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Abstract. In ruin theory, the net profit condition intuitively means that the sizes of the incurred
random claims are on average less than the premiums gained between the successive interoccurrence
times. The breach of the net profit condition causes guaranteed ruin in few but simple cases when
both the claims’ interoccurrence time and random claims are degenerate. In this work, we give
a simplified argumentation for the unavoidable ruin when the incurred claims are on average equal
to the premiums gained between the successive interoccurrence times. We study the discrete-time
risk model with N ∈ N periodically occurring independent distributions, the classical risk model,
also known as the Cramér–Lundberg risk process, and the more general Sparre Andersen model.

Keywords: net profit condition, ruin probability, discrete-time risk model, classical risk model,
Sparre Andersen risk model, random walk.

1 Introduction

In 1957, during the 15th International Congress of Actuaries, E. Sparre Andersen [16]
proposed to use a renewal risk model to describe the behavior of the insurer’s surplus.
According to Sparre Andersen’s proposed model, the insurer’s surplus process W admits
the following representation:

Wu(t) = u+ ct−
Θ(t)∑
i=1

Xi, t > 0, (1)

where

• u > 0 denotes the initial insurer’s surplus, W (0) = u;
• c > 0 denotes the premium rate per unit of time;
• the cost of claims X1, X2, . . . are independent copies of a nonnegative random

variable X;
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Ruin probability for renewal risk models with neutral net profit condition 1183

• Θ(t) = #{n > 1, Tn ∈ [0, t]} is the renewal process generated by the interoccur-
rence times θ1, θ2, . . ., where Tn = θ1 + θ2 + · · ·+ θn;

• the interoccurrence times θ1, θ2, . . . between claims is a sequence of independent
copies of a nonnegative random variable θ, which is not degenerate at zero, i.e.,
P(θ = 0) < 1;

• the sequences {X1, X2, . . .} and {θ1, θ2, . . .} are supposed to be mutually indepen-
dent.

The main critical characteristics of the defined renewal risk model (1) are the time of
ruin

τu =

{
inf{t > 0: Wu(t) < 0},
∞ if Wu(t) > 0 for all t > 0

and the ultimate time ruin probability (or just the ruin probability)

ψ(u) = P(τu <∞).

Model (1) and the definition of ψ(u) imply that for all u > 0,

ψ(u) = P

(⋃
t>0

{
Wu(t) < 0

})

= P

(
inf
n>1

{
u+ cTn −

n∑
i=1

Xi

}
< 0

)

= P

(
sup
n>1

n∑
k=1

(Xk − cθk) > u

)
.

Thus, the ultimate time ruin probability ψ(u) is nothing but the tail distribution of
the random variable supn>1

∑n
k=1(Xk − cθk). In ruin theory, the difference EX − cEθ

describes the so-called net profit condition. It is well known that ψ(u) = 1 for any u > 0
if EX − cEθ > 0, and this fact is easily implied by the strong law of large numbers;
see [12, Prop. 7.2.3]. Also, ψ(u) = 1 for any u > 0 if EX − cEθ = 0 (see [12, pp. 559–
564]), except in some simple cases when both random variables X and θ are degenerate.
Let us call the net profit condition neutral if EX−cEθ = 0, and recall that the guaranteed
ultimate time ruin is avoidable, i.e., ψ(u) 6≡ 1 if EX − cEθ < 0 only. If EX − cEθ < 0,
it is said that the net profit condition holds. In general, the fact that

EX − cEθ = 0 ⇒ ψ(u) = 1 (2)

for all u > 0 can be deduced from some deep study of random walk; see, for example,
[6, 12, 18]. Therefore, the mathematical curiosity drives us to derive (2) by using simpler
arguments.

In [2], authors basically use Silverman–Toeplitz theorem to prove (2) for the discrete-
time and classical risk models, and their proofs presented for both mentioned models
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are significantly simpler than those given in [6, 12, 18]. In this article, we show that
the implication (2) can be simplified even further, however in some instances using the
Pollaczek–Khinchine formula. The desired simplification of the proof can be achieved
by defining the random vector (X∗, X), where X∗ is the new random variable, which is
arbitrarily close to X , and P(X∗ 6 X) = 1.1 This way is similar to the probabilistic
proof of Turan’s graph theorem given in [1, p. 184, third proof].2 For the defined random
variable X∗, we make the neutral net profit condition EX − cEθ = 0 satisfied EX∗ −
cEθ < 0 and show that the known algorithms of the ruin probability calculation under the
net profit condition imply ψ(u) = 1 for all u > 0 as X∗ approaches to X . The related
ideas can be met in various other probabilistic research papers too where the difference
of certain numerical characteristics is studied when two (or more) random variables are
close to each other under a certain metric; see, for instance, [11] or [19].

In Section 2, we derive (2) for the more general discrete-time risk model, which is
described as follows. Let us consider model (1). Suppose c ∈ N, θ ≡ 1, the independent
random variables X1, X2, . . . are nonnegative integer-valued and follow the N -seasonal
pattern, i.e., Xi

d
= Xi+N for all i ∈ N and some fixed N ∈ N. In other words, we

allow the random variables X1, X2, . . . in model (1) to be independent but not necessar-
ily identically distributed, and obviously, if N = 1, we get that the random variables
X1, X2, . . . are identically distributed. If these requirements are satisfied, the general
Sparre Andersen’s renewal risk model (1) becomes the discrete-time risk model

Wu(t) = u+ ct−
btc∑
i=1

Xi, t > 0, (3)

where bxc denotes the greatest integer less than or equal to x ∈ R. Then there is sufficient
to consider (3) (in terms of Wu(t) < 0 for at least one t > 0) when u ∈ {0, 1, 2, . . .} =:
N0 and t ∈ N only. Then the ruin time and the ultimate time ruin probability have the
following standard expressions:

τu =

{
min{t ∈ N: Wu(t) < 0},
∞ if Wu(t) > 0 for all t ∈ N,

ψ(u) = P(τu <∞) = P

(
sup
k>1

k∑
i=1

(Xi − c) > u

)
, u ∈ N0. (4)

If ϕ := 1− ψ denotes the ultimate time survival probability, then, according to (4),

ϕ(u) = P

(
sup
k>1

k∑
i=1

(Xi − c) 6 u

)
, u ∈ N0. (5)

1Originally, the idea was raised by the fourth-year student of Faculty of Mathematics and Informatics Justas
Klimavičius in 2017.

2We thank Professor Eugenijus Manstavičius for pointing to this fact.
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In [7] and various other papers, the survival probability is studied according to a slight-
ly different definition than (5), i.e.,

ϕ̂(u) = P

(
sup
k>1

k∑
i=1

(Xi − c) < u

)
. (6)

It is easy to see that the survival probabilities in (5) and (6) are related as ϕ(u) = ϕ̂(u+1)
for all u ∈ N0.

In Section 3, we derive (2) for the classical risk model when Θ(t) in (1) is assumed to
be a Poisson process with intensity λ > 0, i.e.,

P
(
Θ(t+ s)−Θ(s) = n

)
= e−λt

(λt)n

n!

for all n ∈ N0 and t, s > 0.
In Section 4, we consider the most general Sparre Andersen’s model (1) in terms

of proving (2) by the known facts of ruin probability calculation under the net profit
condition. More precisely, in Sections 2, 3, and 4 respectively, we formulate and give
different proofs than the existing ones to the following three theorems.

Theorem 1. Suppose the insurer’s surplus processWu(t) varies according to the discrete-
time risk model (3) with N periodically occurring independent discrete and integer-
valued nonnegative random variables Xk

d
= Xk+N , k ∈ N, and θ ≡ 1. Let SN =

X1 +X2 + · · ·+XN . If the net profit condition is neutral cN −ESN = 0 and P(SN =
cN) < 1, the ultimate time ruin probability ψ(u) = 1 for all u ∈ N0.

Theorem 2. Let Wu(t), t > 0, be a surplus process of the classical risk model generated
by a random claim amount X , an exponentially distributed interoccurrence time θ with
mean Eθ = 1/λ, λ > 0, and a constant premium rate c > 0. If the net profit condition is
neutral λEX = c, then ψ(u) = 1 for all u > 0.

Theorem 3. Let Wu(t), t > 0, be a surplus process of Sparre Andersen model generated
by a random claim amountX , interoccurrence time θ, and a constant premium rate c > 0.
If the net profit condition is neutral EX/Eθ = c and P(X = cθ) < 1, then ψ(u) = 1 for
all u > 0.

As mentioned, proving Theorems 2 and 3, we use the Pollaczek–Khinchine formula.
This raises the need for the following little auxiliary statement.

Lemma 1. Let η1, η2, . . . be independent identically distributed nonnegative random
variables, which are not degenerate at zero. Then, for any x > 0,

∞∑
n=1

P(η1 + · · ·+ ηn 6 x) <∞.

Proof. Let t be some small positive number, and say that the nonnegative random vari-
ables η1, η2, . . . are independent copies of η. Then, rearranging and using Markov’s
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inequality, we obtain

∞∑
n=1

P(η1 + · · ·+ ηn 6 x) =

∞∑
n=1

P
(
e−t(η1+···+ηn) > e−tx

)
6 etx

∞∑
n=1

(
Ee−tη

)n
<∞ (7)

since Ee−tη < 1 under the considered conditions.

Of course, the upper bound of the sum
∑∞
n=1 P(η1 + · · · + ηn 6 x) can be im-

proved compared to the given one in (7); see, for instance, [10, Proof of Lemma 8], [20,
Lemma 3.2], and other literature on concentration inequalities.

2 Discrete-time risk model

Proof of Theorem 1. We first demonstrate the proof for the most simplistic version of the
homogeneous discrete-time risk model (3) when c = 1 and N = 1. Let hk = P(X = k),
k ∈ N0, and observe that conditions EX = 1 and P(X = 1) = h1 < 1 imply hl > 0 for
some l > 2. Indeed,

EX = h1 + 2h2 + 3h3 + · · · = 1,

and h1 < 1 means that at least one probability out of h2, h3, . . . is positive. In addition,
conditions h1 < 1 and EX = 1 imply h0 > 0. Indeed, if h0 = 0, then h1 + h2 +
h3 + · · · = 1, and

1 = EX = h1 + 2h2 + 3h3 + · · · > h1 + h2 + h3 + · · · = 1

leads to the contradiction.
Let us choose l > 2 such that hl = P(X = l) > 0, and define the distribution of an

integer-valued random vector (X∗, X) by the following equalities:

P(X∗ = k, X = k) = hk, k ∈ N0, k 6= l,

P(X∗ = l, X = l) = hl −
ε

l
, P(X∗ = 0, X = l) =

ε

l
,

P(X∗ = k, X = m) = 0, {k,m} ∈ N2
0, {k,m} 6= {0, l}, k 6= m,

where ε ∈ (0, lhl) is arbitrarily small.
Visually, the distribution of the vector (X∗, X) is presented in Table 1.
It is easy to see that EX∗ = 1− ε < 1 and

P(X∗ 6 X) =

∞∑
k=0

∞∑
m=k

P(X∗ = k, X = m)

= P(X∗ = 0, X = l) +

∞∑
k=0

P(X∗ = k, X = k) = 1.

https://www.journals.vu.lt/nonlinear-analysis
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Table 1. Distribution of the vector (X∗, X).

X∗ X

0 1 2 . . . l− 1 l l + 1 . . . Σ

0 h0 0 0 . . . 0 ε/l 0 . . . h0 + ε/l
1 0 h1 0 . . . 0 0 0 . . . h1

2 0 0 h2 . . . 0 0 0 . . . h2

...
...

...
...

. . .
...

...
...

. . .
...

l − 1 0 0 0 . . . hl−1 0 0 . . . hl−1

l 0 0 0 . . . 0 hl − ε/l 0 . . . hl − ε/l
l + 1 0 0 0 . . . 0 0 hl+1 . . . hl+1

...
...

...
...

. . .
...

...
...

. . .
...

Σ h0 h1 h2 . . . hl−1 hl hl+1 . . . 1

Let (X∗j , Xj), j ∈ N, be independent copies of random vector (X∗, X). We have
P(X∗j 6 Xj) = 1 for each j ∈ N. Therefore,

P(X∗1 +X∗2 6 X1 +X2)

=

∞∑
k=0

∞∑
l=0

P(X∗1 + k 6 X1 + l)P(X∗2 = k, X2 = l)

=

∞∑
k=0, k 6=l

P(X∗1 + k 6 X1 + k)hk

+P(X∗1 + l 6 X1 + l)

(
hl −

ε

l

)
+P(X∗1 6 X1 + l)

ε

l
= 1

due to P(X∗1 6 X1) = 1.
We now use the mathematical induction to show

P

(
n∑
k=1

X∗k 6
n∑
k=1

Xk

)
= 1, n ∈ N. (8)

Indeed, if P(
∑n
k=1X

∗
k 6

∑n
k=1Xk) = 1 up to some natural n, we conclude that

P

(
n+1∑
k=1

X∗k 6
n+1∑
k=1

Xk

)
=

∞∑
m=0,m 6=l

P

(
n∑
k=1

X∗k 6
n∑
k=1

Xk

)
hm

+P

(
n∑
k=1

X∗k 6
n∑
k=1

Xk

)(
hl −

ε

l

)

+P

(
n∑
k=1

X∗k 6
n∑
k=1

Xk + l

)
ε

l
= 1.
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For u ∈ N0, equality (8) implies that

ψ(u) = P

(
sup
n>1

{
n∑
k=1

Xk − n

}
> u

)
= P

( ∞⋃
n=1

{
n∑
k=1

Xk > n+ u

})

> P

( ∞⋃
n=1

{
n∑
k=1

X∗k > n+ u

})
= P

(
sup
n>1

{
n∑
k=1

X∗k − n

}
> u

)
=: ψ∗ε (u)

or, equivalently,
ϕ(u) 6 ϕ∗ε(u) (9)

for all u ∈ N0, where ϕ = 1−ψ and ϕ∗ε = 1−ψ∗ε are the model’s survival probabilities.
Let s ∈ C and h∗k = P(X∗ = k), k ∈ N0. Since EX∗ = 1 − ε < 1, Corollary 3.2

of [8] implies that the generating function of the survival probability ϕ∗ε is

ϕ∗ε(0) + ϕ∗ε(1)s+ ϕ∗ε(2)s
2 + · · · = 1−EX∗

GX∗(s)− s
=

ε

GX∗(s)− s
, |s| < 1, (10)

where GX∗(s) is the probability generating function of the random variable X∗, i.e.,

GX∗(s) = h∗0 + h∗1s+ h∗2s
2 + · · · , |s| 6 1.

Inequality (9) and equation (10) imply that

0 6 ϕ(0) 6
ε

h∗0
=

ε

h0 + ε/l
, 0 6 ϕ(1) 6

ε(1− h1)
(h0 + ε/l)2

and, in general,

0 6 ϕ(n) 6 ε · 1
n!

lim
s→0

dn

dsn

(
1

GX∗(s)− s

)
for all n ∈ N0. Since ε can be arbitrarily small, we conclude that ϕ(u) = 0 or,
equivalently, ψ(u) = 1 for all u ∈ N0.

It is worth mentioning that, having ϕ(0) = 0, the equality ϕ(u) = 0 for all u ∈ N
can be concluded from the following recurrence formula (see, for instance, [3, Sect. 6]
and [4, 14, 15]):

ϕ(u) =
1

h0

(
ϕ(u− 1)−

u∑
k=1

ϕ(u− k)hk

)
, u ∈ N. (11)

Indeed, the recurrence (11) yields ϕ(u), u ∈ N0, being the multiple of ϕ(0) = 1 − EX .
More precisely,

ϕ(u) = αuϕ(0)

with

α0 = 1, αu =
1

h0

(
αu−1 −

u∑
k=1

αu−khk

)
, u ∈ N.

https://www.journals.vu.lt/nonlinear-analysis
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The latter expression can be verified by mathematical induction. So, the particular case
with c = 1 and N = 1 in Theorem 1 is proved.

The general case when c ∈ N and N ∈ N in the discrete-time risk model (3) can be
considered by the same means. Let us explain how.

Let us suppose model (3) is generated by X1, X2, . . . , XN periodically occurring
independent nonnegative and integer-valued random variables, i.e., Xi+N

d
= Xi for all

i ∈ N and some fixed N ∈ N. In such a case, we can choose any random variable from
{X1, X2, . . . , XN} and define the random vector (X∗j , Xj) such that P(X∗j 6 Xj) = 1,
where j ∈ {1, 2, . . . , N} is some fixed number. Obviously, the random vector (X∗j , Xj)
must be defined in a similar way as vector (X∗, X) before, where both random variables
X∗j and Xj attain the same values, the probability of some smaller value of X∗j gets
enlarged by some arbitrarily small value, and the probability of some larger value of X∗j
gets reduced by the same size. Note that conditions P(Xj>c) = 1 and P(SN =cN)<1
imply the estimate cN − ESN < 0, which is not the case under consideration. Hence,
there always exists at least one value in the set {0, 1, . . . , c−1} of the values ofXj , which
can be chosen to enlarge its probability defining X∗j . We then achieve

ε := cN −ES∗N > cN −ESN = 0,

where S∗N = X1+· · ·+X∗j +· · ·+XN . By the same arguments as deriving inequality (9),
we get that 0 6 ϕ(0) 6 ϕ∗ε(0), where ϕ∗ε(0) is the ultimate time survival probability
at u = 0 for the model in which the random variable X∗j replaces Xj for some j ∈
{1, 2, . . . , N}. According to [7, Thm. 4], we obtain

ϕ∗ε(0) =
m
∗(1)
0

P(S∗N = 0)
(12)

if P(S∗N = 0) > 0, where m∗(1)0 is the first component of the solution of the following
system of linear equations:

McN×cN ×



m
∗(1)
0

m
∗(1)
1...

m
∗(1)
c−1

m
∗(2)
0

m
∗(2)
1...

m
∗(2)
c−1...

m
∗(N)
0

m
∗(N)
1...

m
∗(N)
c−1


cN×1

=


0
...
0

cN −ES∗N


cN×1

=


0
...
0
ε


cN×1

, (13)

Nonlinear Anal. Model. Control, 28(6):1182–1195, 2023
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whereMcN×cN is a certain matrix with elements related to the roots of equationGS∗
N
(s) =

scN , |s| 6 1; see [7, Sect. 3]. Letting ε→ 0+, we derive from system (13) that ϕ∗ε(0)→ 0
because of (12). Consequently, ϕ(0) = 0 due to the estimate 0 6 ϕ(0) 6 ϕ∗ε(0) provided
for an arbitrary ε > 0. It should be noted that the requirement P(S∗N = 0) > 0 for
equality (12) does not reduce generality because P(S∗N = 0) can be replaced by the
probability of the smallest value of S∗N if P(S∗N = 0) = 0; see the comments in [7,
Sect. 4]. In addition, the nonsingularity of the matrix McN×cN in (13) is not known in
general; see [7, Sect. 4] and [8], also [9]. On the other hand, if c ∈ N, N = 1, and the
roots ofGX∗ = sc are simple, the solution of (13) admits the closed-form expression, and
obviously,m∗(1)0 is the multiple of c−EX∗ = ε; see [8]. In cases when the nonsingularity
of the matrix McN×cN in (13) remains questionable, we can refer to [7, Thm. 3] for
the different proof that ϕ(0) = 0 if the net profit condition is neutral ESN = cN and
P(SN = cN) < 1.

Having ϕ(0) = 0, the remaining values ϕ(u) = 0, u ∈ N, can be obtained by the
recurrence relation

ϕ(u) =
∑

i16u+c
i1+i26u+2c

...
i1+i2+···+iN6u+cN

P(X1= i1)P(X2= i2) · · ·P(XN = iN )ϕ

(
u+ cN −

N∑
j=1

ij

)

(see [7, Eq. (5)]) or by the following expression of survival probability generating func-
tion (see [7, Thm. 2]):

ϕ∗ε(0) + ϕ∗ε(1)s+ ϕ∗ε(2)s
2 + · · · = uTv

GS∗
N
(s)− scN

,

where, having in mind that some Xj from {X1, . . . , Xn} is replaced by X∗j ,

u =



sc(N−1)

sc(N−2)GS∗
1
(s)

sc(N−3)GS∗
2
(s)

...
scGS∗

N−2
(s)

GS∗
N−1

(s)


, v =



∑c−1
i=0 m

∗(2)
k

∑c−1
k=i s

kFX1
(k − i)∑c−1

i=0 m
∗(3)
i

∑c−1
k=i s

kFX2
(k − i)

...∑c−1
i=0 m

∗(j+1)
i

∑c−1
k=i s

kFX∗
j
(k − i)

...∑c−1
i=0 m

∗(N)
i

∑c−1
k=i s

kFXN−1
(k − i)∑c−1

i=0 m
∗(1)
i

∑c−1
k=i s

kFXN
(k − i)


,

and
GS∗

l
(s), |s| 6 1, l ∈ {1, 2, . . . , N − 1}

is the probability-generating function of the random variable

S∗l =

{
X1 + · · ·+Xl if l < j,

X1 + · · ·+Xj−1 +X∗j +Xj+1 + · · ·+Xl if l > j,

https://www.journals.vu.lt/nonlinear-analysis
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FXl
is the distribution function of Xl, and the collection{
m
∗(1)
0 , m

∗(1)
1 , . . . ,m

∗(1)
c−1, m

∗(2)
0 , m

∗(2)
1 , . . . ,m

∗(2)
c−1, . . . ,m

∗(N)
0 , m

∗(N)
1 , . . . ,m

∗(N)
c−1

}
satisfies system (13) being the multiple of cN −ES∗N = ε.

3 Classical risk model

Proof of Theorem 2. Since the random variable X in model (1) is nonnegative and X≡0
is out of options for the considered stochastic process, then EX > 0, and there exists
a > 0 such that P(X > a) > 0. Similarly as proving Theorem 1, we now define the pair
of dependent random variables (X∗, X), where X∗ for any ε ∈ (0, a) is

X∗ =

{
X − ε if X > a,

X if X 6 a.

Then, obviously, EX∗ = EX−εP(X > a) < EX and P(X∗ 6 X) = 1. Let (X∗j , Xj),
j = 1, 2, . . . , be independent copies of (X∗, X). Then

P(X∗j 6 Xj) = 1 for all j ∈ N,

P

(
n∑
j=1

X∗j 6
n∑
j=1

Xj

)
= 1 for all n ∈ N,

P

(
n∑
j=1

(X∗j − cθj) 6
n∑
j=1

(Xj − cθj)

)
= 1 for all n ∈ N,

P

(
sup
n>1

n∑
j=1

(X∗j − cθj) 6 sup
n>1

n∑
j=1

(Xj − cθj)

)
= 1,

and, by similar arguments as in (9),

P

(
sup
n>1

n∑
j=1

(X∗j − cθj) > u

)

= ψ∗ε (u) 6 ψ(u) = P

(
sup
n>1

n∑
j=1

(Xj − cθj) > u

)
6 1

for all u > 0. Conditions

EX∗ = EX − εP(X > a),
λ

c
EX = 1

and well-known formula for ψ∗ε (0) (see, for example, [13] or many other sources for the
Pollaczek–Khinchine formula) imply that

ψ∗ε (0) =
λEX∗

c
= 1− λεP(X > a)

c
6 ψ(0) 6 1.
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By letting ε → 0+ in the last inequalities, we get ψ(0) = 1 or, equivalently, ϕ(0) = 0.
Then ψ(u) = 1 for all u > 0 is implied by the same Pollaczek–Khinchine formula
observing ϕ∗ε(u) being the multiple of ϕ∗ε(0). Indeed,

ϕ∗ε(u) =

(
1− λEX∗

c

)(
1 +

∞∑
n=1

(
λEX∗

c

)n
F ∗nI (u)

)

= ϕ∗ε(0)

(
1 +

∞∑
n=1

(
ψ∗ε (0)

)n
F ∗nI (u)

)
, u > 0,

where

FI(u) =
1

EX∗

u∫
0

P(X∗ > x) dx,

and F ∗nI denotes the n-fold convolution of FI . Here

∞∑
n=1

(
ψ∗ε (0)

)n
F ∗nI (u) 6

∞∑
n=1

F ∗nI (u) =

∞∑
n=1

P(η1 + · · ·+ ηn 6 u) <∞

because of Lemma 1, where the nonnegative independent and identically distributed ran-
dom variables η1, η2, . . . are described by the distribution function FI .

4 Sparre Andersen’s model

Proof of Theorem 3. Arguing the same as proving Theorem 2 in Section 3, we can define
the random vector (X∗, X), its independent copies (X∗1 , X1), (X

∗
2 , X2), . . . and show

that ψ∗ε (u) 6 ψ(u) 6 1 for all u > 0. Let S∗n =
∑n
k=1(X

∗
k−cθk) and Sn =

∑n
k=1(Xk−

cθk) for all n ∈ N. Then (see [5, Eq. (10)])

ψ∗ε (0) = 1− exp

{
−
∞∑
n=1

P(S∗n > 0)

n

}

because of the net profit condition EX∗ − cEθ = −εP(X > a) < 0.
It is known that (see [17, Thm. 4.1]) E(X∗ − cθ) < 0 implies

∞∑
n=1

P(S∗n > 0)

n
<∞,

while E(X − cθ) = 0 implies
∞∑
n=1

P(Sn > 0)

n
=∞.
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Therefore,

ϕ(0) 6 ϕ∗ε(0) 6 exp

{
−

M∑
n=1

P(S∗n > 0)

n

}
(14)

for any M ∈ N. Since
lim
ε→0+

P(S∗n = Sn) = 1

for all n ∈ N, by letting ε→ 0+ in (14), we obtain

ϕ(0) 6 exp

{
−

M∑
n=1

P(Sn > 0)

n

}
,

and consequently, ϕ(0) = 0 as M can be arbitrarily large, and the series
∞∑
n=1

P(Sn > 0)

n

diverges. The equality ψ(u) = 1 for all u > 0 is implied by the fact that ϕ∗ε(u) is the
multiple of ϕ∗ε(0). Indeed, by the Pollaczek–Khinchine formula (see [5, Eq. (10)])

ϕ∗ε(u) = e−A

(
1 +

∞∑
n=1

(
1− e−A

)n
H∗n(u)

)

= ϕ∗ε(0)

(
1 +

∞∑
n=1

(
ψ∗ε (0)

)n
H∗n(u)

)
, u > 0,

where

A =

∞∑
n=1

P(S∗n > 0)

n
, H(u) =

F+(u)

F+(∞)
,

F+(u) = P(S∗N+ 6 u), N+ = inf{n > 1: S∗n > 0},

and H∗n denotes the n-fold convolution of H . The proof of the considered theorem
follows according to the comments at the end of the proof of Theorem 2.

5 Concluding remarks

There are many statements in mathematics that can be proved differently. Usually, the
simplest proofs attain the most attention. On the other hand, the variety or just the number
of different derivations of certain facts is of interest too, one may reference to the already
mentioned source [1]. In this paper, we managed to prove differently the known fact that

P

( ∞⋂
n=1

{
n∑
k=1

Xk < u

})
= 0 (15)
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for any u > 0 if EX = 0 and X1, X2, . . . are independent copies of the random
variable X . On top of that, we demonstrated that equality (15) is implied by similar
argumentation under some other than i.i.d. assumptions on the underlying random walk
{
∑n
k=1Xk, n ∈ N}.

Acknowledgment. The authors feel very grateful to the anonymous reviewers for their
solid and qualified remarks.
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