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Abstract. In this paper, we define a generalized cyclic contraction and prove a unique fixed point
theorem for these contractions. An illustrative example is given, which shows that these contraction
mappings may admit the discontinuities and also that an existing result in the literature is effectively
generalized by the theorem. We apply the fixed point result for generation of fractal sets through
construction of an iterated function system and the corresponding Hutchinsion–Barnsley operator.
The above construction is illustrated by an example. The study here is in the context of metric
spaces.

Keywords: Hausdorff metric, fixed point, iterated function system, Hutchinson–Barnsley operator,
fractal.

1 Introduction and mathematical preliminaries

Contractions of various kinds appear in a large way in metric fixed point theory. In fact,
metric fixed point theory is widely held to have originated in the work of Banach [5]
published in 1922, where the notion of contraction and the famous contraction mapping
principle was introduced. In the following hundred years, various classes of mappings
satisfying different types of contractive inequalities have been studied in the context
of fixed point theory. The handbook [17] provides a comprehensive description of this
development till the year 2000. Some of the more recent references are noted in [4,
9, 15, 23, 28, 29]. Contraction mappings are well known for their applications [7, 24].
One such domain of application is in Hutchinson–Barnsley’s theory, where families of
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2 S. Roy et al.

contractions are utilized for the generation of fractals [20], which are sets characterized
by self-similarity appearing in different domains of mathematics, physics and computer
science [10, 27]. It is a method originally proposed by Hutchinson [12] and further elab-
orated by Barnsley [6] in which a finite family of Banach contractions was used for the
generation of fractal sets in arbitrary metric spaces. In later research the theory has been
extended, modified and applied in the framework of different mathematical spaces for
obtaining fractals. Some instances of these works are in references [3, 8, 22, 25, 26].

In this paper, we primarily introduce a cyclic contraction by generalizing the well-
known θ-contraction. Further, it is illustrated that the class of cyclic contractions in-
troduced here may contain discontinuous functions. We establish a unique fixed point
theorem for these cyclic contractions, which is an actual generalization of certain existing
results as demonstrated through an example.

In the second part of the present research, we construct an iterated function system
(IFS) by utilizing a finite family of the cyclic contractions mentioned above. Then, by an
application of the fixed point theorem proved here to the Hutchinson–Barnsley operator
constructed out of the IFS, we establish the existence of fractal sets. Further, the iterations
leading to the fractal sets are also obtained. The above method of generating fractals is
demonstrated.

Throughout the paper, we use the following notations: Nn will denote the set of first
n natural numbers, CB(X) will denote the set of all nonempty, closed and bounded
subsets, while K(X) will denote the set of compact subsets of the metric space (X, d),
respectively.

A self-mapping T : X → X on a metric space (X, d) is said to be a contraction
mapping if there exists a constant k ∈ [0, 1) such that, for every x, y ∈ X ,

d(Tx, Ty) 6 kd(x, y). (1)

The Banach contraction principle [5, 17] guarantees the existence of a unique fixed point
for contraction mappings in a complete metric space.

A remarkable fixed point result was established by Jleli et al. [15] for the generalized
contractions given through the condition that

d(Tx, Ty) 6= 0 =⇒ θ
(
d(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
, k ∈ (0, 1), (2)

where θ : (0,∞)→ (1,∞) is a function with certain properties. The contraction defined
in (2) is called θ-contraction because of its dependence on the function θ.

The class of function θ : (0,∞)→ (1,∞), satisfying

(Θ1) θ is nondecreasing;
(Θ2) for any sequence {xn} ⊂ (0,∞), limn→∞ θ(xn) = 1 if and only if

limn→∞ xn = 0;
(Θ3) there exists r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+(θ(t)− 1)/tr = l,

is denoted byΘ [15]. It was proved in [15] that in a complete metric space the contraction
given in (2) has a unique fixed point under the assumption that θ ∈ Θ. There are many
generalizations and extensions of the above mentioned result like those in [11, 18, 21].
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Fixed points of generalized cyclic contractions without continuity 3

It was noted by Ahmad et al. [1] that condition (Θ3) neither implies nor is implied
by the condition of continuity on θ. Further, they obtained the same fixed point result
as in [15] with condition (Θ3) being replaced by the continuity of θ. Imdad et al. [13]
further dropped condition (Θ1) that is the nondecreasing property of θ and showed that
the result still remains valid. This result has several extensions in works like [2, 14, 19].
We generalize a result of [13] in the next section.

Below are certain notions associated with Hutchinson–Barnsley’s theory for fractal
generation, which is used in the subsequent discussion.

Definition 1. (See [6].) Let (X, d) be a metric space. The mapping h : K(X)×K(X)→
R, defined as

h
(
A,B

)
= max

{
D(A,B), D(B,A)

}
,

where
D(P,Q) = sup

p∈P
inf
q∈Q

d(p, q),

is a metric on K(X) and called the Hausdorff metric induced by d.

Theorem 1. (See [6].) If (X, d) is complete, then (K(X), h) is also complete.

Lemma 1. (See [6].) If {Ai: 1 6 i 6 N} and {Bi: 1 6 i 6 N} are two finite collections
of subsets of K(X) for some i ∈ NN , then

h

( ⋃
16i6N

Ai,
⋃

16i6N

Bi

)
6 max

16i6N
h(Ai, Bi).

Definition 2. (See [6].) An iterated function system (IFS) consists of a complete metric
space (X, d) and a finite set of contraction mappings Ti :X → X . It is denoted by {X;Ti,
i ∈ NN}.

Definition 3. (See [6].) Let X be a metric space, and let {Ti, i ∈ NN} be a finite set of
mappings on X . The Hutchinson–Barnsley operator F : K(X) → K(X) is defined as
F (A) =

⋃
i∈NN

T̂i(A), where T̂i(A) = {Ti(a): a ∈ A}.

Definition 4. (See [6].) Let {X;Ti, i ∈ NN} be an IFS. A set A ∈ K(X) is called
an attractor or a deterministic fractal of the IFS if F (A) = A and for all B ∈ K(X),
limn→∞ Fn(B) = A, where F is the corresponding Hutchinson–Barnsley operator.

In Hutchinson–Barnsley’s theory, IFS is the basic instrument for generation of fractal
sets. It has many versions in which different types of contractions have been utilized.
Some instances of these works are noted in [8, 22, 25].

Let Θ′ denotes the class of functions θ : (0,∞) → (1,∞) satisfying the following
conditions:

(Θ1′) for any sequence {xn} ⊂ (0,∞), limn→∞ θ(xn) = 1 if and only if
limn→∞ xn = 0+;

(Θ2′) θ is continuous.
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4 S. Roy et al.

Definition 5. Let (X, d) be a metric space,m be a positive integer, and letA1, A2, . . . , Am

by nonempty subsets of X . Suppose T :
⋃m

i=1Ai →
⋃m

i=1Ai be an operator. Then T is
said to a generalized cyclic θ-contraction if

(i) T (Ai) ⊆ T (Ai+1) for all i ∈ Nm, where Am+1 = A1;
(ii) there exists θ ∈ Θ′ and k ∈ (0, 1) such that

d(Tx, Ty) 6= 0 =⇒ θ
(
d(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
(3)

for any x ∈ Ai, y ∈ Ai+1, where Am+1 = A1.

2 Fixed point result

Theorem 2. Let (X, d) be a complete metric space, m be a positive integer, and let
A1, A2, . . . , Am by nonempty closed subsets of X . Suppose T :

⋃m
i=1Ai →

⋃m
i=1Ai

be a generalized cyclic θ-contraction with respect to some θ ∈ Θ′. Then
⋂m

i=1Ai is
nonempty, and T has a unique fixed point x∗ ∈

⋂m
i=1Ai. Further, the sequence {xn},

where xn+1 = Txn converges to x∗ for any initial choice of x0 ∈
⋃m

i=1Ai.

Proof. Let x0 ∈
⋃m

i=1Ai and xn+1 = Txn, n > 0. If for some n, d(xn+1, xn) = 0, then
Txn=xn, which shows that xn is a fixed point of T . So, we assume that d(xn+1, xn) 6=0
for all n. For any n > 0, there exists i(l) ∈ {1, 2, . . . ,m} such that xn ∈ Ai(l), xn+1 ∈
Ai(l)+1. Since T is a generalized cyclic θ-contraction,

1 < θ
(
d(xn+1, xn)

)
= θ
(
d(Txn, Txn−1)

)
6
[
θ
(
d(xn, xn−1)

)]k
=
[
θ
(
d(Txn−1, Txn−2)

)]k
6
[
θ
(
d(xn−1, xn−2)

)]k2

6 · · · 6
[
θ
(
d(x1, x0)

)]kn

.

Taking limit as n→∞ in the above inequality, since 0 < k < 1, we get

lim
n→∞

θ
(
d(xn+1, xn)

)
= 1.

Then, by the property (Θ1′) of the function θ,

lim
n→∞

d(xn+1, xn) = 0. (4)

Next, we show that {xn} is a Cauchy sequence. If not, then there exists ε > 0 for which
we can find two subsequences {xm(k)}, {xn(k)} with n(k) > m(k) > k such that

d(xm(k), xn(k)) > ε. (5)

Let n(k) be the smallest integer with n(k) > m(k) satisfying (5). Then

d(xm(k), xn(k)−1) < ε.
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Fixed points of generalized cyclic contractions without continuity 5

Then we have

ε 6 d(xm(k), xn(k)) 6 d(xm(k), xn(k)−1) + d(xn(k), xn(k)−1)

< ε+ d(xn(k)−1, xn(k)). (6)

Taking limit as n→∞ in (6), we get

lim
n→∞

d
(
xm(k), xn(k)

)
= ε. (7)

Also,

d(xm(k), xn(k)) 6 d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1)

+ d(xm(k)−1, xm(k));

d(xm(k)−1, xn(k)−1) 6 d(xn(k), xn(k)−1) + d(xn(k), xm(k))

+ d(xm(k)−1, xm(k)).

(8)

Taking limit as n→∞ in (8) and using (4), (7), we get

lim
n→∞

d(xm(k)−1, xn(k)−1) = ε. (9)

Putting x = xm(k)−1 and y = xn(k)−1 in (3),

θ
(
d(xm(k), xn(k))

)
6
(
θ(d(xm(k)−1, xn(k)−1)

)k
. (10)

Taking limit as n→∞ in (10) and using (Θ2), (7), (9), we get

θ(ε) 6
[
θ(ε)

]k
,

which is a contraction as 0 < k < 1. This shows that {xn} is a Cauchy sequence and
hence convergent in the complete metric space (X, d). Suppose xn → x∗ as n → ∞.
Also, from the cyclic representation of {Ai; i = 1, 2, . . . ,m} it is possible to construct
a subsequence of {xn} from each Ai, which converges to x∗. Therefore, x∗ ∈

⋂m
i=1Ai.

Let Y =
⋂m

i=1Ai and f : Y → Y be the restriction of T on the complete subspace Y .
Then, since 0 < k < 1 and θ(d(xn, x∗)) > 1,

θ
(
d
(
xn+1, f(x

∗)
))

= θ
(
d
(
xn+1, T (x

∗)
))

6
[
θ
(
d(xn, x

∗)
)]k

< θ
(
d(xn, x

∗)
)
.

Since d(xn, x∗) → 0 as n → ∞, by (Θ1) we have θ(d(xn, x∗)) → 1 as n → ∞.
From the above relation we get θ(d(xn+1, fx

∗)) → 1 as n → ∞. Therefore, by (Θ1),
d(xn, Tx

∗)→ 0 as n→∞. Then it follows that T (x∗) = x∗.
Let x∗ 6= z∗ ∈ X be such that T (z∗) = z∗. Then

θ
(
d(x∗, z∗)

)
= θ
(
d
(
T (x∗), T (z∗)

))
6
[
θ
(
d(x∗, z∗)

)]k
,

which is a contradiction. Hence T has a unique fixed point x∗ ∈
⋂m

i=1Ai.
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Example 1. Consider the complete metric space (X, d), whereX = R, d(x, y) = |x−y|.
Let A1 = [0, 1] and A2 = [0, 2]. Define a mapping T : A1 ∪A2 → A1 ∪A2 by

T (x) =


x
2 if x ∈ [0, 1],
1
2 if x ∈

[
1, 32
]
,

1
4 if x ∈

(
3
2 , 2
]
.

Then T is a generalized cyclic θ-contraction with the choice of θ(t) = et and k = 1/2.
Therefore, by Theorem 2, T has a unique fixed point x∗ = 0.

Remark 1. If we take Ai = X for all i in Theorem 2, then Eq. (2) is satisfied for all
x, y ∈ X . Therefore, generalized cyclic θ-contraction is a generalization of a theorem
in [13].

It can be noted in Example 1 that T is not a contraction in the sense of Imdad et al. [13]
as for x = 3/2 and y = 7/4, we have d(Tx, Ty) = d(x, y). So, there does not exist any
k ∈ (0, 1) such that Eq. (2) is satisfied. Hence Theorem 2 is a nontrivial generalization
of the above mentioned result of [13], and therefore, is also a proper generalization of the
main theorem in [1] in turn.

Also, θ-contraction is continuous, whereas generalized cyclic θ-contraction mappings
can be discontinuous as can be concluded from the observation that in Example 1 the
mapping T is discontinuous at x = 3/2.

A similar type of result is established in the work [16], where the function θ is assumed
continuous in addition to assumptions (Θ1)–(Θ3). Theorem 2 is derived here with θ
satisfying only (Θ1) and (Θ2), which is without (Θ1) and (Θ3) utilized in the above
mentioned work.

3 Fractal generation

Let {Ai}mi=1 be a collection of nonempty subsets of a metric space (X, d), and let T :⋃m
i=1Ai →

⋃m
i=1Ai be a continuous generalized cyclic θ-contraction. For any C ∈

K(
⋃m

i=1Ai), T (C) ∈ K(
⋃m

i=1Ai). Using the fact that
⋃m

i=1K(Ai) ⊆ K(
⋃m

i=1(Ai)),
we define the operator generated by the continuous mapping T as T̂ :

⋃m
i=1K(Ai) →⋃m

i=1K(Ai) is defined by T̂ (C) = T (C) = {T (x): x ∈ C} for all C ∈
⋃m

i=1K(Ai).
The above construction is possible since T is cyclic.

Lemma 2. If A is closed subset of the complete metric space (X, d), then K(A) is
a closed subset of the complete metric space (K(X), h).

In the following, we obtain a theorem, which is an application of Theorem 2 under
the additional condition that θ is nondecreasing.

Lemma 3. If {Ai}mi=1 is a collection of nonempty subsets of a metric space (X, d) and
T :

⋃m
i=1Ai →

⋃m
i=1Ai is a continuous generalized cyclic θ-contraction, then the map

T̂ :
⋃m

i=1K(Ai)→
⋃m

i=1K(Ai) is also a generalized cyclic θ-contraction in the metric
space (K(X), h), where θ ∈ Θ′ is nondecreasing.

https://www.journals.vu.lt/nonlinear-analysis
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Fixed points of generalized cyclic contractions without continuity 7

Proof. Let C ∈ K(Ai) for some i ∈ Nm. Now, T (C) is a compact set since T is
a continuous function. Also, by cyclic representation of T , T (C) ⊆ Ai+1. Therefore,
T (C) ∈ K(Ai+1).

This implies that T̂ (C) ∈ K(Ai+1). Therefore, T̂ (K(Ai)) ⊆ K(Ai+1) for each
i ∈ Nm.

Let A ∈ K(Ai) and B ∈ K(Ai+1) for some i ∈ Nm. We have to show

θ
(
h
(
T̂ (A), T̂ (B)

))
6
[
θ(h(A,B)

]k
.

Let x0 ∈ A. Since B is compact, there exists y0 ∈ B such that d(x0, y0) =
infy∈B d(x0, y). Since θ is nondecreasing,

θ
(
d
(
Tx0, T (B)

))
= θ
(
inf
y∈B

d(Tx0, Ty),
)
6 θ
(
d(Tx0, T y0)

)
6
[
θ
(
d(x0, y0)

)]k
=
[
θ
(
inf
y∈B

d(x0, y)
)]k

6
[
θ
(
sup
x∈A

inf
y∈B

d(x, y)
)]k

=
[
θ
(
D(A,B)

)]k
.

Since x0 ∈ A is arbitrary and θ is nondecreasing,

sup
x∈A

θ
(
d
(
Tx, T (B)

))
6
[
θ
(
D(A,B)

)]k
6
[
θ
(
h(A,B)

)]k
.

Also,

θ
(
D
(
T̂ (A), T̂ (B)

))
= θ
(
D
(
T (A), T (B)

))
= θ
(
sup
x∈A

d
(
Tx, T (B)

))
= sup

x∈A
θ
(
d
(
Tx, T (B)

))
6
[
θ
(
h(A,B)

)]k
.

Similarly, we can show that θ(D(T̂ (B), T̂ (A))) 6 [θ(h(A,B))]k. Then

θ
(
h
(
T̂ (A), T̂ (B)

))
= θ
(
max

{
D
(
T̂ (A), T̂ (B)

)
, D
(
T̂ (B), T̂ (A)

)})
6
[
θ
(
h(A,B)

)]k
.

This completes the proof.

Theorem 3. If {Ai}mi=1 is a collection of nonempty subsets of a metric space (X, d)
and Tn :

⋃m
i=1Ai →

⋃m
i=1Ai for each n ∈ NN are continuous generalized cyclic θ-

contractions with the values k1, k2, . . . , kN , respectively, then the Hutchinson operator
F :

⋃m
i=1K(Ai) →

⋃m
i=1K(Ai) defined by F (C) =

⋃N
n=1 T̂n(C) is a generalized

cyclic θ-contraction map in (K(X), h) with the value of k = max{kn; n ∈ NN}.

Proof. Let C ∈ K(Ai) for some i ∈ Nm. By Lemma 3, for each n ∈ NN , T̂n is
a generalized cyclic θ-contraction on (K(X), h). Therefore, T̂n(C) ∈ K(Ai+1) for all
n ∈ NN . So, F (C) =

⋃N
n=1 T̂n(C) ∈ K(Ai+1). Thus we have F (K(Ai)) ⊆ K(Ai+1)

for i ∈ Nm.

Nonlinear Anal. Model. Control, 29(1):1–12, 2024
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We have to show that θ(h(F (A), F (B))) 6 [θ(h(A,B))]k for A ∈ K(Ai) and B ∈
K(Ai+1), i ∈ Nm, Am+1 = Am. Using Lemma 1,

h
(
F (A), F (B)

)
= h

(
N⋃

n=1

T̂n(A),

N⋃
n=1

T̂n(B)

)
6 max

16n6N
h
(
T̂n(A), T̂n(B)

)
.

Since θ is nondecreasing,

θ
(
h
(
F (A), F (B)

))
6 θ
(

max
16n6N

h
(
T̂n(A), T̂n(B)

))
= max

16n6N
θ
(
h
(
Tn(A), Tn(B)

))
6 max

16n6N

[
θ
(
h(A,B)

)]kn
.

Now,

log
(

max
16n6N

[
θ
(
h(A,B)

)]kn
)
= max

16n6N

(
log
[
θ
(
h(A,B)

)]kn
)

= max
16n6N

kn log
(
θ
(
h(A,B)

))
= k log

(
θ
(
h(A,B)

))
= log

([
θ
(
h(A,B)

)]k)
.

Since log is injective,

max
16n6N

[
θ
(
h(A,B)

)]kn
=
[
θ
(
h(A,B)

)]k
.

Therefore,
θ
(
h
(
F (A), F (B)

))
6
[
θ
(
h(A,B)

)]k
.

Hence the proof.

Theorem 4. Let (X, d) be a complete metric space and {Ai}mi=1 be a collection of
nonempty closed subsets of X . Let Tn :

⋃m
i=1Ai →

⋃m
i=1Ai be continuous generalized

cyclic θ-contractions for each n ∈ NN . Then the Hutchinson–Barnsley operator F :⋃m
i=1K(Ai) →

⋃m
i=1K(Ai) has a unique fixed point A ∈ K(X), and the limit

limn→∞ Fn(B) = A for any B ∈
⋃m

i=1K(Ai), which is the fractal generated by the
IFS {

⋃m
i=1Ai, Tn, n ∈ NN}.

Proof. Since (X, d) is complete, (K(X), h) is also complete. Again, Ai is closed subset
of X for each i ∈ Nm. Hence K(Ai) is also closed subset of K(X). By Theorem 3,
F :

⋃m
i=1K(Ai)→

⋃m
i=1K(Ai) is a generalized cyclic θ-contraction. Then the theorem

follows by an application of Theorem 2.
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Fixed points of generalized cyclic contractions without continuity 9

Example 2. Let X = R be equipped with the usual metric d. Let A1 = [1, 3] and A2 =
[2, 4]. Define T1 : A1 ∪A2 → A1 ∪A2 by

T1(x) =


26−x

8 for x ∈ [1, 3],
23
8 for x ∈ [3, 154 ],
53−8x

8 for x ∈ [ 154 , 4].

Now, T1(A1) = [23/8, 25/8] ⊆ A2, and T1(A2) = [11/4, 3] ⊆ A1.
Let x ∈ A1, y ∈ A2. Consider k = 2/3 and θ(t) = et ∈ Θ′. Then

θ
(
d(T1x, T1y)

)
6
(
θ
(
d(x, y)

))k
for all x ∈ A1, y ∈ A2.

Therefore, T1 is a generalized cyclic θ-contraction.
Define T2 : A1 ∪A2 → A1 ∪A2 by

T2(x) =


19−x

8 for x ∈ [1, 3],

2 for x ∈ [3, 154 ],
23−4x

4 for x ∈ [ 154 , 4].

Then T2(A1) = [2, 9/4] ⊆ A2, and T2(A2) = [15/8, 17/8] ⊆ A1. It is also easy to
check that T2 is a generalized cyclic θ-contraction. Also, it is noted that both T1 and T2
are continuous.

Note that for x = 15/4 and y = 4, we have d(T1x, T1y) = d(T2x, T2y) = d(x, y) =
1/4. Therefore, both T1 and T2 do not satisfy (1) with some k ∈ (0, 1). Hence they are
not Banach contractions. Also inequality (3) is not satisfied for all x, y ∈ A1 ∪A2. Since
both T1 and T2 are continuous generalized cyclic θ-contraction, by Theorem 4, the IFS
{(A1 ∪A2);T1, T2} admits a fractal set, that is, there exists a set A such that A = F (A),
where F is the Hutchinson–Barnsley operator.

Here the setA is similar to a Cantor set for [2, 3] with 8 subintervals and retaining first
and last subintervals at each stage. We have shown the first four iterations of the same in
Fig. 1.

Let A0 = [2, 3]. Then

C1 = F (A0) = T1(A0) ∪ T2(A0) =

[
2,

17

8

]
∪
[
23

8
, 3

]
,

C2 = F 2(A0) = F (C1) =

[
2,

129

64

]
∪
[
135

64
,
17

8

]
∪
[
23

8
,
185

64

]
∪
[
191

64
, 3

]
and so on. . .

So,
lim

n→∞
Fn(A0) = lim

n→∞
Cn =

⋂
j∈N

Cj = A.
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Iteration 1

Iteration 2

Iteration 3

Iteration 4

Figure 1. Attractor of the IFS in Example 2.

4 Conclusion

The unique fixed point Theorem 2 proved here is an actual generalization of a result
in [13], which in turn is a generalization of some other results including the Banach
contraction mapping principle. Thus, in effect, we have been able to generalize the con-
traction mapping principle through our theorem, which also applies to certain functions
with discontinuities. The second part of our paper is a contribution to the Hutchinson–
Barnsley’s theory. It is our perception that there are large scopes of research towards
the goal of fractal generation by the construction of IFS through other types of cyclic
contractions as well. Such efforts are supposed to be taken up in our future work.

Acknowledgment. The authors gratefully acknowledge the suggestions made by the
referee.
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