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Abstract. In this article, we are interested in fractional stochastic differential equations (FSDEs)
with stochastic forcing, i.e., to FSDE we add a stochastic forcing term. The conditions for the
existence and uniqueness of solutions of such equations are obtained, and the convergence rate of
the implicit Euler approximation scheme for them is established. Such types of equations can be
applied to the consideration of FSDEs with a permeable wall.
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1 Introduction

Stochastic differential equations (SDEs) are used as a modelling tool in many fields of
science. Currently, a lot of research is done around models with fractional Brownian
motion (fBm) BY = (Bf);~0,0 < H < 1, since fBm introduces a memory element,
which provides new and promising modelling possibilities. SDEs driven by fBm

t t
1
Xt:XO+/f(s,Xs)ds+/g(s,Xs)dBf, tel0.7, 5 <H <1,
0 0

or mixed SDE:s is the focus of many authors. Many authors have considered the problem
of the existence and uniqueness of solutions to such equations [3,4,7-12,16-21,23,25,28].
Also, numerical methods for this type of equation are of interest (e.g., see [5, 6, 13-16]
and references therein).

Interest in considering FSDEs with a stochastic forcing term was aroused by an article
by Vojta et al. [24]. In this article, the authors add repulsive forces G to the recursion
relation

Tn+l = Tn + gn + G(xn)a

© 2023 The Author(s). Published by Vilnius University Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.


https://orcid.org/0000-0002-1195-4243
mailto:kestutis.kubilius@mif.vu.lt
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/

Fractional SDEs with stochastic forcing 1197

where x,, — process value, &, — discrete fractional Gaussian noise. As an example of
repulsive forces, exponential forces were taken with a wall w defined by the functions

G(z) = Gpexp{—A(z —w)}

characterized by amplitude Gy and decay constant A. Such a model is called a ,,soft wall”
model. It should be noted that the ,,soft wall” model has a permeable wall. The process
may cross the wall w, but it is affected by the force of the selected quantity in the opposite
direction. When the process is far from the wall, the force acts weakly. As it approaches
or crosses the wall, the force acts stronger.

The first attempt to generalize the soft-wall model was made in an article by Kubilius
and Medziiinas [10]. In this article, a class of FSDEs with a soft wall was considered.
Equations with constant and strictly positive diffusion coefficients belong to this class.
To illustrate the behavior of process trajectories when a repulsive force is added to it, we
considered the Vasicek process. For the convenience of the reader, we will repeat this
example in the appendix with additional comments. This example will make it easier to
understand what happens when a repulsive force is added.

In our article, we will consider a further generalization of the soft-wall model. We will
introduce and study FSDEs with stochastic forcing defined by the equation

t t
Xy = Xo + D(Xy) —@(XO)+/f(s,Xs)ds+/g(s,XS)dBf, tel0,7], (1)
0

0

where 1/2 < H < 1, & : R — R is continuous function, f,¢ : [0,7] x R — R
are measurable functions. The stochastic integral in Eq. (1) is a pathwise generalized
Lebesgue—Stieltjes integral. Thus, we can use the pathwise approach to consider this
FSDE. We call such equation FSDE with a stochastic forcing term ¢. As an example
of a stochastic forcing term, we can take the repulsive force.

This paper aims to find conditions under which FSDE (1) has a unique solution and
to study the convergence rate of implicit Euler approximation for it in the pathwise sense.
The proof of the existence and uniqueness of the solution of Eq. (1) is based on the
estimates obtained in the article by Nualart and Rascanu [20] and the application of the
implicit Picard iteration procedure.

The paper is organized in the following way. In Section 2, we present the paper’s
main results. Section 3 contains definitions of considered spaces of functions and a priori
estimates for the Lebesgue—Stieltjes integral. In Section 4, we prove the existence and
uniqueness of a solution for a deterministic differential equation and obtain a convergence
rate for implicit Euler approximation. Finally, in the Appendix, the fractional Vasicek
process with the soft wall is considered as a modeling example.
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2 Main result

We will assume that the coefficients f, g are measurable and satisfy the following condi-
tions with some nonrandom constants:

(H1) g(t,z) is differentiable in x, and there exist some constants 0 < 3, < 1, and
for every N > 0, there exists My > 0 such that the following properties hold:

(i) Lipschitz continuity in x
lg(t,z) — g(t,y)| < Molz —y| Vz,yeR, te[0,T];
(i1) local uniform Holder continuity of the derivative in x
|95 (t, x) — gh(t,y)| < Mylz —y|° Va,y € [-N,N], vt € [0,T};
(iii) Holder continuity in ¢

l9(s,2) — g(t,2)| + |93 (5,2) — gi(t, )] < Mot — 5|7
Vo € R, Vt, s €[0,T].

(H2) There exists by € L?(0,T)), where p > 2, and for every N > 0, there exists
Ly > 0 such that the following properties hold:

(i) local uniform Lipschitz continuity in x
|f(t,x) = f(t,9)| < Ln|e —y| Va,y € [-N,N], vt € [0,T};
(ii) rate of growth
|f(t,2)| < Lolz| +bo(t) Vz € R, Vt € [0,T).

(H3) Assume that

(i) function D : R — R, where D(z) := « — &(z), is strictly monotonic and
surjective;
(i1) there is a constant d > 0 such that

|D(x) = D(y)| = dz —yl. )

Remark 1. In the Appendix, the considered repulsive forces are examples satisfying
assumptions (H3). More classes of functions satisfying (2) are given in [10].

We can now formulate our main result. Set

4]

. 1
aOZmln{QvﬁaM}a Y =1 — ayp. 3
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Theorem 1. Suppose that the functions f(t,x) and g(t, x) satisfy assumptions (H1) and
H)withp=(1-H) "5 1/H-1<§<1,1-H<p<1,1/2< H < 1. Moreover,
let assumptions (H3) hold. If v € (o, H), then there exists a unique stochastic process
X € C7(0,T) satisfying FSDE (1).

Let 7™ = {t} = kT/n, 1 < k < n} be a sequence of uniform partitions of the
interval [0, 7], and let A,, =t} —t}_|, 1 < k < n, A, < 1. We define the implicit Euler
approximations for solution of Eq. (1) as

Y7 (i) = (V" (Hin)) = Y7 (6) — @Y™ (1)) + £ (45, Y7 (67)) An
+g(t, Y (1) (BY (ti1) — BY (8)),
Y"(0) = X,

and their continuous interpolations as

t
Y™(t) - (Y"(t) = Xo — P(Xo) + /f(r:,Y" (t)) ds
0
t
+ /g(Tgyn(Tg)) dBl,
0
where 7' =t} and Y™ () =Y (tp_,) if s € [t}_4,t7), 1 < k < n.
We introduce the symbol O,, for simplicity of notation. Let (&,,) be a sequence of
r.v.s, let ¢ be an a.s. nonnegative r.v., and let (a,) C (0,00) be a vanishing sequence.
Then &,, = O, (a,) means that |{,| < < - ay, for all n.

For arbitrarily fixed T' > 0, we use of the following assumptions on the coefficients
of Eq. (1):

(A1) The function g(t, x) is differentiable in = for each t € [0, T, and there exists
some constants M > 0 and 0 < 4,8 < 1 such that the following properties
hold:

lgtt,x)| <M, |gh(t,x)| <M,  |gh(t,z) — gh(t,y)] < M|z —yl°,
l9(s,2) = g(t, )] + |94 (s,2) — g, (t,2)| < M|t — 5|7

forallz,y € R, s,t € [0, 7], and for some constants 0 < § < 1.
(A2) There exist some constants L > 0 and 0 < S < 1 such that the following
properties hold:

’f(tvx)’ SL, ’f(tvx)_f(tvy)’ <L|.’L‘—y|,
|f(s,2) = f(t,x)] < L|t — s|°

forall z,y € R, s,t € [0, T].

Nonlinear Anal. Model. Control, 28(6):1196-1225, 2023
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Remark 2. Note that assumptions (A1)—(A2) are stronger then (H1)-(H2).

Theorem 2. Let~y € (yo, H), 1/2 < H < 1, and assume that there exist € > 0 such that
Yo <7y —¢e <7y+e < H. Let assumptions (A1), (A2), and (H3) be satisfied with 3 = 1
and 1/H —1 <6 < L If§ > 60 :=1/(y—¢€) — 1, then Eq. (1) has a unique solution
x € C7(0,T), and

— 0(a21-%)

lz = 9"ll1-, o

forany 0 < e < (y—n0) A (H — ), where yy is defined in (3), norm ||-||1—~,cc is defined
in Section 3.1.

The statements of Theorems 1 and 2 follow directly from the results for deterministic
differential equations since for FSDE (1), we can apply the pathwise approach.

3 Preliminaries

3.1 Spaces of functions and norms

Let us now introduce some function spaces that will be used to analyse solutions of (1).
Denote by LP(0,T), 1 < p < oo, the usual space of Lebesgue measurable functions
f+10,T] — R for which || f[| 1, (o 1) < 00, where

i 1/p
1oy = ( /1 f(:r)\pdx> .
0

Denote by W (0,T), 0 < o < 1/2, the space of real-valued measurable functions
f:]0,7] — R such that

£l = 00 <|f \+/wdu> <o

The space W">(0,T') is a Banach space with respect to the norm || f||
A 2> 0, the equivalent norm is defined by

Ifllar = sup e (!f !+/‘f S )

For any p € (0, 1], denote by C*(0,T") the space of u-Holder continuous functions
f:10,T] — Requipped with a norm || f||,, := | f|oc + | f|, Where

|flp = sup M7 |floo == sup |f(2)]-

o<s<t<T |8 —tH t€[0,7]

and for

«,00?

https://www.journals.vu.lt/nonlinear-analysis
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Recall that C¥(0,T) c C*(0,T),0 < pu < v < 1. Moreover, C1=%(0,T) C W5=“(0,T)
for 0 < o < 1/2. Indeed, if f € C1=%(0,T) and A > 0, then

<|f |+/|f W )

t

1 1-2«
e <|f|oo +1fli-a / (= dS) <e M <|f|o<> +1fli-a 1t_2a>

0

Tl 2a
1 .
<lfth-a (14 =55 )

Tl—2o¢
1o < 1o (14 =50 ) @

Denote by W}~ “>(0,T), 0 < « < 1/2, the space of measurable functions g :
[0,7] — R such that

o (s —e)l [l - )
91l .00 == O<S<1?<T< (t—s)ia +S/ (y — )2 dy) < 0.

Note that W~ **°(0,T) € C*=%(0,T) (see [20]) and W~ (0, T) € Wz (0, T)
for @ > «. Indeed,

_ l9()—g(s)|(t=5)T) [ |gy) —g(s)|(t—5)E)
91,000 O<§2?<T< (t—s)l- +s/ (y—s)2— dy)

ao o (lo-g) | [ lel)—g()
<(TV1) 0<§<£><T< o +S/ PR dy>

— (VD)@ gl

We also denote by W' (0,T), 0 < a < 1/2, the space of measurable functions f on
[0, T such that

[ flla1 /lf ds +/ |f() |1£a)|dyds<oo

|s —

Thus,

Fix p € (0,00). Let 3 = {{to,. .., n}: 0=ty < <ty,=T,n > 1} denotes
a set of all possible partitions of [0, T|. For any f : [0,7] — R, define

n

vp (£510,T) = sup Y | £(tx) — f(th-1)

¥ k=1

Yo Vu(£:00,T)) = vp/P(f:[0,T)).

Nonlinear Anal. Model. Control, 28(6):1196-1225, 2023


https://doi.org/10.15388/namc.2023.28.33508

1202 K. Kubilius

Recall that v,, is called p-variation of f on [0, T']. Denote by W, ([a, b]) (resp. CW,([a, b]))
the class of (resp. continuous) functions on [0, T'] with bounded p-variation, p € (0, c0).
Define V,,(f) := V,(f;[0,T7]), which is seminorm on W, ([0, 1), and V,(f) is 0 if
and only if f is a constant. For each f, V},(f) is a nonincreasing function of p, i.e., if
q < p,then V,(f) < V,(f). Thus, W,([0,T]) C W,([0,T])if 1 < g < p < 0.
Letp > land V, oo (f) := V.00 (f; [0, T]) = Vo (f) +|f|oo. Then V,, oo (f) is a norm,
and W, ([0, T']) equipped with the p-variation norm is a Banach space.

3.2 A priori estimates

3.2.1 Riemann—Stieltjes integral

Let us first give the definition of the generalized Lebesgue—Stieltjes integral (see [27]).
Consider two continuous functions f and h defined on [a,b] C R. For a € (0, 1), define
fractional derivatives

Dg+ (I’) = F(ll—a> < / f 1+oz >l(a,b)('r)a

D;ah<m>:<;<2;(<bh;ﬁza+<1—a>/'z;w>;;z<@ ioni

x

Assume that D2, f € LP(a,b), D,~*g € L%(a,b) forsome p € (1,1/a),q=p/(p—1).
Under these assumptions (see [27]), the generalized Lebesgue—Stieltjes integral is defined
as

/f )ydh(z /D z)Dy~“h(z) dz. 6)

Notice (see [20]) that if f € W' (0,T) and h € qufa °°(0,T), where 0 < av < 1/2,
then the generahzed Lebesgue—Stieltjes integral fo f dh exists for all ¢ € [0, T]. Further-
more, the integral fo fdh exists if f € Wy (0,T).

Let f € C”(a,b), v € (0,1), and h € C*(a,b), u € (0,1), with v + g > 1, then
we can choose o such that 1 — u < o < v, the generalized Lebesgue—Stieltjes integral
exists, it is given by (5) and coincides with the Riemann—Stieltjes integral (see [27]).

From Young’s Stieltjes integrability theorem [26] the Riemann-Stieltjes integral
f ¢ f dh can be defined for functions having bounded p-variation on [0, T (see [2]).

Let f € Wy([a,b]) and h € Wy ([a,b]) withp > 0,¢ > 0,1/p+1/q > 1. Iffand
h have no common discontinuities, then the extended Riemann—Stieltjes integral f fdh
exists, and the Love—Young inequality

b
[ 1= ) - 1) < GV eV slet)  ©

https://www.journals.vu.lt/nonlinear-analysis
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holds for any y € [a,b], where C, , = ((p~* + ¢~ '), ¢(s) denotes the Riemann zeta
function, i.e., ((s) = >_,5,n~°. If the function h € CW,([a,b]), then the indefinite
integral f; fdh,t € [a,b],is acontinuous function. It is easily seen that for f € C”(a,b),
v € (0,1),and h € C*(a,b), u € (0,1), with v + p > 1, the Riemann—Stieltjes integral
[ £ dh exists.

From (6) it follows that

V;’</fdh; [a,b]) S [CP,qVq(ﬁ [a,b]) + |f\oo}Vp(h; [a, b])
< CpqVasoo (f31a,0]) Vy (s [a, b]). 7)

3.2.2  Estimation of the generalized Lebesgue—Stieltjes integrals

From now on, we fix 0 < a < 1/2. For any function u € Wy">°(0,T), define

t
Ft(f)(u):/f(&us)ds, (8)
0

where f satisfies assumptions (H2) with constant p = 1/«

Proposition 1. (See [20].) If u € W">(0,T), then FY)(u) € C'=*(0,T), and

@ [|FD@),_, <M (1+]ulx]),

(2)
i [FOw),, < Affza(l +lullax)

forall X\ > 1, where ¢, i € {1,2}, are positive constants depending only on o, T, Ly,
and ||b0||L1/(y-
Ifu,v € W5°(0,T) are such that |u|~, < N and |v|s < N, then

|FD () = FO@), , < 575 llu = vllan

forall A > 1, where cy = Co 7 LNT(1 — @), Couyr =T + a~ L, depends only on o, T,
and Ly from (H2).

Given two functions h € W~ *°°(0,T) and u € W>°(0,T), we denote

t t

Gt(u) = /us dhs, Ggg)(u) = /g(saus)dhs, &)

0 0

where g satisfies assumptions (H1) with constant 5 > a.

Nonlinear Anal. Model. Control, 28(6):1196-1225, 2023
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Proposition 2. (See [20].) If u € Ws">°(0,T), then G(u) € C*=*(0,T), and
[G@W)]],_y < Aa(P)car l[ullg o0 »

where co 7 =TV 7%/(1 — a) + oT + max{1,aT}/(1 — ),

1
Ag(h) = =——— ||k
Ot( ) F(l —Oé)F(Oé) H ||1—a,oo,T7
I'(-) is a Gamma function.
Proposition 3. (See [20].) If u € W5"™°(0,T), then G\9) (u) € C'~*(0,T), and

lc@ < Aa(h)CO (1 + [[ulla,so),

3 A (h)C®
@ 6D, < A (1 )

u ||17a

forall \ > 1, where the constants CV) and C'?) are independent of \, u, h (they depend
on T and the constants |¢(0,0)|, Mo, o, § from (H1)).
Ifu,v € W§°(0,T) are such that |u|s < N and |v|s < N, then

Aa()C
169w - 69w, , < A(l% (1+ A(w) + A®)) u— vl
forall X > 1, where
|UT _u8|6
A(u) = sup /7d57
= 28] s

and the constant C}(\z;)) is independent of \, u, v, h (C’J(\?) depends on T and the constants
Sfrom (H1)).

Remark 3. If u € C'=%(0,T) and 6 /(1 + ) > «, then

|r _ s‘(l a)6 T8—a(1+6)
= |u‘1—a-

A(u) g |u|1—a Sup |T—S|l+a 5_a(1+5)

TG[O,T]

3.2.3 Estimation of p-seminorm
Let f € Wy([a,b]) and p; > p > 0, then (see [2, p. 33])

Vp, (f3lasb]) < Osc(f;[a, b)) " P/P veies (f;[a, b)), (10)
where Osc(f;[a,b]) = sup{|f(z) — f(y)|: z,y € [a,b]}.

The following result can be proven in the same way as Theorem 2 in [1] or Lemma 2
in [7].

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 1. Let a constant 0 be such that 0 < [ A6 < 1. If function Q(t,x) satisfies
assumptions (A1) on [a,b] and f,g € W,([a,b]), p > 1, then
Voro(Q(t, f) — Q(t, 9); [a, b])
< MVyso(f = g5 [a,0]) +2M|f = gloo [V (95 [a,8]) + (b~ a)°].

Proof. Foranya < s <t < b, we have

[Q(t, fi) = Q(t, g0)] — [Q(s, fs) — Q(s, gs)]
=[Q(t, g+ (fri—9)) —Qt, gt + (fs — 95))]
+[Qt g6+ (fs = 95)) = Q(t,90)] = [Q(s, 95 + (fs — g5)) — Q(5,95)]
=[Qt gt + (fr —9¢) — Q(t, gt + (fs — 95))]

fs_gs
+ / [QL(t, i+ ) — Q(s, go +0)] dv = I, + .
0

Under assumptions (A1), it follows that

|| < M|(fe — g¢) — (fs = 95)]-

Now we estimate 5. From assumptions (A1) and inequality 6 < ¢ it follows that

Q' (t,u) — Q. (t,v)] < 2M|u —v|°. (11)
QL (t,u) — QL (t,v)] | |
Indeed,
/ e / Y 0/6 B
Qx(tﬂ;)_ UC|29x(t, ) = <|Qx(t, |1;)_ U%C(t’ U)|) |Q;(t,u) - Q;(t,v)|1 e

< MO9S =075 <o
Thus, we have
|QL(t, g +v) — QL(5, 95 + V)|

(t,
<|QL(t g0 +v) — Q(t, gs + )| + | QL (E, 9o +v) — Q'y(s, 95 +v)|
< 2M|g — gs|® + M|t — s|°

and
L] < M[2|g: — gs|° + |t — s°] | fs — gs].
Consequently,
| [Q(tv ft) - Q(tagt)] - [Q(Sv fs) - Q(Shg‘?)} |
S M|(fe — g1) = (fs — gs)| + M[2]gs — g51° + [t — s|°] | s — gs].

Nonlinear Anal. Model. Control, 28(6):1196-1225, 2023
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Note that for any partition {a = 59 < s1 < --+ < s, = b} of the interval [a, b], applying
the Minkowski inequality, we obtain

6/p
<Z ‘ S'La fél - (Si?gsi,):l - [Q(Si—la fsl'fl) - Q(Si—lagsi—l)] |p/0)
/8 0/p
M<Z|(f5i_gsi)_(fsil_gsil)’ )
=1 . 0/p
Js; (ZL(]Sz‘ - gsi1|p>
i=1

n 6/p
+ M max_l |fs¢ - gsz' (Z(Sl - Si—l)ﬁp/9> .

1<ign ‘
=1

+2M max |f5i_
1<i<n—1

The proof is now easy to complete as

n 0/p n B
(Z(si—sil)ﬁpN) < (Z(Si—8i1)> = (b—a)’B. O

i=1

3.2.4 Integration with respect to fBm

The trajectories of BY = (B}f);>0, 0 < H < 1, are almost surely locally y-Holder
continuous for all v € (0, H). The pathwise generalized Lebesgue-Stieltjes integral with
respect to one-dimensional fBm B can be defined as

/f ydBH (s /D s)Dy~*BH (s)ds (12)

if DY, f € L'(a,b) (see [22, p. 225], [16]).

Assume that 1/2 < H < 1. Then we can choose « such that 1 — H < o < 1/2.
An easy computation shows that almost all trajectories of B belong to the space
W, *%°(0,T). If f € Wi (0,T), then the pathwise generalized Lebesgue—Stieltjes
integral fg fs dBH exists, and we can express it according to (12) (see [20]).

4 Deterministic differential equations

Let1 — H < a < 1/2 be fixed, where 1/2 < H < 1. Assume that b € W~ *>°(0, T).
Consider the deterministic differential equation

t

oo =0+ 0ar) - an) + [ s,z ds+ [ gl dhe, teDT) a3
0
where o € R.

https://www.journals.vu.lt/nonlinear-analysis
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In this section, we prove the existence and uniqueness of a solution for a deterministic
differential equation (13) and obtain the convergence rate for the implicit Euler approxi-
mation.

4.1 Existence and uniqueness of the solution

First, note that
aozmin{ ,ﬂ,1+5} >1—H
if6>1/H—-1,6>1—-H.

Theorem 3. Suppose that functions f(s,x) and g(s,x) satisfy assumptions (H1), (H2),
respectively, withp = 1/a, 1/H —1 < 6 < 1,1— H < 8 < 1. Moreover, let assumption
(H3) hold. For any & such that 1 — H < a < a < «q, Eq. (13) has a unique solution
x € C*%(0,7).

Corollary 1. Suppose that the functions f(s,x) and g(s,x) satisfy assumptions (H1),
(H2), respectively, with p = (1 — H)_l, 1/H-1<d<1,1-H < p<1,andthe
function ®(z) satisfies assumption (H3). If v € (y0, H), 0 = 1 — «v, then Eq. (13) has
a unique solution x € C7(0,T).

The proof of Theorem 3 is based on applying the implicit Picard iterations method.
We define the implicit Picard iterations sequence as follows. Let

ot =20+ O(2f ) — P(ag™) /f 5,y dSJF/ (s,25) dhs, (14)

Ty = o, k=20, k>0

Recall that D(z) = x — &(x), + € R. We then rewrite the implicit sequence of Picard
iterations (14) as follows:

D(zF1) = D(wo) + FP (%) + G (a*), k>0, (15)

where Ft(f) () and G,Eg) (+) are defined in (8) and (9), and

¢ t
Ft(f)(xo) = [ f(s,29)ds = [ f(s,20)ds
/ !

t t
G (@) = [ (s 9(s,20)
o= [
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The implicit Picard approximation scheme is correctly defined if Ft(f ) (-) and G§9 ) ()
make sense. Indeed, since the function D(x) is strictly monotonic and surjective, it is
continuous. Thus, it has the inverse function D* (z), which is strictly monotonic and
continuous. Consequently, we can compute zF = D~!(yF), where yF := D(af) if
F(f )( -) and G ( ) are correctly defined. We will prove it.

Lemma 2. Let the assumptions of Theorem 3 be fulfilled. Then x* € C'=(0,T) for all
k> 1, and F)(2*) and G9) (2*) are correctly defined.

Proof. We first assume that /) (z*), G(9) (z*) € C'=(0,T). From (15) it follows that
we can compute "1, Now we prove that 21 € C1=*(0, T'). Indeed, applying (H3)(ii),
we get

Thus,
k+1 _ phtl
+1 |y |
|xt | - |(£ ‘ + (t _ S)l—a
k+1 _ Lan
k+1 |2y x|
|x Zo | + (t— s)l—«
k+1 k+1
-1 k1 |D(zi ™) — D(ag™)|
(1Dt = D)+ P2
and
k k+1
+1 | s
|.13 |+ (t 8)1 «
D(z;*") = D(ak)]
g d 1 D k+1 | t S
|:170|+ <| (Io)"i’ (t—S)l_a
< ol +d™ (]Ft M|+ |G ()]
N |Ft(f)(xk) F(f)( )|+|G(g)( ) Ggg)(gjkﬂ
(t—s)l—«
< lwol + a7 (IFD (@) [1—a + 1G9 (2¥)][1-a)-
Consequently,

[, < ool (FOEH) |+ 6O, a9

and 2"t € C1=2(0,T).
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It remains to prove that F(f)(zF) G (z*) € C'=*(0,T). We first prove that
F)(29) € C'=(0,T). From assumption (H2) it follows that

t t

|Ft(f)(960)| </’f(u,gc0|du<L0|xo\t+/‘bo(s)‘ds
A 0

T «@
< L0|x0|T+T1a</b0(s)|1/o‘ ds>
0

= Lo|zo|T + T [|bo|| 1/

and

R (@) = FD ()] < Lolrol(t = ) + (¢ = )" [boll /e -
Thus,
IFD @]y, < Lol (T +T%) + (14T [lboll 1/
and F)(20) € C*=(0,T).
To prove that G(9) (2°) € C*~(0, T'), it is enough to prove that g(-, z) € W">(0,T).

Indeed, then, applying Proposition 2, we will get the desired result.
Note that 8 > « since a < . From assumption (H1) it follows that

|g (t,z0) (s,0)]
g(t, zo |+ G- 1+a ds
t
|t — s’
< ’9(@960) _9(070)‘ + |g(050)‘ + My mds
0

t
< Mot + My|zo| + |9(0,0)| + Mo /(t — )1 qs
0

M,
= Mot? + Molao| + |g(0,0)| + 3 _Oa o=,

Thus, we proved g(-, z¢) € Wg">°(0, T). Consequently, G(9) (z°) € C*=(0,T).

From above it follows that z* € C1=%(0,T). Applying Propositions 1 and 3, we
conclude that F'(Y)(21), G (x1) € C1=*(0,T). Thus, z2 € C*~(0,T). Repeating the
previous proof, we get that F\') (z), G\ (z*) € C'=(0,T) for all k > 0. O

Now we will prove that sup,, [|z"||,_,, < co. We will do it in two steps.

Lemma 3. Let the assumptions of Theorem 3 be fulfilled. Then there are Ao > 0 and
a constant C' such that
sup kaHa o S 1 2[z0] +C.
% .
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Proof. From Lemma 2 we have that z* € W”‘ (0, T) and F(f)( k) G (z*) €
Wg°(0,T), k > 0. Thus, norms ||-||o.» of ¥, FU)(2*), and G(9)(2*) are finite.
Similarly as in (16), we obtain

o2 o < ool O+ 16 )

and from Propositions 1 and 3 we conclude that

- c(2) Aa(h)C@)
25, < lo] +d </\1 2o (L4 M) + =S (4 kaHa,)\))
<ol + AT L o).

Assume that A = )¢ is large enough and such that

4+ A, (h)C? 1 1

<z
d AT T2

Then for k > 1, we get

(ER NIV

1+ Hx’“Ha o)+ ol

(
<3 (1 A 0) + laol) +
1

a,Ao

11\ 1 4y 11
2+4+8)+8Hx oo+ (145 )

<1+ o [l

/—\[\DM—‘[\DM—l

+2|LL‘0|

[0 )\0
From (4) and (16) it follows that

[, < (14 T ) ol + U2 + 1626, _,))

Since ||F)(2°)]1_o and ||G9)(2°)||; _, are bounded, then there exists a constant C'
such that ||zt 4.5, < C. Thus,

a4, 5, S 1+ 2Jzo] + C. O

Lemma 4. Let the assumptions of Theorem 3 be fulfilled. Then supy, |2 ||1—o < oc.
Proof. Let f € W5"°°(0,T). Clearly,

eiAT‘ﬂoc < ei)\T”f”a,oo < ”fHa)\
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and
| Floo <M Fllax- (17)

From (16), Propositions 1-3, and Lemma 3 it follows that
242 < ol + 4 [FO @), + 169 @),
< faol +d7 eV (14 [28] ) + Aa()CD (14 [l2¥]],, )]

<ao| +d 7 W (14T )

+ Aa(W)CD (14T [lat]], )]
< Jzo| +d 7 eV 4 A (R)CD] (L + (L +2ao| + C)eMT). O
We can now prove our main result.

Proof of Theorem 3. Existence of the solution. Since sup,, ||z"|1—o < oo and & > «,
then the sequence of functions (z™) is relatively compact in C1=%(0, T'). Thus, we can
choose a subsequence 2™, which converges in C*~%(0,T) to a limit z € C1=9(0,T),
i.e.,

Hx"k — 0.

—IH1 &
Q& pp—oo

We show that z is a solution of Eq. (13). For simplicity of notation, write n instead of
nk. Recall that
t t
D(z}) = D(z0) + / f(s,zl7 1) ds + /g(s,x?il) dhs.
0

0
Thus,

‘D(x.) — D(xo) _/f(saxs)ds_/.g(svxs)dhs
0 0

< |D@) = D), +

oo

/ [f(s,xs_l) — f(s,xs)] ds

0

oo

| [lotsm) ~ gts.0) an

0

(18)

o0

Since | — ™|« — 0 and the function D is continuous, then the first term converges to
zero. It remains to prove that the second and third terms also converge to zero.

First, observe that there exists a constant N such that sup,, ||["]1_4 < N and
lz|li—a < N. It follows from Lemma 4.
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‘We next turn to estimate the second term in (18). Applying (17), (4), and Proposition 1
for any A > 0, it follows that

O oo
<o / [£(s,22) — f(s,27~1)] ds
0 a,\
c T17262 .
< <1+ 1_2a)||x—:17 Tp—

To estimate the third term in (18), we note that h € W%_a’oo(o, T) for & > « and
G (™), GW () € C1=%(0,T). Applying Proposition 3 and Remark 3, we obtain

' Aa(h)CY
[lots.2 —gls.az ) an| < 223800 (4 0@ o — ot
0 an
where
To—a(1+9) To—a(1+9)
4 .- - n—1 R s
R ey (sup fl2" g + llelhoa) <28 5= sy 9
From definition of «y it follows that § — &(1 4 ¢) > 0.
Hence
[ lots.2) — g(s.27)] db,
0 [eS)
<M / [g(s,xs) - g(s,w?il)] dhy,
0 a,A
Aa(h)cj(\?)eAT @ T1-28 -
<= Srme— () (14 == e —a" | 5 =2 0.

It follows from (17) and (4). The proof is completed.

_Uniqueness of the solution. Let z and T be two solutions belonging to C'~%(0,T) C
W5"°°(0,T), and choose N such that ||z|/zx < N and ||Z||z,» < N. The existence of
such N follows from inequality (4). The existence of such N follows from inequality (4).
Then from Propositions 1 and 3 it follows that

lz = &llan < d7 (| FO(2) - FO@)|, , + 169 (@) - GO @), ,)
As(h)CS (1 +CW) )
a,\ |

\l—2&
https://www.journals.vu.lt/nonlinear-analysis
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where C'®) defined in (19). Assume that A = )\, is sufficiently large such that

ey Az(W)CP (1 + W) 1
A-a + A28 DN
Then
- 1
|z —Zlan < 5 llz—Zllan-
2
Thus, |z — T|~ = 0 and, in consequence, = T. O

Proof of Corollary 1. Fix 9 <~y < H. Assume that there exist € >0 such that y+e < H.
Leta =1—-v—canda =1—~.Thenl — H < a < a < ay = 1— and
LY (=) (0, T) c L'/*(0,T). Thus, by € L'/*(0,T). This completes the proof. O

4.2 The implicit Euler approximations scheme

Recall that 1 — H < a < 1/2and h € Wy “>(0,T). For Eq. (13), we define the
implicit Euler approximations as

D(y" (tisa)) = D(y" (10)) + £ (8 y" (1)) An (85 " (8)) (A(thia) =2 (1))

20
y"(0) =g e

and their continuous interpolations as
D(y™) =D F(fﬂ'n) n G(Qﬂ'n) n
(yt ) (z0) + F} (y ) + Gy (y )a

where 7' =t} and y"(70) = y"(t7_,) if s € [t]_,,t0), 1 <k < m,

t t
/f oyt () ds, G (y /g oy (7)) dh.
0 0

The function G(9°7") (™) is continuous since  is continuous.
We fix & such that 1 — H < o < @ < 1/2, and throughout this section, we denote
0 =(1—-a—e)"! -1, where e > 01is such that & + ¢ < 1/2. Note that

1 0
——1l<6<1 —=a 1—-H.
Vi <0<1, T a+e>

Set

&ozmin{ ,,6’,1+9}

It is easy to check that &g < ap < 1/2if 8 > 1 — H and § > 0, where « is defined
in (3).
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Theorem 4. Let assumptions (Al), (A2), (H3) be satisfied wjth B=1land1/H —1<
d < 1. If§ > 0, then Eq. (13) has a unique solution x € C*~%(0,T), and

lr = 4"[| 5,0 = O(ATV17)
forany fixed & suchthat1 — H < a < a < 1/2.

Corollary 2. Fix~y € (y0,H), 7o = 1 — o, and assume that there exist € > 0 such that
Yo <y —¢€ <vy+e < H. Let assumptions (Al), (A2), and (H3) be satisfied with 3 = 1
and 1/H —1 <0 < 1L.If6 >0 :=1/(y —¢€) — 1, then Eq. (13) has a unique solution
x € CY(0,T), and

HJ} o ynulf'y,oo = O(Ai’Y—l—g)
forany0 <e < (y—v0) A (H —7).

It is easy to check that Eq. (13) has a unique solution 2 € C'~%(0,T) under the
assumptions of Theorem 4. First, note that assumption (H1)(ii) holds for the constant 6.
This follows from (11). Thus, assumptions (A1) and (A2) with the constants § = 1 and
0 imply the conditions of Theorem 3 and for any & such that 1 — H < a < a < ay,
Eq. (13) has a unique solution 2 € C*~%(0,T). Since &y = @ + ¢, then for a given @,
Eq. (13) has a unique solution = € C*~%(0,T).

Next, we consider the convergence rate of the implicit Euler approximation y™ to the
solution z. Since h € W~ *°°(0,T) € C'~%(0,T), then h € CW,([0,T]) and

Vi (hs[s,]) < hi—alt —s)' 77, (21)
where p = (1 — o) ~!. From now on, we assume that p = (1 — )~ L.

The implicit Euler approximations scheme is correctly defined. From the recursive
expression (20) we calculate D(y" (), ,)). The properties of the function D(z) give us
a single value of y"(t},,). Since D(y;') is a continuous function, then y" is a contin-
uous function. Indeed, since D~!(x) and D(y}') are continuous functions, then y" is
continuous function.

Now we prove that y" € CW,,([0,T]) for any n > 1. First, observe that the function
g(7™,y™(7™)) has bounded variation for any fixed n. Thus, g(7", 3™ (7")) € W1 ([0,T]) C
W,([0,T71), ¢ > 1, and from inequality (7) it follows that

Vo (G (y"): 0, 71) < [CupValg (7™, (7)): 0, T1) + MV, (ks [0, 7))

It is easy to check that
T

Vi(FY7) (y");10,77)) < / |F(r2y™ (72)] ds < LT. (22)
0
Consequently, V,(D(y™);[0,T]) < oo, and from (H3) it follows that

Vo (y™; 10, T1) < d” 'V, (D(y"); [0, T1). (23)
We have thus proved y™ € CW,,([0,T).
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The proof of Theorem 4 requires two auxiliary lemmas.

Lemma 5. Let assumptions (A1), (A2), and (H3) be satisfied with 8 = land 1/H —1 <
<L For0:=(1—-a—e) ' —1<6, we get

Vo (y: [0, 7)) < a9 [2M G, jphy o T
+ (1 —60)""d [TL+ M(2TC,, /9 + 1) h1—o T .
Proof. From (23) it follows that
Vo(y":[0,T]) < d 'V, (FU7 (y™);[0,T]) +d 'V, (G977 (y™);[0,T]). (24
An easy computation shows that for any constant § < 9, we get
Voso(g (7" y™ (")): [0, 7)) < 2M (T + V) (y";[0,T7)). (25)

Indeed, let >« = {s;, 4 = 0,1,...,m} be any partition of the interval [0, T]. Recall that
6 < 1. Then from assumptions (A1), inequality (11) for the function ¢(¢, ), and the
Minkowski inequality we obtain

m 9/13
(Z (7" (s0),9" (7" (50))) = 9 (7" (si-1), 5" (7" (s:-1))) |” 9)

i=1 ) »

) (Z (7" (1), 5" (7" (1)) = g(r"<si-1>,y"(r”<so>)|”/9>

i:1m 0/p
! <Z |9(7n(5i—1),yn (Tn(sz))) - g(Tn(Si—l)vyn (Tn(sz'—l))) ’p/9>

m 0/p
< M(Z |Tn(8i) - T”(Si—1)|p/0>

i=1

m 0/p
+2M Z ly™ (7" (s:)) — y" (7" (5i-1)) ’p>
i=1

m m 0/p
< MZ |T"(si) — T"(Si,1)| + 2M<Z |y”(7"(sl)) — y”(T"(sil))|p>
i=1 i=1
S MT +2MV (y" (77);[0,T]) < 2M (T + V) (y™; [0, T7)).

This finishes the proof of (25).
Since p~! +0p~! = (14 6)(1 — a) > 1, we can apply inequality (25) to the second
term of inequality (24). From (7) it follows that

Vo (GO (y");10,T]) < M[2C, 0 [T + VI (3™ [0,T))] + 1]V, (h; [0, T1).  (26)
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By (24), (22), (26), and W.H. Young’s inequality
|ab| < 0al/? + (1 — @)[p|*/ =0
it is obvious that
V, (y";[0,77)
<d2MC, 0V (™ 10,7V, (h: [0, 7))
+d ' [TL+ M(2TCy 0 + 1)V, (h;[0,T1)]
<OV, (y™: [0, 7)) + (1 — )= =0 [2MC, 5V, (h; [0,77)] /77
+d ' [TL+ M(2TC,, 0 + 1)V, (h;[0,T7])].
From this inequality and (21) follows our result. O

Lemma 6. Let the assumptions of Lemma 5 be satisfied. Then y™ € C'=%(0,T) for all
n > 1.

Proof. First, we prove that F(f:7") (y™) G(97") (y™) € C1~2(0, T). Note that for s <t,

|ES™) (yn) — G (g | = <L(t—s).

/ flriy"(r)) du

Thus, ™) (yn) € C*(0,T) € C*=*(0,T) forall n > 1.
Assume that s € [t};,tgﬂ) forsome 0 < k<n—1landt < t};H. Then

t

67 - 607 =| [tz )

S

< M|h|1_o(t — s)1 7.

Ift > t713+1’ then

t

G () = G (y) | = /Q(Tﬁ,y" () dha

S

tz?+1 t
< /g(ﬂl’,y"(ﬂf)) dhy | + /g(ﬂf,y”(f{})) dhy
8 Tt
=L+
and
L< g (7 g™ (7)o [ (t5) — R(s))]
<oy (7)) | (B(ter) = h(s)[” + [A(t) = h(tp,,) )"
< g7y (7)) | hhi—a(t = 8)'
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This follows from inequality (21). Under the Love—Young inequality, (21), and (25) it
follows that

< CopVouoo (9 (7,4 (7)1 [tiga s t]) Vi (B 144 1])

< CppVaouoo (9(7", 9" (77)): [0, TN Vi (B3 [s, 1])

< M[2C,, [T+ Vy(y™;0,T))] + 1] |hl1—alt — s)' .

Thus
|G (y™) = GO (™) < 2MCyp [T + Vi (370, T1) + 1] ha—a(t — s)' 0.
Lemma 5 shows that there is a constant C' independent of n such that V,,(y™; [0, T]) < C.

Thus, G97") (y™) € C'=*(0,T) for all n > 1. Consequently, D(y™) € C*~(0,T) and
y™ € C1=%(0,T) for all n > 1. Indeed, there is a constant C' independent of n such that

lyp —y2| <A D(y) — D(y2)| < Ct — s)' . O

Proof of Theorem 4. From the conditions of the theorem, as already mentioned at the
beginning of the subsection, there is a solution to Eq. (13) such that z € C'=%(0,T). As
it was mentioned in Section 3.1, we have C*~(0,T) C Wéx”a(O, T). From Lemma 6 it
follows that y, F:7") (y™), G607 (y*) € C'=#(0,T). Thus, z — y" € W™ (0, T).
Recall that elements of the space W~ ’a(O, T) have finite norm ||-||z,» with A > 0.

Our proof starts with the observation that from Propositions 1 and 3 we obtain

[

nH

1 n
< GUFP@ = FOG 0+ IFD W) = FC W) 5.4
+ 69 @) = GOz 5+ G (") = G (1) 150)

1/CarLl(1—a) As(h)C®)(14CW) N
< (B 2T Yo -y

1 r 4 n
F LU - PO ),

6D = 670,

a?

Y

where the constant C® is defined in (19).
Assume that A = )\, is sufficiently large such that
CarIT(1-Q) N Az (R)C®) (14 CW) <
Ay A—2ag b

N | =

Then
2 n
lz —y"llax < 7 (|F D (ym) = FYUm )(yn)Ha,Al
+ |69 (y") = GO () |5, )-
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From inequality (4) it follows that

le—vlls < 2 (14 ) (R0 ) - RO )
Yllaee S 1-2a Y -

+ G (") = GO )] g) @7

Now let us evaluate the right side of inequality (27). We first estimate the norm
IFO@) — PO N

Assume that s € [tz,tgﬂ) for some 0 < k < n—1. Recall thath € W~ “°°(0,T) C
W, & (0, T) C C*=%(0,T) for @ > a. From assumptions (A1)—(A2) it follows that

!y?—y ()]
d='[D(ys) = D(y" (7))]
=d 1|f(t Y (tL))( = 78) + gty (1)) (h(s) = k(1))
“U[L(s — #7) + M|h(s) — h(£7)[] < @) (s — 1) " (28)
and
£ (s,5) = F (7™ (7))
<|F(saw) = FEy) |+ 1F (0 w8) = 8y (7))
SLs—m) + Ly —y" ()| < LO+A@) (s — )%, 9)

where A(@) = d~[L + M|h|;_5]. Recall that A,, < 1.
First, observe that if ¢ < ¢} 1

(ED () = B0 (m) = (B (") = FO0 ()]

p t
</\f(uay3)— oyt ()| du < L(1+ A@ /u—t” @

S L1+ X@)ALo(t - s). (30)

Assume that ¢ >t} ;. Then

|(FD (y”) = EPT (ym)) = (FO) (y) = FE) (y™)|
/|fuyu (74" ()] du

[Z4

- / |f(u,y) = F(tR 9™ (t7)) | du, 31)
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and applying assumptions (A2), (28), we obtain

/\fuyu (r0" ()|
k+1 t

<L /|yu—y (Tg)|du+L/ fu — 77| du

tl’cl+1 t;cl+1
<L swpur =y ()] + An) (0= )
tp, <<t
SLA@AL Y+ A4,) (t— 1) SLAQ@) + 1) A% (t = t14,). (32)

Consequently, we get
(ED (") = FS () = (B () = 70 ()]
L(14A@) AL %t — 5)

and

[FD (™) = FET () ||, = O(AL~2). (33)

Let us now estimate the norm [|G9)(y") — G97")(y")||;_a. Recall that y" €
C1=%(0,T) for all n > 1. We first observe that

9(t ) —g(s,98)| < Mt = s| + My —yi| < Mt —s| + MC|t —s['~*
for a certain constant C btained in Lemma 6. It is easy to see that
Vi (g(,y™);[s,8]) < M(t —s) + MC(t — 5)' . (34)

Assume that s € [t} tZ_H) for some 0 < k < n— 1. From assumptions (A1) and (28)
it follows that

l(s,52) = g(7y" (7)) | < M(1+A@) (s — 1) " (35)

Now let us go back to the estimate of the norm ||G9) () —G97") (y™)||;_5. Assume
that s € [t7,t}}, ) forsome 0 < k& < n — land ¢ < 7, ;. Recall that A, < 1. Then
from (34) and (35) it follows that

(@7 (") =G (") = (G2 (") = G ()]

t

/ l9(w,yi) = g(s,y2)] dha| +[[9(s,92) = g(ti.y" ()] (A(t) = R(s))]|

S

N

< Cp,pvp(g(wyn); [37t])%(h§ [S,t]) + M(l + /\(@))A
<M[Cpp(1+C)+ (14 X@))] AL |1 _a(t — s)'~

P

1
n
a
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Assume that ¢ >t} ;. Using the restriction of the theorem to the exponent of the
Holder condition 6, we can apply inequality (7) and obtain

t

[ lotsm) a2 v )k

< Oy Viso (9™) — 9o (77 [, )V s [0, 1])
£ CppaVio (95 (7)) — (™™ (7 [0 ) Vi (B [0 ]) - BT

From Lemma 1 it follows that

Voro(g (™) — g(y™ (77); [thya1])
<SM[Vyo(y" —y"(7"); [thia,t])
+2 sup ‘y;’ —y" (T;L)‘ [Vpe (y"; [0, T]) + T]]

t}c‘Jrl <s<t

Next, applying inequality (10) and V,,(y™(7"); [0, T]) < V,(y™;[0,T7]), we get
Voro(y" = o™ (7"); [tieaot]) < Viye(y" — " (77); 10, 7))
< (Ose(y" =y (7):0.70)) VY (y" —y" (7"): 0,7))
2(0sc(y" —y™ (=) [0, 7)) V2 (y™; [0, T)).
From (28) it follows that
(s —y" (7)) = (w =" ()] <22@) A7
Thus, R
Osc(y" —y" (T”); [07T]) < 2A(@)A711_°‘
and
Voo (y" =" (7"); [t 1)) < 4(N@))" " AL OOV (470, 77).
Furthermore,
Voo (g(5y™) = g(y™ (7)) (B t]) Vi (B [t 2])
<AMA@) VI (y [0, T)) by 2 AL DO —gp )70 (38)
Now we estimate the second term in (37). From (10) we get

Voro (09" (7)) =9 (7", " (7)) [t ) Vo (B [t )
< (Ose(g(-y" () = (e w" (7):[0.7)))

x V) (g(y™ (") = g(7" 9" (7)); 10, T7).

https://www.journals.vu.lt/nonlinear-analysis
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Since
gty (7" (®)) = (7" (1), 5" (7" (1)))]
= [9(s,9" (7"(9))) = 9(7"(5), " (7"(5)))]|
<Mt —7"(t)] + M|s — 7"(s)| < 2M A,,
then

Osc(g(-,y™ (7)) — g(r", 5" (r™)): [0, 1)) < 2M A,

Moreover, repeating the proof of (25), we obtain

Vo(g(,y™ (7)) [0,T]) < M(T + V;, (y": [0, T7)),
Vo(g(7",y" (77)):[0.T]) < M(T + V;,(y™:[0,T7))
Thus,
Voso (9 (™ (7)) — g (7" y™ (77)s [ty t]) Vo (s [t ])
<2MAL (T + V, (570, 71)) Vi (s [t 1])
<2M(T + V(3" [0, 7)) hy_a AL (£ — 7). (39)

Consequently, from inequality

(G2 6) =607 () = (G2~ 607 (5))|

<| [ Totwam) - oty ] an + /[g(u,yzm(s,y:)}dhu

and (36)—(39) it follows that
16 (y™) = G (y")

The proof is now easily completed. O

= 0(AG-D(-0)),

s

Proof of Corollary 2. 'We verify the conditions of Theorem 4. We first observe that

1 ~ 0
i 1<0<1, s l—-(y—e)>1—v>1-H.
Lleta = 1—-—v—¢ga=1—v.Notethat o < 1 —7—¢ = ap —¢ < 1/2,
at+e=1—-(y—¢e) <1l—9 = a < 1/2,5: 0 < 6. Moreover, 1 — H <
a < a. Thus, conditions of Theorem 4 are satisfied, and Eq. (13) has a unique solution
r € CY%(0,T) = C7(0,T).
It is easy to check that

1-a)1-0)=71—-0)>2y—1—c.
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From this we conclude that for any 0 < € < (v — 7o) A (H — %),

Hl' B ynulf'y,oo = O(Ai’)’—l—e).

Acknowledgment. The author would like to thank the anonymous referees for the care-
ful study of the paper and for constructive comments and suggestions.

Appendix

Let

X, =z +D(Xy) — +/ B—aX,)ds+oBH, t>0, (A.1)
0

be a fractional Vasicek model with a resisting force @ and o, 5 € R, o0 > 0. To find out
how a force affects the behavior of a process, consider two types of resistant forces:

Py (z) = ke @) if
B(a) =  Prlr) = ke e (A2)
Do(z) = ka(ar — ) + DP1(a1) fz < aq
and
& (x) = ke~ Mz—a1) if z > ay,
D(x) =< Pa(x) = ka(ag —z) + P1(a1) ifaz <z < ay, (A.3)
k‘3(CL2 — .’I}) + @2(&2) if x < as,

where A € (0,1); a1, as, k1, k2, ks > 0. By these two resistant forces, we obtain single
and double soft-wall models.

Note that the function D(z) = z — @(x) : R — R satisfies assumptions (H3), where
&(x) is defined in (A.3). For the forces (A.2), the proof is simpler than for (A.3). The
following lemma will be useful.

Lemma Al. Assume that the function D : R — R is differentiable, invertable, and such
that |D'|oo = ¢ > 0. Then inequality (H3)(ii) is satisfied.

F<Xt) F(Xy) F(Xt)

~ Xy

Figure A1l. Force profiles: single soft-wall, double soft-wall.
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F(Xy)
35

30 - Double soft-wall

- Single soft-wall

1 2 3 7 Xt

Figure A2. Single (A.2) and double (A.3) force @ profiles for A = 0.5, k1 = 0.001, k2 = 2, k3 = 20,
a; =23,a2 =1.7.

— Double soft-wall
3 No soft-wall
\ — Single soft-wall

02 04 U o6 | MkMe's Mo

Figure A3. Trajectories of the fractional Vasicek process fora = 1, 8 = 3, H = 0.3, A = 05,7 = 1,
n = 1000.

The statement of the lemma follows from Remarks 6 and 7 in [11].

Suppose that z,y > a;. Since & () = —kj e M*=@1) < 0, D(x) is differentiable,
invertible, and such that |D’|o, > 1. From Lemma Al it follows that |D(z) — D(y)| >
|z — y|. Further,

( ifr <y<a,

( ifz <y <as,
|D(x) = D(y)| = { (B1(a1) =1 (2)) + (x—y) + ka(a1—y) ify <ar <,

(P2(a1)=P1(2)) + (—y) + ka(az—y) ify < az, x> ai,

(P2(az) = Pa(z)) + (v—y) + k3(az—y) ify<az, a2 <z <ar.

Thus, |D(xz) — D(y)| > |z — y|. Moreover, D(x) : R — R is strictly increasing and
surjective. Thus, assumption (H3)(i) is satisfied.

For the fractional Vasicek process (A.1) and soft-wall resistant force profiles (A.2)
and (A.3) illustrated in Fig. A2, we obtain the following trajectories of the fractional
Vasicek process.

The simulation results show that when the process crosses the soft wall boundary, the
force pushes the process trajectories to the boundary.
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