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Abstract. This paper generalizes Razumikhin-type theorem and Krasovskii stability theorem of
impulsive stochastic delay systems. By proposing uniformly stable function (USF) in the form of
impulse as a new tool, some properties about USF and some novel pth moment decay theorems are
derived. Based on these new theorems, the stability theorems of impulsive stochastic linear delay
system are acquired via the Razumikhin method and the Krasovskii method. The obtained results
enhance the elasticity of the impulsive gain by comparing the previous results. Finally, numerical
examples are given to demonstrate the effectiveness of theoretical results.
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1 Introduction

For the stability and the stabilization of time-delay systems, the Razumikhin approach
and the Krasovskii approach are efficient methods to deal with the influence of time delay
in the dynamic evolution process [5, 9, 18, 19]. However, time derivative of Razumikhin
theorem and Krasovskii functional is usually required to be negative definite, which brings
conservative in the application of theorems. To overcome this restriction, Maliso and
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Mazenc [16, 17] relaxed the restriction of negativity of the time derivative of Lyapunov
function. Recently, in [31, 32], the authors proposed the notion of uniformly stable func-
tions, which can effectively apply to stability analysis of time-delay system and weaken
the negativity of time derivative of Razumikhin condition and Krasovskii functionals.

During the process of system information transmission, signals are often disturbed
by random noises. Thereafter, stochastic system has been well applied to noise distur-
bances in engineering. Correspondingly, many results have been obtained in the stability
and the dynamics of stochastic systems [13, 14, 23, 29]. The Razumikhin method and
the Krasovskii functional method are two very effective methods to deal with stability
analysis of stochastic systems. In [2], Chang firstly obtained Razumikhin-type asymptotic
stability theorems of stochastic systems. Afterwards, some Razumikhin-type theorems
and the Krasovskii functional methods on pth moment exponential stability and almost
sure exponential stability of stochastic delay systems have been generalized in [1, 8,
15]. Impulse can effectively model the relationship between continuous phenomena and
sudden changes at certain moment in nature. Therefore, impulsive input has been widely
applied in nonlinear systems [10,24,28,30], stochastic systems [20,22,25] and networked
systems [3,4,6,7,11,12,21,26,27]. However, many original results have been generalized
to state the stability and stabilization of the impulsive control systems. The impulsive
gains are somewhat inflexible, i.e., for a divergent system adding impulsive control,
stabilizing impulse gains are required to stabilize the overall system (see [4, 6, 10, 12,
20, 24, 25]). Additionally, if an unstable system permits destabilizing impulses, the finite
number of destabilizing impulses is required to ensure that the stability of the systems
will not be destroyed (see [3]). It is obvious to see that the role of impulsive control is
greatly limited.

Motivated by the above discussions, this paper generalizes Lyapunov stability of
stochastic delay systems under impulsive model. By introducing a USF in the form of
impulse, Razumikhin and Krasovskii stability theorems are deduced. The innovations are
as follows:

(i) A USF in the form of impulse is proposed, which is an effective tool for dealing
impulsive gains and stochastic delay systems. By applying the USF method,
Razumikhin-type theorems and Krasovskii stability theorems of impulsive sto-
chastic systems with time-varying delay are established.

(ii) Compared to the classical Razumikhin and Krasovskii theorems of stochastic
systems, Lyapunov function may not require the negativity of the time derivative.
By USF in the form of impulse, general Razumikhin and Krasovskii stability the-
orems of nonlinear stochastic systems are deduced, which relaxes the condition
of traditional stability theorem.

(iii) For the divergent stochastic system without impulses, the conditions of impulses
can be relaxed to destabilizing impulses and infinite number of destabilizing im-
pulses. However, if stochastic system is convergent, the growth exponent of the
impulsive gains product is less than some positive number to make the stability
of impulsive stochastic systems, which implies that conditions of impulsive gains
are more better than that of the previous theorems.
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The rest of this paper is organized as follows. In Section 2, nonlinear impulsive
stochastic delay systems and USF in the form of impulse are presented. Additionally,
some lemmas on properties of uniformly stable functions are given. Section 3 is devoted
to the Razumikhin stability theorem and the Krasovskii stability theorem of nonlinear
impulsive stochastic systems via uniformly stable function method. In Section 4, these
stability theorems will be applied to impulsive stochastic linear systems with delay. Sec-
tion 5 provides two numerical examples to demonstrate the effectiveness of our results.
Finally, some conclusions are given in Section 6.

Notations. Let In be the identity matrix with n dimension. K is the set of strictly in-
creasing and continuous function θ : R+ → R+ with θ(0) = 0. K∞ denotes the set of
unbounded functions belonging to K. H is the set of continuous functions that are strictly
decreasing to 0 as t→∞. KH is the class of function γ(s, t) : R+×R+ → R+ satisfying
that γ(·, t) is of class K for t > 0 and γ(s, ·) is of class H for s > 0. PC ([−τ, 0],Rn) is
the family of Rn-valued piecewise continuous functions defined on [−τ, 0].

2 Model description and preliminaries

2.1 Model description

Consider impulsive stochastic systems with time delay

dx(t) = f
(
t, x(t), xt

)
dt+ g

(
t, x(t), xt

)
dω(t), t > 0, t 6= tk,

x
(
t+k
)

= hk
(
tk, x(tk)

)
, k = 1, 2, . . . ,

(1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T is the state vector, xt = x(t + ζ), ζ ∈ [−τ, 0],
τ > 0, f, g : [0,+∞) × Rn × PC ([−τ, 0],Rn) → Rn, hk : [0,+∞) × Rn → Rn,
k = 1, 2, . . . , f , g and Ik satisfy Lipschitz condition with f(t, 0, 0) = 0, g(t, 0, 0) = 0
and Ik(t, 0) = 0. ω(t) = (ω1(t), ω2(t), . . . , ωn(t))T is an n-dimensional Brownian
motion on a complete probability space (Ω,F ,P), x(t+k ) = limh→0+ x(tk+h), x(tk) =
limh→0− x(tk + h) is left-hand continuous at t = tk. The initial condition of x(t) is
defined by x(t) = ξ ∈ PCFt

([−τ, 0],Rn), where PCFt
([−τ, 0],Rn) is the family of all

Ft-measurable, PC ([−τ, 0],Rn)-value random variable ξ satisfying
∫ 0

−τ E|ξ(ς)|
2 dς <

∞, PC ([−τ, 0],Rn) is the family of piecewise continuous functions ξ with the norm
‖ξ‖ = sup−τ6ς60 |ξ(ς)|.

Definition 1. The impulsive stochastic system (1) is said to be pth moment asymptotically
stable (pMAS), if there exists a KH function γ such that

E
[∣∣x(t)

∣∣p] 6 γ(E[‖ξ‖p], t), t > 0.

Moreover, if there exist M > 0 and λ > 0 such that for t > 0,

E
[∣∣x(t)

∣∣p] 6Me−λtE
[
‖ξ‖p

]
,

system (1) is said to be pth moment exponentially stable (pMES).
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Definition 2. Let V : [−τ,∞) × Rn → R+ be a C21 function. The differential operator
LV : (tk−1, tk]× PCFt

([−τ, 0];Rn) associated with system (1) is defined as

LV (t, ϕ) = Vt
(
t, ϕ(0)

)
+ Vx

(
t, ϕ(0)

)
f
(
t, ϕ(0), ϕ

)
+

1

2
trace

[
gT
(
t, ϕ(0), ϕ

)
Vxxg

(
t, ϕ(0), ϕ

)
,

where ϕ = ϕ(t+ ζ), ζ ∈ [−τ, 0].

2.2 Uniformly stable function

In the following, we propose the definition of the USF in the form of impulse and some
properties of USF are introduced.

Definition 3. Let for uk > 0, k = 1, 2, . . . , the following system

ė(t) = δ(t)e(t), t > 0, t 6= tk,

e(t+k ) = uke(tk), k = 1, 2, . . . ,
(2)

is globally uniformly exponentially stable. Then

ρ(t) =
∏

06tk<t

uk exp

( t∫
0

δ(s) ds

)
, t > 0, (3)

is said to be USF.

Indeed, from (2) and (3) we have e(t) = ρ(t)e(0), t > 0, which shows that system (2)
is globally uniformly exponentially stable if and only if there exist two constants α > 0
and β > 0 such that

ln ρ(t) 6 −αt+ β, t > 0.

In the following, we give some testable criteria of the USF in the form of impulse.
Let {νi}∞i=0 be an admissible sequence, i.e., {νi}∞i=0 is strictly increasing and tends to
infinity, and there exists η > 0 such that ηi = νi+1 − νi ∈ (0, η], i = 0, 1, . . . .

Lemma 1. If there exist an admissible sequence {νi}∞i=0 and two constants a > 0, b such
that for i = 0, 1, . . . ,

ln

( ∏
νi6tk<νi+1

uk

)
+

νi+1∫
νi

δ(s) ds 6 −a

and

ln

( ∏
νi6tk<νi+ε

uk

)
+

νi+ε∫
νi

δ(s) ds 6 b ∀ε ∈ [0, ηi],

then function ρ(t) is a USF.
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Proof. For t > 0, there exists an integer j > 0 such that t ∈ [νj , νj+1). Let ε = t− νj , it
yields that ε ∈ [0, ηj). Thus

ln ρ(t) =

j−1∑
i=0

[
ln

( ∏
νi6tk<νi+1

dk

)
+

νi+1∫
νi

δ(s) ds

]
+ ln

( ∏
νj6tk<νj+ε

dk

)
+

νj+ε∫
νj

δ(s) ds

6 −ja+ b = −a
j−1∑
i=0

νi+1 − νi
ηi

+ b 6 −a
η

(νj − ν0) + b

6 −a
η
t+ b+

a

η
ε 6 −a

η
t+ b+ a.

We conclude that for t > 0, ln ρ(t) 6 −αt+β, where α = a/η, β = max{a+b, 0}.

Lemma 2. If there exist constants ηk>0, k=0, 1, . . . , a>0, b such that for k=0, 1, . . . ,

tk+1 − tk 6 ηk,

lnuk +

tk+1∫
tk

δ(s) ds 6 −a and lnuk +

tk+ε∫
tk

δ(s) ds 6 b ∀ε ∈ [0, ηk],

then function ρ(t) is a USF.

Lemma 3. If there exist i ∈ {1, 2, . . . } and θ > 0, a > 0 such that

tk+i = tk + θ, uk+i = uk, δ(t+ θ) = δ(t)

and

ln

( ∏
t6tk<t+θ

uk

)
+

t+θ∫
t

δ(s) ds 6 −a ∀t > 0,

then function ρ(t) is a USF.

Proof. For t > 0, there exists an integer j > 0 such that jθ 6 t < (j + 1)θ. Thus

ln ρ(t) =

j−1∑
i=0

[
ln

( ∏
iθ6tk<(i+1)θ

uk

)
+

(i+1)θ∫
iθ

δ(s) ds

]
+ ln

( ∏
jθ6tk<t

uk

)
+

t∫
jθ

δ(s) ds

6 −ja+ max
t∈[0,θ]

{∣∣∣∣ ln( ∏
06tk<t

uk

)∣∣∣∣}+ θ max
t∈[0,θ]

{∣∣δ(t)∣∣}
6 −a

θ
t+ a+ max

t∈[0,θ]

{∣∣∣∣ ln( ∏
06tk<t

uk

)∣∣∣∣}+ θ max
t∈[0,θ]

{∣∣δ(t)∣∣},
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which means that ln ρ(t) 6 −αt+ β, where α = a/θ and

β = a+ max
t∈[0,θ]

{∣∣∣∣ ln( ∏
06tk<t

uk

)∣∣∣∣}+ θ max
t∈[0,θ]

{∣∣δ(t)∣∣}. �

Remark 1. From Lemma 3, if δ(t) is a periodic function with period θ and the impulsive
effects tk, uk are periodic impulses with period θ, then ρ(t) is a USF if and only if

ln

( ∏
06tk<θ

uk

)
+

θ∫
0

δ(s) ds < 0.

Definition 4. For a uniformly stable function ρ(t) =
∏

06tk<t
uk exp(

∫ t
0
δ(s) ds), define

the set by

Λρ =

{
r > 0: sup

t>0

{
ln

( ∏
t6tk<t+r

uk

)
+

t+r∫
t

δ(s) ds

}
< 0

}
.

Moreover, for any M > 0, the overshoot of ρ(t) is defined by

ψρ(M) = sup
t>0

{
max
ς∈[0,M ]

{
ln

( ∏
t6tk<t+ς

dk

)
+

t+ς∫
t

δ(s) ds

}}
.

Remark 2. For M > 0, if ρ(t) =
∏

06tk<t
uk exp(

∫ t
0
δ(s) ds) is a USF and ψρ(M) is

the overshoot, we see that ψρ(M) is a nondecreasing function ofM and 0 6 ψρ(M) 6 β.

Remark 3. If δ(t), tk, uk are periodic with period θ and there exist an interval [m,n) ⊂
[0, θ] such that

δ(t) > 0, t ∈ [m,n),
∏

m6tk<n

uk > 1

and

δ(t) 6 0, t ∈ [0,m) ∪ [n, θ],
∏

06tk<m

uk 6 1,
∏

n6tk<θ

uk 6 1,

then

ψρ(θ) = ln

( ∏
m6tk<n

uk

)
+

n∫
m

δ(s) ds.

Lemma 4. (See [16].) For M > 0 and a function z(t) ∈ PC ([−M,+∞);R+), if there
exist c ∈ (0, 1) and d > 0 such that

z(t) 6 c sup
t−M6ζ6t

{
z(ζ)

}
+ d, t > 0,

then

z(t) 6 sup
−M6ζ60

{
z(ζ)

}
eln(c)t/M +

1

(1− c)2
d.
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Lemma 5. For v(t) ∈ PC ([−τ,+∞);R+), if there exist a function δ(t) and constants
c ∈ (0, 1), uk > 0, k = 1, 2, . . . , such that

(i) D+v(t) 6 δ(t)v(t) if v(t+ ζ) 6 χ(v(t)), t ∈ (tk−1, tk], ζ ∈ [−τ, 0];
(ii) v(t+k ) 6 ukv(tk), k = 1, 2, . . . ;

(iii) ρ(t) =
∏

06tk<t
uk exp(

∫ t
0
δ(s) ds) is a USF;

(iv) χ(cs/ exp(ψρ(M))) > s, s > 0,

then

v(t) 6 sup
−M∗6s60

[
v(M + s)

]
exp

(
ln c∗

M∗
(t−M)

)
, t >M,

where χ is a K∞-function, and M ∈ Λρ, M∗ = M + τ ,

c∗ = max

{ ∏
t−M6tk<t

uk exp

( t∫
t−M

δ(s) ds

)
, c

}
.

Proof. If

sup
ζ∈[−τ,0]

{
v(s+ ζ)

}
6 χ

(
v(s)

)
, s ∈ [t−M, t], t >M, ζ ∈ [−τ, 0], (4)

by (i) and (ii), we have

v(t) 6 v(t−M)
∏

t−M6tk<t

uk exp

( t∫
t−M

δ(s) ds

)
.

If inequality (4) is not true for some s ∈ [t−M, t], set

t̂ = sup
{
s ∈ [t−M, t]: sup

ζ∈[−τ,0]

{
v(s+ ζ)

}
> χ

(
v(s)

)}
.

Then we have two cases to prove the conclusion: (a) t̂ < t; (b) t̂ = t.
Case (a). If t̂ is not an impulsive time, we have supζ∈[−τ,0]{v(s + ζ)} 6 χ(v(s)),

s ∈ [t̂, t]. From (i) it yields that

v(t) 6 v(t̂)
∏

t̂6tk<t

uk exp

( t∫
t̂

δ(s) ds

)

6 χ−1
(

sup
s∈[t−M,t]

{
sup

ζ∈[−τ,0]

{
v(s+ ζ)

}})
exp
(
ψρ(M)

)
.

If t̂ is an impulsive time, there exists i = 1, 2, . . . such that ti = t̂ < t. By (i) and (ii),
we have

v(t) 6 v(t+i )
∏

ti<tk<t

uk exp

( t∫
ti

δ(s) ds

)
6 uiv(ti)

∏
ti<tk<t

uk exp

( t∫
ti

δ(s) ds

)
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= v(t̄)
∏

ti6tk<t

uk exp

( t∫
ti

δ(s) ds

)

6 χ−1
(

sup
s∈[t−M,t]

{
sup

ζ∈[−τ,0]

{
v(s+ ζ)

}})
exp
(
ψρ(M)

)
.

Case (b). We have

v(t) = v(t̂) 6 χ−1
(

sup
s∈[t−M,t]

{
sup

ζ∈[−τ,0]

{
v(s+ ζ)

}})
= χ−1

(
sup

s∈[t−M,t]

{
sup

ζ∈[−τ,0]

{
v(s+ ζ)

}})
exp
(
ψρ(M)

)
.

Hence, for M > 0 and t >M , we have

v(t) 6 max

{
v(t−M)

∏
t−M6tk<t

uk exp

( t∫
t−M

δ(s) ds

)
,

χ−1
(

sup
s∈[t−M,t]

{
sup

ζ∈[−τ,0]

{
v(s+ ζ)

}})
exp
(
ψρ(M)

)}

6 max

{
v(t−M)

∏
t−M6tk<t

uk exp

( t∫
t−M

δ(s) ds

)
,

χ−1
(

sup
−M∗6s60

{
v(t+ s)

})
exp
(
ψρ(M)

)}
.

By (iv), we see that cs > χ−1(s) exp(ψρ(M)) and

v(t) 6 sup
−M∗6s60

{
v(t+ s)

}
max

{ ∏
t−M6tk<t

uk exp

( t∫
t−M

δ(s) ds

)
, c

}
= c∗ sup

−M∗6s60

{
v(t+ s)

}
,

where c∗ = max{
∏
t−M6tk<t

ηkeδT , c} < 1, M∗ = M + τ . Thus, it follows from
Lemma 4 that

v(t) 6 sup
−M∗6s60

{
v(M + s)

}
exp

(
ln c∗

M∗
(t−M)

)
, t >M. �

Remark 4. In Lemma 5, if δ(t) is a negative function, (i) is the condition of classical
Razumikhin theorem. However, in view of impulsive effects, δ(t) may be nonnegative
function. Actually, we may adjust the impulsive gain uk, k = 1, 2, . . . , such that USF
ρ(t) is a USF and the overshoot Ψρ(M) satisfies (iv). Moreover, if the bound β and decay
index α of USF ρ(t) can be determined, we need to choose M such that M > β/α.
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Remark 5. If χ(s) = ds, where d > 0, then condition (iv) of Lemma 5 can be replaced
by dc > exp(ψρ(M)). Moreover, the condition can also be replaced by the following
condition:

d > exp
(
ψρ(M)

)
.

3 Impulsive stability theorems

In this section, by the above theory, some sufficient conditions of Razumikhin stability
theorem and Krasovskii stability are obtained for impulsive stochastic delay systems via
USF.

3.1 The Razumikhin stability theorem

Theorem 1. Let V (t, x) be C21 function. If there exist K∞-functions χ1, χ2, χ and func-
tion δ(t) and constants c ∈ (0, 1), uk > 0, k = 1, 2, . . . , such that

(i) χ1(E[|x|p]) 6 E[V (t, x)] 6 χ2(E[|x|p]) for (t, x) ∈ [−τ,+∞)× Rn;
(ii) E[LV (t, x(t))] 6 δ(t)E[V (t, x(t))] if E[V (t+ζ, x(t+ζ))] 6 χ(E[V (t, x(t))]),

t ∈ (tk−1, tk], ζ ∈ [−τ, 0];
(iii) V (t+k , hk(tk, x(tk)) 6 ukV (tk, x(tk)), k = 1, 2, . . . ;
(iv) ρ(t) =

∏
06tk<t

uk exp(
∫ t
0
δ(s) ds) is a USF;

(v) if χ(cs/ exp(ψρ(M))) > s, s > 0, where M ∈ Λρ, then system (1) is pMAS.

Furthermore, if there exist d1 > 0, d2 > 0, l > 0 such that χ1(s) = d1s
l, χ2(s) = d2s

l,
system (1) is pMES.

Proof. For t ∈ (tk−1, tk], based on Itô formula, we have

dV
(
t, x(t)

)
= LV

(
t, x(t)

)
dt+ Vx

(
t, x(t)

)
g
(
t, x(t), xt

)
dω(t).

Let ε be small enough such that t+ ε ∈ (tk−1, tk). We have

E
[
V
(
t+ ε, x(t+ ε)

)]
−E

[
V
(
t, x(t)

)]
=

t+ε∫
t

E
[
LV
(
s, x(s)

)]
ds.

Let ε→ 0, we have

D+E
[
V
(
t, x(t)

)]
= E

[
LV
(
t, x(t)

)]
, t ∈ (tk−1, tk].

Then if E[V (t+ ζ, x(t+ ζ))] 6 χ(E[V (t, x(t))]), it yields that

D+E
[
V
(
t, x(t)

)]
6 δ(t)E

[
V
(
t, x(t)

)]
, t ∈ (tk−1, tk].

If for s ∈ [t−M, t], t >M , ζ ∈ [−τ, 0],

sup
ζ∈[−τ,0]

{
E
[
V
(
s+ ζ, x(s+ ζ)

)]}
6 χ

(
E
[
V
(
s, x(s)

)])
,
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by the proof of Lemma 5, for M > 0, we have

E
[
V
(
t, x(t)

)]
6 max

{
E
[
V
(
t−M, x(t−M)

)] ∏
t−M6tk<t

uk exp

( t∫
t−M

δ(s) ds

)
,

χ−1
(

sup
−M∗6s60

{
E
[
V
(
t+ s, x(t+ s)

)]}
exp
(
ψρ(M)

)}
,

where M∗ = M + τ . In view of (v), the above inequality can be concluded as

E
[
V
(
t, x(t)

)]
6 E

[
V
(
t+ s, x(t+ s)

)]
max

{ ∏
t−U6tk<t

uk exp

( t∫
t−U

δ(s) ds

)
, c

}
= c∗E

[
V
(
t+ s, x(t+ s)

)]
,

where c∗ = max{
∏
t−M6tk<t

uk exp(
∫ t
t−M δ(s) ds), c} < 1. Therefore, by Lemma 4

and (i), we have

E
[
V
(
t, x(t)

)]
6 sup
−M∗6s60

{
E
[
V
(
M + s, x(M + s)

)]}
exp

(
ln c∗

M∗
(t−M)

)
6 E

[
χ2

(
‖xM‖

)]
exp

(
ln c∗

M∗
(t−M)

)
, t >M.

By (i), it yields that

E
[∣∣x(t)

∣∣p] 6 χ−11

(
E
[
χ2

(
‖xM‖

)]
exp

(
ln c∗

M∗
(t−M)

))
, t >M.

Therefore, system (1) is pth moment asymptotically stable.
Furthermore, if χ1(s) = d1s

l, χ2(s) = d2s
l, we can obtain that

E
[∣∣x(t)

∣∣p] 6 1

d
1/l
1

E
[
‖xM‖

]
d
1/l
2 exp

(
ln c∗

M∗
(t−M)

)
, t >M,

which yields that system (1) is pMES.

3.2 The Krasovskii stability theorem

Theorem 2. Let V (t, φ) be C21 function, where φ ∈ PC ([−τ, 0],Rn). If there exist K∞-
functions χ1, χ2, χ and function δ(t) and constants c ∈ (0, 1), uk > 0, k = 1, 2, . . . ,
such that

(i) χ1(E[|φ(0)|p]) 6 E[V (t, φ)] 6 χ2(E[‖φ‖p]) for t > 0, φ ∈ PC ([−τ, 0],Rn);
(ii) LV (t, xt) 6 δ(t)V (t, xt), t ∈ (tk−1, tk];
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(iii) V (t+k , hk(tk, x(tk)) 6 ukV (tk, x(tk)), k = 1, 2, . . . ;
(iv) ρ(t) =

∏
06tk<t

uk exp(
∫ t
0
δ(s) ds) is a USF;

(v) if χ(cs/ exp(ψθ(U))) > s, s > 0, where U ∈ Λρ, then system (1) is pMAS.

Furthermore, if there exist d1 > 0, d2 > 0, l > 0 such that χ1(s) = d1s
l, χ2(s) = d2s

l,
system (1) is pMES.

Proof. Let V (t) = V (t, xt). By the proof of Theorem 1 and Itô formula, we have

D+E
[
V (t)

]
6 δ(t)E

[
V (t)

]
, t ∈ (tk−1, tk]

and
V
(
t+k
)
6 ukV (tk).

Thus, by (iv), there exist α > 0 and β > 0 such that

ln
E[V (t)]

E[V (0)]
=

t∫
0

d lnE
[
V (s)

]
=

t∫
0

D+E[V (s)]

E[V (s)] ds
6 ln ρ(t) 6 −αt+ β, t > 0.

Furthermore, from (i), it yields that

E
[
V (t, xt)

]
6 exp(−αt+ β)E

[
V (0, x0)

]
6 exp(−αt+ β)χ2

(
E
[
‖x0‖p

])
.

Hence, we can get

E
[∣∣x(t)

∣∣p] 6 χ−11

(
E
[
V (t, xt)

])
6 χ−11

(
exp(−αt+ β)χ2

(
E
[
‖x0‖p

]))
,

which means that system (1) is pth moment asymptotically stable.

4 The stability of impulsive stochastic linear system with delay

Consider the following impulsive stochastic delay system:

dx(t) =
[
A(t)x(t) +B(t)x

(
t− τ(t)

)]
dt

+
[
C(t)x(t) +D(t)x

(
t− τ(t)

)]
dω(t), t > 0, t 6= tk,

x
(
t+k
)

= ukx(tk), k = 1, 2, . . . ,

(5)

where x(t) = (x1(t), x2(t), . . . , xn(t))T,A(t), B(t), C(t), D(t) ∈ PC ([0,+∞),Rn×n),
0 < τ(t) 6 τ , τ ′(t) 6 σ < 1, tk, k = 0, 1, . . . , are impulsive moments satisfying
0 = t0 < t1 < · · · < tk < tk+1 < · · · , limk→∞ tk = +∞, supk>1{∆k} < +∞, where
∆k = tk − tk−1.
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4.1 Stability theorem via the Razumikhin method

Theorem 3. System (5) is pMES if there exist function α1(t) and constant q1 such that

(i) pA(t) + (p− 1)|B(t)|In + p|C(t)|2In + (p− 2)|D(t)|2In 6 α1(t)In;
(ii) ρ1(t) =

∏
06tk<t

|uk|p exp(
∫ t
0
δ1(s) ds) is a USF;

(iii) q1 > exp(ψρ1(M)), where δ1(t) = α1(t) + q1(|B(t)|+ |D(t)|2), M ∈ Λρ1 .

Proof. Let V (t, x(t)) = |x(t)|p. For t ∈ (tk−1, tk], we have

LV
(
t, x(t)

)
= Vt

(
t, x(t)

)
+ Vx

(
t, x(t)

)[
A(t)x(t) +B(t)x

(
t− τ(t)

)]
+

1

2
trace

{[
C(t)x(t) +D(t)x

(
t− τ(t)

)]T[
C(t)x(t) +D(t)x

(
t− τ(t)

)]}
= p
∣∣x(t)

∣∣p−2xT(t)
[
A(t)x(t) +B(t)x

(
t− τ(t)

)]
+
p

2

∣∣x(t)
∣∣p−2 trace

{[
C(t)x(t) +D(t)x

(
t− τ(t)

)]T
×
[
C(t)x(t) +D(t)x

(
t− τ(t)

)]}
6 p
∣∣x(t)

∣∣p−2xT(t)A(t)x(t) + p
∣∣B(t)

∣∣∣∣x(t)
∣∣p−1∣∣x(t− τ(t)

)∣∣
+ p
∣∣C(t)

∣∣2∣∣x(t)
∣∣p + p

∣∣D(t)
∣∣2∣∣x(t)

∣∣p−2∣∣t− τ(t)
∣∣2.

In view of inequality

xy 6
xm

m
+
yn

n
, x, y > 0, m, n > 1,

1

m
+

1

n
= 1,

it yields that ∣∣x(t)
∣∣p−1∣∣x(t− τ(t)

)∣∣ 6 p− 1

p

∣∣x(t)
∣∣p +

1

p

∣∣x(t− τ(t)
)∣∣p (6)

and ∣∣x(t)
∣∣p−2∣∣x(t− τ(t)

)∣∣2 6 p− 2

p

∣∣x(t)
∣∣p +

2

p

∣∣x(t− τ(t)
)∣∣p. (7)

Submitting (6) and (7) into (5), for t ∈ (tk−1, tk], we have

LV
(
t, x(t)

)
6 p
∣∣x(t)

∣∣p−2xT(t)A(t)x(t) + (p− 1)
∣∣B(t)

∣∣∣∣x(t)
∣∣p + p

∣∣C(t)
∣∣2∣∣x(t)

∣∣p
+ (p− 2)

∣∣D(t)
∣∣2∣∣x(t)

∣∣p +
∣∣B(t)

∣∣∣∣x(t− τ(t)
)∣∣p +

∣∣D(t)
∣∣2∣∣x(t− τ(t)

)∣∣p
6 α1(t)

∣∣x(t)
∣∣p +

(∣∣B(t)
∣∣+
∣∣D(t)

∣∣2)∣∣x(t− τ(t)
)∣∣p.

If E[V (t+ ς, x(t+ ς))] 6 q1E[V (t, x(t))], ς ∈ [−τ, 0], it follows that for t ∈ (tk−1, tk],

E
[
LV
(
t, x(t)

)]
6
[
α1(t) + q1

(∣∣B(t)
∣∣+ v|D(t)

∣∣2)]E[∣∣x(t)
∣∣p]

= δ1(t)E
[
V
(
t, x(t)

)]
.
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For t = tk, we have

V
(
t+k , x

(
t+k
))

=
∣∣x(t+k )∣∣p = |uk|pV

(
tk, x(tk)

)
.

Since ρ1(t) =
∏
t06tk<t

|uk|p exp(
∫ t
0
δ1(s) ds) is a uniformly stable function and all the

conditions in Theorem 1 hold, system (5) is pMES.

Theorem 4. System (5) is exponentially stable in the mean square if there exist P (t) =
PT(t) ∈ C1([0,+∞),Rn×n), constants d1 > 0, d2 > 0, d3 > 0, q2 > 0 and function
α2(t) such that

(i) d1In 6 P (t) 6 d2In;
(ii) AT(t)P (t) + P (t)A(t) + Ṗ (t) + 2d2|C(t)|2In + d3P

2(t) 6 α2(t)In;
(iii) ρ2(t) =

∏
06tk<t

u2k exp(
∫ t
0
δ2(s) ds) is a USF;

(iv) q2 > exp(ψρ2(M)), where δ2(t) = α2(t)+q2(|B(t)|2/(d3d1)+2d2|D(t)|2/d1),
M ∈ Λρ2 .

Proof. Choosing the Lyapunov function V (t, x(t)) = xT(t)P (t)x(t), for t ∈ (tk−1, tk],
we can obtain

LV
(
t, x(t)

)
= xT(t)Ṗ (t)x(t) + 2xT(t)P (t)

[
A(t)x(t) +B(t)x

(
t− τ(t)

)]
+ trace

{[
C(t)x(t) +D(t)x

(
t− τ(t)

)
]TP (t)

[
C(t)x(t) +D(t)x

(
t− τ(t)

)]}
6 xT(t)

[
AT(t)P (t) + P (t)A(t) + Ṗ (t) + 2d2

∣∣C(t)
∣∣2In]x(t)

+ 2xT(t)P (t)B(t)x
(
t− τ(t)

)]
+ 2d2

∣∣D(t)
∣∣2xT(t− τ(t)

)
x
(
t− τ(t)

)
.

There exists d3 > 0 such that

2xT(t)P (t)B(t)x
(
t− τ(t)

)
6 d3x

T(t)P 2(t)x(t) + d−13 xT
(
t− τ(t)

)
BT(t)B(t)x

(
t− τ(t)

)
.

Together with (i), it yields that

LV
(
t, x(t)

)
6 α2(t)xT(t)P (t)x(t)

+

(
1

d1d3
|B(t)|2 +

2d2
d1
|D(t)|2

)
xT
(
t− τ(t)

)
P (t)x

(
t− τ(t)

)
= α2V

(
t, x(t)

)
+

(
1

d1d3
|B(t)|2 +

2d2
d1
|D(t)|2

)
V
(
t− τ(t), x

(
t− τ(t)

))
.

If E[V (t + ς, x(t + ς))] 6 q2E[V (t, x(t))], ς ∈ [−τ, 0], then we can see that for t ∈
(tk−1, tk],

E
[
LV
(
t, x(t)

)]
6

[
α2(t) + q2

(
1

d1d3

∣∣B(t)
∣∣2 +

2d2
d1

∣∣D(t)
∣∣2)]E[V (t, x(t)

)]
= δ2(t)E

[
V
(
t, x(t)

)]
.
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For t = tk,

V
(
t+k , x

(
t+k
))

= xT(t+k )P
(
t+k
)
x
(
t+k
)

= u2kx
T(tk)P (tk)x(tk) = u2kV

(
tk, x(tk)

)
.

Then it follows from Theorem 1 that the result is true.

4.2 Stability theorem via the Krasovskii method

Theorem 5. System (5) is pMES if there exist function α1(t) and constant l > 0 such that

(i) pA(t) + (p− 1)|B(t)|In + p|C(t)|2In + (p− 2)|D(t)|2In 6 α1(t)In;
(ii) tk − tk−1 > l;

(iii) ρ3(t) =
∏

06tk<t
[|uk|p+(

∫ tk
tk−1
|B(s)|+ |D(s)|2 ds)/(1−σ)] exp(

∫ t
0
δ3(s) ds)

is a USF, where δ3(t) = max{α1(t) + (|B(t)|+ |D(t)|2)/(1− σ), 0}.

Proof. Consider a Lyapunov–Krasovskii functional

V
(
t, xt

)
= V1(t) + V2(t), (8)

where V1(t) = |x(t)|p, V2(t) =
∫ t
t−τ(t)(|B(s)| + |D(s)|2/(1 − σ))|x(s)|p ds. For t ∈

(tk−1, tk], we have

LV1(t) 6 α1(t)V1(t) +
(∣∣B(t)

∣∣+
∣∣D(t)

∣∣2)V1(t− τ(t)
)
.

For t ∈ (tk−1, tk], we get

LV2(t) 6
|B(t)|+ |D(t)|2

1− σ
V1(t)−

(∣∣B(t)
∣∣+
∣∣D(t)

∣∣2)V1(t− τ(t)
)
.

Then

E
[
LV (t)

]
6

(
α1(t) +

|B(t)|+ |D(t)|2

1− σ

)
E
[
V1(t)

]
6 δ3(t)E

[
V (t)

]
.

Thus, for t ∈ (tk−1, tk],

E
[
V (t)

]
6 E

[
V
(
t+k−1

)]
exp

( t∫
tk−1

δ3(s) ds

)
. (9)

For t = tk, by (ii), we have

E
[
V1
(
t+k
)]
6 |uk|pE

[
V1(tk)

]
6 |uk|pE

[
V (tk)

]
6 |uk|p exp

( tk∫
tk−1

δ3(s) ds

)
E
[
V
(
t+k−1

)]
, (10)
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and there exists a t̄k ∈ (tk−1, tk) such that

V2(t+k ) =

tk∫
tk−τ(tk)

|B(s)|+ |D(s)|2

1− σ
V1(s) ds 6

tk∫
tk−1

|B(s)|+ |D(s)|2

1− σ
V1(s) ds

=
1

1− σ
V1(tk)

tk∫
tk−1

(∣∣B(s)
∣∣+
∣∣D(s)

∣∣2) ds. (11)

It follows from (9) and the above inequality that

E
[
V2
(
t+k
)]
6

1

1− σ

tk∫
tk−1

(∣∣B(s)
∣∣+
∣∣D(s)

∣∣2)dsE
[
V1(tk)

]

6
1

1− σ

tk∫
tk−1

(∣∣B(s)
∣∣+
∣∣D(s)

∣∣2)dsE
[
V (tk)

]

6
1

1− σ

tk∫
tk−1

(∣∣B(s)
∣∣+
∣∣D(s)

∣∣2) ds exp

( tk∫
tk−1

δ3(s) ds

)
E
[
V
(
t+k−1

)]
. (12)

Submitting (10) and (12) into (8), we have

E
[
V
(
t+k
)]

= E
[
V1
(
t+k
)]

+ E
[
V2
(
t+k
)]
6 |uk|p exp

( tk∫
tk−1

δ3(s) ds

)
E
[
V
(
t+k−1

)]

+
1

1− σ

tk∫
tk−1

(∣∣B(s)
∣∣+
∣∣D(s)

∣∣2) ds exp

( tk∫
tk−1

δ3(s) ds

)
E
[
V
(
t+k−1

)]

6

(
|uk|p +

1

1− σ

tk∫
tk−1

∣∣B(s)
∣∣+
∣∣D(s)

∣∣2 ds

)
exp

( tk∫
tk−1

δ3(s) ds

)

×E
[
V
(
t+k−1

)]
. (13)

Therefore, it yields that

E
[
V
(
t+k
)]
6

∏
06ti6tk

(
|ui|p +

1

1− σ

ti∫
ti−1

∣∣B(s)
∣∣+
∣∣D(s)

∣∣2 ds

)
exp

( tk∫
0

δ3(s) ds

)

×E
[

sup
−τ6ς60

V (ς)
]
. (14)
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For t ∈ (tk, tk+1], by (9)–(14), we see that

E
[
V (t)

]
6

∏
06ti6t

(
|ui|p +

1

1− σ

ti∫
ti−1

∣∣B(s)
∣∣+
∣∣D(s)

∣∣2 ds

)
exp

( t∫
0

δ3(s) ds

)

×E
[

sup
−τ6ς60

V (ς)
]
.

In view of (iii), we see that there exist constants ϑ1 > 0 and ϑ2 > 0 such that

∏
06ti6t

(
|ui|p +

1

1− σ

ti∫
ti−1

∣∣B(s)
∣∣+
∣∣D(s)

∣∣2 ds

)
exp

( t∫
0

δ3(s) ds

)
6 ϑ2e−ϑ1t

for t > 0, which implies that

E
[∣∣x(t)

∣∣p] 6 E
[
V (t)

]
6 ϑ2e−ϑ1tE[‖ξ‖p

]
, t > 0. �

Remark 6. In recent years, some stability results of divergent systems with impulsive
effects have some strong restriction on impulsive gains. For instance, in [6, 10, 12, 20,
24, 25], all of impulsive gains were required to be stabilizing impulses. However, in our
obtained theorems, it may admit a certain number of destabilizing impulsive gains.

Remark 7. In the convergent behavior of some divergent systems, most impulsive con-
trollers allow the finite number of destabilizing impulses [4,12]. However, the conditions
of the obtained theorems can permit the infinite number of destabilizing impulses. By
utilizing USF, we reduce these conservative.

5 Numerical simulations

This section provides two numerical examples to test the theoretic analysis.

Example 1. Consider the following system:

dx(t) =

[
−x(t) +B(t)x

(
t− 1

2

)]
dt

+

[
1

2
x(t) +D(t)x

(
t− 1

2

)]
dω(t), t > 0, t 6= tk,

x
(
t+k
)

= ukx(tk), k = 1, 2, . . . ,

(15)

where B(t), D(t) are periodic function with period θ = 1, and

B(t) =

{
0, t ∈ [0, h),

b, t ∈ [h, 1],
D(t) =

{
0, t ∈ [0, h),

d, t ∈ [h, 1].

The impulsive effects with period 1 are defined by tk+2 = tk + 1, t1 = 0.2, u2k = 0.4,
u2k+1 = 1.2, k = 0, 1, . . . . By Theorem 4, system (15) is exponentially stable in the
mean square if b, d and h satisfy one of the following conditions:
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(I) If h 6 0.2, exp(− ln 0.2304 + 0.5h) < (− ln 0.2304 + 0.5h)/(1.44(1 − h) ×
(b2 + 2d2));

(II) If h > 0.2, exp(− ln 0.2304+0.5h) < (− ln 0.2304+0.5h)/((1−h)(b2+2d2)).

Next, we verify that the conditions of Theorem 4 hold under (I) or (II). Choosing
P (t) = 1, d1 = d2 = d3, we see that conditions (i) and (ii) are satisfied with α2(t) =
−1/2. If (I) holds, there exists q2 > 0 such that

ln 0.2304− 0.5 + q2(1− h)
(
b2 + 2d2

)
< 0

and
q2 > exp

(
ln 1.44− 0.5 + q2(1− h)

(
b2 + 2d2

)
+ 0.5h

)
.

By computation, we have

δ2(t) = −1

2
+ q2

(∣∣B(t)
∣∣2 + 2

∣∣D(t)
∣∣2)

and

ln

( ∏
06tk<1

uk

)
+

1∫
0

δ2(t) dt = ln 0.24− 1

2
+ q2(1− h)

(
b2 + 2d2

)
< 0.

It follows from Lemma 3 that ρ2(t) =
∏

06tk<t
u2k exp(

∫ t
0
δ2(s) ds) is a uniformly

function. Furthermore, we can obtain that

ψρ2(θ) = ln

( ∏
h6tk<1

u2k

)
+

1∫
h

δ2(t) dt

= ln 1.44− 0.5 + q2(1− h)
(
b2 + 2d2

)
+ 0.5h,

which yields that q2 > exp(ψρ2(θ)). By Theorem 4, system (15) is exponentially stable
in the mean square. Figure 1 depicts impulsive sequence with period 1. Figure 2 depicts
state trajectory x(t) of system (15) with b = 1.2, d = 0.5 and h = 0.1.
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Figure 1. Impulsive sequence with period 1.
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Figure 2. The state trajectory x(t) with b = 1.2, d = 0.5, h = 0.1 and initial value 0.5.

Example 2. Consider 2-dimensional system

dx(t) =
[
Ax(t) +Bx(t− 1)

]
dt

+
[
Cx(t) +Dx(t− 1)

]
dω(t), t > 0, t 6= tk,

x
(
t+k
)

= ukx(tk), k = 1, 2, . . . ,

(16)

where x(t) = (x1(t), x2(t))T, τ(t) = 1, impulsive moments tk and impulsive gains
satisfying tk+2 = tk + 0.2, t1 = 0.1, u2k = 1.2, u2k−1 = 0.1, k = 1, 2, . . . , coefficient
matrices are defined as follows:

A =

(
−0.6 0

0 −0.4

)
, B =

(
2 0.5
−1 0.5

)
,

C =

(
0.5 0
0 0.5

)
, D =

(
0.5 0
0 0.3

)
.

We can verify that conditions (i) and (ii) of Theorem 5 are satisfied with α1(t) = 0.55,
τ = 0.2. By computation, we see that δ3(t) = 3.05. Since the impulsive effects have
a period 0.2, it follows that

ln

( ∏
06tk<0.2

[
|uk|p +

1

1− σ

( tk∫
tk−1

∣∣B(s)
∣∣+
∣∣D(s)

∣∣2 ds

)])
+

0.2∫
0

δ3(s) ds

= ln 0.378125 + 0.305 < 0.

In view of Lemma 3, we see that

ρ3(t) =
∏

06tk<t

[
|uk|p +

1

1− σ

( tk∫
tk−1

∣∣B(s)
∣∣+
∣∣D(s)

∣∣2 ds

)]
exp

( t∫
0

δ3(s) ds

)

is a uniformly stable function. By Theorem 5, system (16) is exponentially stable in the
mean square. Figure 3 depicts impulsive sequence with period 0.2. Figure 4 depicts the
trajectory (x1(t), x2(t)) of system (16).
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Figure 3. Impulsive sequence with period 0.2.
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Figure 4. The state trajectory (x1(t), x2(t)) of system (16).

6 Conclusions

In this paper, USF in the form of impulse is proposed to achieve Razumikhin and
Krasovskii stability of impulsive stochastic delay systems. These obtained results nicely
address the relationship between time delay, impulsive effects and stochastic perturba-
tions, which reduces the restrictions of impulsive gains. In the future, we expect to apply
the USF method and impulsive control technique to dynamics of complex networks and
consensus of multi-agent systems.
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