∥Kr(t− s)Bx(s)
∥∥
Z ds

6 P̂‖z0‖Z + P̂‖z1‖Z + P̂

t∫
0

∥∥g(s)
∥∥
Z ds+ P̂

t∫
0

∥∥Bx(s)
∥∥
Z ds

6 P̂‖z0‖Z + P̂‖z1‖Z + P̂

t∫
0

(
ω(s)+h

∥∥z(s)∥∥Z)ds+ P̂‖B‖
t∫

0

∥∥x(s)
∥∥
H ds

6 P̂
[
‖z0‖Z + ‖z1‖Z +

√
T
(
‖ω‖L2([0,T ],R+) + ‖B‖‖x‖L2(0,T ;H)

)
+ hpT

]
.

Therefore, Ω(Bp) is bounded in C(0, T ;Z).

Step 2. {Ω(z): z ∈ Bp} is equicontinuous for every p > 0.
For any z ∈ Bp, λ ∈ Ω(z), there exists g ∈ V(z) such that (3) holds true. Now, for

every ε > 0, 0 6 t1 < t2 6 T , we get∥∥λ(t2)− λ(t1)
∥∥
Z

=

∥∥∥∥∥Sr(t2)z0 +Qr(t2)z1 +

t2∫
0

Kr(t2 − s)g(s) ds+

t2∫
0

Kr(t2 − s)Bx(s) ds

− Sr(t1)z0 +Qr(t1)z1 +

t1∫
0

Kr(t1 − s)g(s) ds+

t1∫
0

Kr(t1 − s)Bx(s) ds

∥∥∥∥∥
Z

6
∥∥[Sr(t2)− Sr(t1)

]
z0
∥∥+

∥∥[Qr(t2)−Qr(t1)
]
z1
∥∥

+

t1∫
0

∥∥[Kr(t2 − s)−Kr(t1 − s)
]
g(s)

∥∥ds+

t2∫
t1

∥∥Kr(t2 − s)g(s)
∥∥ds
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+

t1∫
0

∥∥[Kr(t2 − s)−Kr(t1 − s)
]
Bx(s)

∥∥ ds+

t2∫
t1

∥∥Kr(t2 − s)Bx(s)
∥∥ds

6
∥∥Sr(t2)− Sr(t1)

∥∥‖z0‖+
∥∥Qr(t2)−Qr(t1)

∥∥‖z1‖
+

t1∫
0

∥∥Kr(t2 − s)−Kr(t1 − s)
∥∥(ω(s) + h

∥∥z(s)∥∥Z) ds

+ P̂

t2∫
t1

(
ω(s) + h

∥∥z(s)∥∥Z)ds+ ‖B‖
t1∫
0

∥∥Kr(t2−s)−Kr(t1−s)
∥∥∥∥x(s)

∥∥ ds

+ P̂‖B‖
t2∫
t1

∥∥x(s)
∥∥ds

6
∥∥Sr(t2)− Sr(t1)

∥∥‖z0‖+
∥∥Qr(t2)−Qr(t1)

∥∥‖z1‖
+ sup
s∈[t1−ε]

∥∥Kr(t2 − s)−Kr(t1 − s)
∥∥[‖ω‖L2([0,T ],R+)

√
T + phT

]
+ P̂

[
‖ω‖L2([0,T ],R+)(2ε+

√
t2 − t1 ) + ph(2ε+

√
t2 − t1 )

]
+ ‖B‖ sup

s∈[t1−ε]

∥∥Kr(t2 − s)−Kr(t1 − s)
∥∥‖x‖L2(0,T ;H)

√
T

+ P̂‖B‖‖x‖L2(0,T ;H)(2ε+
√
t2 − t1 ).

The right-hand side of the above stated inequality tends to zero independently of whether
z∈Bp as t2→ t1. Hence, the compactness of operators Sr(t), Qr(t), and Kr(t) for t>0
[19] is similar to the continuity in the uniform operator topology. Therefore, {Ω(z):
z ∈ Bp} is equicontinuous.

Step 3. We verify that Ω is completely continuous.
For some fixed t ∈ [0, T ], we prove that U(t) = {λ(t): λ ∈ Ω(Bp)} is relatively

compact in Z. For t = 0, this is trivial, hence U(0) = {z0 + z1}, this is compact. As
a result, only t > 0 must be considered. Let t ∈ (0, T ] be fixed. For any z ∈ Bp,
λ ∈ Ω(z), we have g ∈ V(z) such that

λ(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bx(s) ds, t ∈ [0, T ].

For each 0 < ε < t, z ∈ Bp, and we introduce the operator λε by

λε(t) = Sr(t)z0 +Qr(t)z1

+

t−ε∫
0

Kr(t− s)g(s) ds+

t−ε∫
0

Kr(t− s)Bx(s) ds.
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HenceK(t), t > 0, is a compact operator, then U ε(t) = {λε(t): λ ∈ Ω(Bp)} is relatively
compact in Z, 0 < ε < t. Further, for every λ ∈ Ω(z), we get

∥∥λ(t)− λε(t)
∥∥ =

∥∥∥∥∥
t∫

0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bx(s) ds

∥∥∥∥∥
−

t−ε∫
0

Kr(t− s)g(s) ds−
t−ε∫
0

Kr(t− s)Bx(s) ds

∥∥∥∥∥
Z

6

t∫
t−ε

∥∥Kr(t− s)g(s)
∥∥
Z ds+

t∫
t−ε

∥∥Kr(t− s)Bx(s)
∥∥
Z ds

6 P̂

t∫
t−ε

∥∥g(s)
∥∥
Z ds+ P̂

t∫
t−ε

∥∥Bx(s)
∥∥
Z ds

6 P̂

t∫
t−ε

(
ω(s) + h

∥∥z(s)∥∥Z) ds+ P̂‖B‖
t∫

t−ε

∥∥x(s)
∥∥
H ds

6 P̂
[(
‖ω‖L2([0,T ],R+) + ‖B‖‖x‖L2(0,T ;H)

)√
ε+ hpε

]
.

If ε is small enough, it implies that there are relatively compact sets arbitrarily close to
the set U(t) for any t ∈ (0, T ]. Then for any t ∈ (0, T ], U(t) is relatively compact in
C(0, T ;Z). Since it is compact at t = 0, we have the relatively compactness of U(t) in
C(0, T ;Z) for any t ∈ (0, T ].

From Arzelà–Ascoli theorem we clarify that Ω is a completely continuous.

Step 4. Now, we prove that Ω is upper semicontinuous. We begin by demonstrating
that Ω has a closed graph.

Let zi → z∗ ∈ C(0, T ;Z), λi ∈ Ω(zi), and λi → λ∗ ∈ C(0, T ;Z). We prove that
λ∗ ∈ Ω(z∗). In fact, λi ∈ Ω(zi) implies that there exists gi ∈ V(zi) such that

λi(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)gi(s) ds+

t∫
0

Kr(t− s)Bx(s) ds, t ∈ [0, T ]. (4)

Using (H2)(iii), {gi}i>1 ⊆ L2(0, T ;Z) is bounded. Since we approach to a subsequence
if necessary, we have

gi → g∗, weakly in L2(0, T ;Z). (5)
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From (4), (5), and the compactness of the operator Kr we obtain that

λi(t)→ Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g∗(s) ds+

t∫
0

Kr(t− s)Bx(s) ds, t ∈ [0, T ]. (6)

Note that λi → λ∗ in C(0, T ;Z) and gi ∈ V(zi). By Lemma 3 and equation (6), we
obtain g∗ in V(z∗). Since we obtain λ∗ ∈ Ω(z∗), then Ω has a closed graph. From [12]
Ω is u.s.c.

Step 5. A priori estimate.
From the above steps we get that Ω is u.s.c., compact convex-valued, and Ω(Bp) is

a relatively compact.
Based on Theorem 3, it is necessary to verity that the set

Φ =
{
z ∈ C(0, T ;Z): ϕz ∈ Ω(z), ϕ > 1

}
is bounded to clarity that Ω has a fixed point. For any z ∈ Φ, there exists g ∈ V(z) such
that

z(t) = ϕ−1Sr(t)z0 + ϕ−1Qr(t)z1

+ ϕ−1
t∫

0

Kr(t− s)g(s) ds+ ϕ−1
t∫

0

Kr(t− s)Bx(s) ds.

Using (H2)(iii), we obtain∥∥z(t)∥∥Z 6
∥∥Sr(t)z0∥∥Z +

∥∥Qr(t)z1∥∥Z
+

t∫
0

∥∥Kr(t− s)g(s)
∥∥
Z ds+

t∫
0

∥∥Kr(t− s)Bx(s)
∥∥
Z ds

6 P̂
∥∥z0∥∥Z + P̂‖z1‖Z + P̂

t∫
0

∥∥g(s)
∥∥
Z ds+ P̂

t∫
0

∥∥Bx(s)
∥∥
Z ds

6 P̂‖z0‖Z + P̂‖z1‖Z + P̂

t∫
0

(
ω(s) + h

∥∥z(s)∥∥Z) ds+ P̂‖B‖
t∫

0

∥∥x(s)
∥∥
H ds

6 P̂‖z0‖Z + P̂‖z1‖Z + P̂
√
T‖ω‖L2([0,T ],R+) + P̂ h

t∫
0

∥∥z(s)∥∥Z ds

+ P̂‖B‖
√
T‖x‖L2(0,T ;H)

6 ν + P̂ h

t∫
0

∥∥z(s)∥∥ds, (7)

Nonlinear Anal. Model. Control, 28(6):1037–1061, 2023

https://doi.org/10.15388/namc.2023.28.33429


1050 M. Mohan Raja et al.

where

ν = P̂‖z0‖Z + P̂‖z1‖Z + P̂
√
T
[
‖ω‖L2([0,T ],R+) + ‖B‖‖x‖L2(0,T ;H)

]
.

From (7) by Gronwall inequality we easily conclude that∥∥z(t)∥∥Z 6 νeP̂ht.

Therefore, Φ is bounded. Theorem 3 states that Ω has a fixed point, that is, system (2) has
a mild solution on [0, T ].

4 Approximate controllability results

The purpose of this section is to discuss the approximate controllability of fractional
differential system (2). Suppose the following linear fractional differential system:

CDr
t z(t) = Az(t) +Bx(t), t ∈ [0, T ],

z(0) = z0, z′(0) = z1.
(8)

We assume that two relevant operators associated with system (8) are as follows:

ΓT0 =

T∫
0

Kr(t− s)BB∗K∗r (t− s) ds : Z→ Z,

R
(
δ, ΓT0

)
=
(
δI + ΓT0

)−1
: Z→ Z,

where K∗r (t − s) and B∗ are adjoint of Kr(t − s) and B, respectively. We can easily
deduce that the linear operator ΓT0 is bounded.

Theorem 5. The linear fractional control system (8) is approximately controllable on
[0, T ] if and only if R(δ, ΓT0 )→ 0 as δ → 0+ in the strong operator topology.

Firstly, for every z ∈ C(0, T ;Z) ⊂ L2(0, T ;Z), from Lemma 2 we know that
V(z) 6= ∅. Since, for every δ > 0, let as start with the multivalued map Ωδ : C(V,Z) →
2C(V,Z) as follows:

Ωδ(z) =

{
m ∈ C(0, T ;Z): m(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bxδ(s) ds, g ∈ V(z)

}
,

where

xδ(t) = B∗K∗r (t− s)R
(
δ, ΓT0

)
×

[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)g(ι) dι

]
.
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Theorem 6. Suppose that (H1), (H2)(i), and (H2)(ii) are satisfied. Then, if there exists
ζ ∈ L2([0, T ],R+) such that∥∥∂G(t, z)

∥∥
Z 6 ζ(t) for all t ∈ [0, T ], z ∈ Z,

then Ωδ has a fixed point on [0, T ].

Proof. The verification is the same as that of Theorem 4. For completeness of our paper, a
simple version of proof is given. Obviously, for every z ∈ C(0, T ;Z), Ωδ(z) is convex by
the convexity of V(z). We divided our proof into the steps below for reader convenience.

Step 1. We verify that Ωδ maps bounded subsets into bounded subsets in C(0, T ;Z).
For every z ∈ B = {z ∈ C(0, T ;Z): ‖z‖C 6 },  > 0, λ ∈ Ωδ(z), we obtain g ∈ V(z)
such that

λ(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bxδ(s) ds, t ∈ [0, T ]. (9)

In view of ‖∂G(t, z)‖Z 6 ζ(t), we get∥∥xδ(t)∥∥H
=

∥∥∥∥∥B∗K∗(T − ι)R(δ, ΓT0 )
[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)g(ι) dι

]∥∥∥∥∥
Z

6 ‖B∗‖
∥∥K∗(T − ι)∥∥Z∥∥R(δ, ΓT0 )∥∥Z

×

∥∥∥∥∥
[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)g(ι) dι

]∥∥∥∥∥
Z

6 ‖B∗‖P̂ 1

δ

[
‖zT ‖Z +

∥∥S(T )z0
∥∥
Z +

∥∥Q(T )z1
∥∥
Z +

T∫
0

∥∥Kr(T − ι)g(ι)
∥∥
Z dι

]

6
P̂‖B∗‖
δ

[
‖zT ‖Z + P̂‖z0‖Z + P̂‖z1‖Z + P̂

T∫
0

∥∥g(ι)
∥∥
Z dι

]

6
P̂‖B∗‖
δ

[
‖zT ‖Z + P̂‖z0‖Z + P̂‖z1‖Z + P̂

√
T‖ζ‖L2([0,T ],R+)

]
:= ξ. (10)
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Using the above equation (10), we get

∥∥λ(t)
∥∥
Z 6

∥∥Sr(t)z0∥∥Z +
∥∥Qr(t)z1∥∥Z +

t∫
0

∥∥Kr(t− s)g(s)
∥∥
Z ds

+

t∫
0

∥∥Kr(t− s)Bxδ(s)
∥∥
Z ds

6 P̂‖z0‖Z + P̂‖z1‖Z + P̂

t∫
0

∥∥g(s)
∥∥ds+ P̂

t∫
0

∥∥Bxδ(s)∥∥Z ds

6 P̂‖z0‖Z + P̂‖z1‖Z + P̂

t∫
0

ζ(s) ds+ P̂‖B‖
t∫

0

∥∥xδ(s)∥∥H ds

6 P̂
[
‖z0‖Z + ‖z1‖Z +

√
T‖ζ‖L2([0,T ],R+) + ‖B‖ξT

]
.

As a result, we get that Ωδ(B) is bounded in C(0, T ;Z).

Step 2. We verify that {Ωδ(z): z ∈ B} is equicontinuous. Firstly, for every z ∈ B,
t ∈ Ωδ , there exists g ∈ V(z) such that

λ(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bxδ(s) ds, t ∈ [0, T ].

From the value of ‖xδ(t)‖, as (10) and thus Step 2 of Theorem 4, then {Ωδ(z): z ∈ B}
is equicontinuous.

Step 3. Ωδ is completely continuous.
Let t ∈ [0, T ] be fixed. Now, we prove that U(t) = {λ(t): λ ∈ Ωδ(B)} is relatively

compact in Z. This is trivial for t = 0, hence U(0) = {z0 + z1} is compact. Hence, only
t > 0 must be considered. Let t ∈ (0, T ] be fixed. For every z ∈ B, λ ∈ Ωδ(z), we have
g ∈ V(z) such that

λ(t) = Sr(t)z0 +Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bxδ(s) ds, t ∈ [0, T ].

Let 0 < ε < t, z ∈ B, and introduce the operator λε by

λε(t) = Sr(t)z0 +Qr(t)z1

+

t−ε∫
0

Kr(t− s)g(s) ds+

t−ε∫
0

Kr(t− s)Bxδ(s) ds.
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HenceK(t), t > 0, is a compact operator, then U ε(t) = {λε(t): λ ∈ Ω(B)} is relatively
compact in Z, 0 < ε < t. Further, for every λ in Ω(z), we get

∥∥λ(t)− λε(t)
∥∥ =

∥∥∥∥∥
t∫

0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bxδ(s) ds

−
t−ε∫
0

Kr(t− s)g(s) ds−
t−ε∫
0

Kr(t− s)Bxδ(s) ds

∥∥∥∥∥
Z

6

t∫
t−ε

∥∥Kr(t− s)g(s)
∥∥
Z ds+

t∫
t−ε

∥∥Kr(t− s)Bxδ(s)
∥∥
Z ds

6 P̂

t∫
t−ε

∥∥g(s)
∥∥
Z ds+ P̂‖B‖

t∫
t−ε

∥∥xδ(s)∥∥H ds

6 P̂ ε‖ζ‖L2([0,T ],R+) + P̂‖B‖εξ.

If ε is small enough, this implies that there are relatively compact sets arbitrarily close to
the set U(t) for any t ∈ (0, T ]. Then for any t ∈ (0, T ], U(t) is relatively compact in
C(0, T ;Z). Since it is compact at t = 0, we have the relatively compactness of U(t) in
C(0, T ;Z) for any t ∈ (0, T ].

From Arzelà–Ascoli theorem we obtain that Ωδ is a completely continuous.

Step 4. We check that Ωδ is upper semicontinuous. We begin by demonstrating that
Ωδ has a closed graph.

Let zi → z∗ ∈ C(0, T ;Z), λi ∈ Ωδ(zi), and λi → λ∗ ∈ C(0, T ;Z). We will prove
that λ∗ ∈ Ωδ(z∗). In fact, λi ∈ Ωδ(zi) means that there exists gi ∈ V(zi) such that

λi(t) = Sr(t)z0 +Qr(t)z1 +

t∫
0

Kr(t− s)gi(s) ds

+

t∫
0

Kr(t− s)BB∗K∗r (t− s)R
(
δ, ΓT0

)
×

[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)gi(ι) dι

]
ds. (11)

Using ‖∂G(t, z)‖Z 6 ζ(t), {gi}i>1 ⊆ L2(0, T ;Z) is bounded. Since we approach to a
subsequence if necessary, we have

gi → g∗ weakly in L2(0, T ;Z). (12)
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From (11), (12), and the compactness of Kr(t) we obtain for t ∈ [0, T ],

λi(t)→ Sr(t)z0 +Qr(t)z1 +

t∫
0

Kr(t− s)g∗(s) ds

+

t∫
0

Kr(t− s)BB∗K∗r (t− s)R
(
δ, ΓT0

)
×

[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)g∗(ι) dι

]
ds. (13)

Note that λi → λ∗ in C(0, T ;Z) and gi in V(zi). From Lemma 3 and (13) we obtain
g∗ ∈ V(z∗). Hence, we obtain λ∗ ∈ Ωδ(z∗), then Ωδ has a closed graph. Then from [12]
Ωδ is upper semicontinuous.

Step 5. A priori estimate.
By the above steps, we get that Ωδ is u.s.c., compact convex-valued, and Ωδ(B) is

a relatively compact set. It is necessary to verity that the set

Φ =
{
z ∈ C(0, T ;Z): ϕz ∈ Ωδ(z), ϕ > 1

}
is bounded to clarity that Ωδ has a fixed point.

For any z ∈ Φ, there exists g ∈ V(z) such that

z(t) = ϕ−1Sr(t)z0 + ϕ−1Qr(t)z1 + ϕ−1
t∫

0

Kr(t− s)g(s) ds

+ ϕ−1
t∫

0

Kr(t− s)B

(
B∗K∗r (T − s)R

(
δ, ΓT0

)

×

[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)g(ι) dι

])
ds.

From (H2)(iii) we obtain

∥∥u(t)
∥∥
Z 6

∥∥Sr(t)z0∥∥Z +
∥∥Qr(t)z1∥∥Z +

t∫
0

∥∥Kr(t− s)g(s)
∥∥
Z ds

+

t∫
0

∥∥Kr(t− s)B
∥∥
Z

∥∥∥∥∥
(
B∗K∗r (T − ι)R

(
δ, ΓT0

)

×

[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)g(ι) dι

])
‖Z ds.
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From (9) we have∥∥z(t)∥∥Z = P̂‖z0‖Z + P̂‖z1‖Z + P̂
√
T‖ζ‖L2([0,T ],R+)

+
P̂ 2‖B‖2T

δ

[
‖zT ‖Z + P̂‖z0‖Z + P̂‖z1‖Z + P̂

√
T‖ζ‖L2([0,T ],R+)

]
.

Therefore, Φ is bounded. From Theorem 3 we obtain that Ωδ has a fixed point. We can
now declare that the proof is complete.

Then we will prove that the main results of this paper are correct.

Theorem 7. Let the hypotheses of Theorem 6 are satisfied. Furthermore, (1) is approxi-
mately controllable on [0, T ] if (2) is approximately controllable on [0, T ].

Proof. By Theorem 6, we prove that the operator Ωδ has a fixed point in C(0, T ;Z) for
any δ > 0. Let zδ be a fixed point of Ωδ in C(0, T ;Z). It is easy to know that any fixed
point of Ωδ is a mild solution of (2) corresponding to x. Hence, there exists gδ ∈ V(zδ)
such that for any t ∈ [0, T ],

zδ(t) = Sr(t)z0 +Qr(t)z1 +

t∫
0

Kr(t− s)gδ(s) ds

+

t∫
0

Kr(t− s)BB∗K∗r (T − ι)R
(
δ, ΓT0

)

×

[
zT − Sr(T )z0 −Qr(T )z1 −

T∫
0

Kr(T − ι)g(ι) dι

]
ds.

I → ΓT0 R(δ, ΓT0 ) = δR(δ, ΓT0 ), and we obtain

zδ(T ) = zT + δR
(
δ, ΓT0

)
S
(
gδ
)
,

where

S
(
gδ
)

= zT − Sr(T )z0 −Qr(T )z1 −
T∫

0

Kr(T − ι)gδ(ι) dι.

For ‖∂G(t, z)‖Z 6 ζ(t), we get
T∫

0

∥∥gδ(s)∥∥ ds 6 ‖ζ‖L2([0,T ],R+)

√
T .

Further, the sequence {gδ} is bounded in L2(0, T ;Z). As a result, there is a subsequence,
still stand for {gδ}, which converges weakly to g ∈ L2(0, T ;Z). Denote

h = zT − Sr(T )z0 −Qr(T )z1 −
T∫

0

Kr(T − ι)gδ(ι) dι.
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Since the linear system (8) is approximately controllable, referring to Theorem 5, we
obtain

δR
(
δ, ΓT0

)
→ 0 as δ → 0.

Then ∥∥S(gδ)− h
∥∥ =

∥∥∥∥∥
T∫

0

Kr(T − ι)
[
gδ(ι)− g(ι)

]
dι

∥∥∥∥∥
6 sup
t∈[0,T ]

∥∥∥∥∥
t∫

0

Kr(t− ι)
[
gδ(ι)− g(ι)

]
dι

∥∥∥∥∥→ 0

as δ → 0+ due to the compactness of function

g →
·∫

0

Kr(· − ι)g(ι) dι : L1([0, T ],Z)→ C(0, T ;Z).

Therefore, we get the previous arguments∥∥zδ(T )− zT
∥∥ 6

∥∥δR(δ, ΓT0 )S(gδ)∥∥
6
∥∥δR(δ, ΓT0 )(h)

∥∥+
∥∥δR(δ, ΓT0 )[S(gδ)− h]∥∥

6
∥∥δR(δ, ΓT0 )(h)

∥∥+
∥∥S(gδ)− h∥∥ as δ → 0+.

As a result, system (2) is approximately controllable on [0, T ].

5 Nonlocal conditions

Physical problems contributed to the idea of nonlocal conditions. In [1], Byszewski proved
existence and uniqueness results for nonlocal functional differential systems. In [15], the
researchers proposed the concept of Caputo fractional derivative using fixed point theo-
rems and mild solutions. The authors recently developed fractional differential systems
with nonlocal conditions by utilizing nondense domains, semigroups, cosine families,
various fixed point procedures, and measure of noncompactness. For more details, see the
articles [21,24,27,30]. Consider the following nonlocal fractional differential systems of
order 1 < r < 2 with sectorial operators of type (P, η, r, γ):

CDr
t z(t) ∈ Az(t) +Bx(t) + ∂G

(
t, z(t)

)
, t ∈ [0, T ],

z(0) = z0 + j(z), z′(0) = z1,
(14)

where j : C(0, T ;Z) → Z is an appropriate function that meets the following require-
ment:

(H3) The function j : C(0, T ;Z) → Z is continuous, and there exists c, d > 0 such
that ∥∥j(z)∥∥ 6 c‖z‖C + d for all z ∈ C(0, T ;Z).
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Definition 8. A function z ∈ C(0, T ;Z) is called a mild solution of system (14) if there
exists g ∈ L2(0, T ;Z) such that g(t) ∈ ∂G(t, z(t)) for a.e. t ∈ [0, T ] and

z(t) = Sr(t)
[
z0 + j(z)

]
+Qr(t)z1

+

t∫
0

Kr(t− s)g(s) ds+

t∫
0

Kr(t− s)Bx(s) ds.

Theorem 8. If hypotheses (H1)–(H3) are satisfied, then (14) has at least one mild solution
on [0, T ].

Proof. As a result, we considered the argument of this theorem, which is equivalent to
the arguments of Theorems 6 and 7.

6 Application

Consider the following fractional differential system:

∂r

∂tr
z(t, ρ) =

∂2

∂ρ2
z(t, ρ) + J(t, ρ) +Bx(t, ρ), t ∈ [0, 1], 0 6 ρ 6 π,

z(t, 0) = z(t, 1) = 0, t ∈ [0, T ],

z(0, ρ) = z0(ρ), z′(0, ρ) = z1(ρ), ρ ∈ [0, π],

(15)

where ∂r/∂tr means fractional partial derivative of r = 3/2. Let

J = J + J,

where J is provided, and J is a well-known temperature function of the form

−J(t, ρ) ∈ ∂G
(
t, ρ, z(t, ρ)

)
, (t, ρ) ∈ [0, 1]× [0, π],

where G = G(t, ρ, ζ) is a locally Lipschitz energy function, which is generally nons-
mooth and nonconvex. In the third variable ζ, ∂G stands for the generalized Clarke’s
gradient [2]. The following is a basic example of G that fulfills assumptions (H2):

G(ζ) = min
{
h1(ζ), h2(ζ)

}
,

where hi maps from R into itself (i = 1, 2) are convex quadratic functions [13]. The
functions z(t)(ρ) = z(t, ρ), Bx(t)(ρ) = Bx(t, ρ).

Consider H = L2([0, π]), suppose maps A from D(A) into Z is presented as Az =
∂2z/∂ρ2 along with domain

D(A) =

{
z ∈ H,

∂z

∂ρ
,
∂2z

∂ρ2
∈ H

}
.
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In addition, A can be expressed as

Az =

∞∑
k=1

k2(z, ψk)ψk, z ∈ D(A),

where {ψk}∞k=1(ρ) =
√

(2/π) sin k(ρ) for any k ∈ N form an orthonormal basis of Z.
Then A is the infinitesimal generator of a compact semigroup K(t) for t > 0 in Z given
by

K(t)z =

∞∑
k=1

e−k
2t(z, ψk)ψk, z ∈ Z,

∥∥K(t)
∥∥ 6 e−1 < 1.

Consider infinite dimensional Hilbert space H defined by

H :=

{
x: x =

∞∑
i=2

xiei,

∞∑
i=2

x2i <∞

}
.

The norm in H is presented as ‖x‖H = (
∑∞
i=2 x

2
i )

1/2. Determine a mapping B ∈
L([0, T ],H) in the following way:

Bx = 2x2e1 +

∞∑
k=2

xkek for x =

∞∑
k=2

xkek ∈ H,

also, y =
∑∞
k=1 ykek ∈ H, inner product 〈Bx, y〉 = 〈x,B∗y〉, thus

B∗y = (2y1 + y2)e2 +

∞∑
k=3

ykek,

and

B∗K∗(t)z =
(
2z1e−t + z2e−4t

)
e2 +

∞∑
k=3

e−k
2tzkek.

It follows that ‖BK∗(t)z‖H = 0 for some t ∈ [0, T ] imply z = 0. Hence, the linear por-
tion of (15) is approximate controllable on [0, T ]. Thus, all the assumptions of Theorem 7
are satisfied. Hence, (15) is approximately controllable on [0, T ].

7 Conclusion

This paper investigates the effect of hemivariational inequalities on the approximate con-
trollability of fractional differential systems of order r ∈ (1, 2). The main results of
this article are tested utilizing fractional calculations, multivalued functions, sectorial
operator, and the fixed point theorem. The existence of a mild solution for the system
class was initially introduced. Next, we developed the approximate controllability results
for semilinear fractional differential system. Following that, we will look to systems with
nonlocal conditions. An example is provided to illustrate the application of the obtained
theory. For fractional hemivariational inequalities, the exact controllability results with
delay will be discussed in the future.
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