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Abstract. Our goal is to investigate the piecewise linear difference equation z,,+1 = BnTn—g(xn).
This piecewise linear difference equation is a prototype of one neuron model with the internal decay
rate 3 and the signal function g. The authors investigated this model with periodic internal decay
rate (3, as a period-two sequence. Our aim is to show that for certain values of coefficients 3,,, there
exists an attracting interval for which the model is chaotic. On the other hand, if the initial value is
chosen outside the mentioned attracting interval, then the solution of the difference equation either
increases to positive infinity or decreases to negative infinity.

Keywords: neuron model, difference equation, periodic solution, unbounded solution, chaotic
atractor.

1 Introduction

We study the following nonautonomous piecewise linear difference equation:

Tn+l1 = 6nxn - g(xn)a (1)

where (3,,)52, is a periodic sequence with period two, where

Bo if niseven,

Pn = B if nis odd,

Bo # B1, Bo >0, B1 >0,

ICorresponding author.

© 2024 The Author(s). Published by Vilnius University Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.


https://orcid.org/0000-0002-2268-0356
https://orcid.org/0000-0001-9951-7955
mailto:inese.bula@lu.lv
mailto:michael.radin@rit.edu
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/

112 L. Bula, M.A. Radin

and the function g presents the properties in the following form:

1 x>0
— 9’ = k) 2
9() {1, x < 0. @

The studies on Eq. (1) commenced in [15], where J. Wu investigated the delayed
differential equation

2'(t) = —g(z(t — 7)) 3)

that is used to model a single neuron with no internal decay. In this case, g : R — R

is either a sigmoid function or a piecewise linear signal function, and 7 < 0 is a synaptic

transmission delay. From (3) the corresponding piecewise difference equation was ob-
tained as a discrete-time network of a single neuron model [7]

Tn41 :B:Enfg(xn)a 7’L:0,1,2,..., (4)

where 8 > 0 is an internal decay rate, and g is a signal function. Several authors in-
vestigated Eq. (4) (e.g., [3,7, 14, 16-22]). In addition, Eq. (4) has been investigated as
a single neuron model, where the signal function g is the piecewise constant function
with McCulloch—Pitts nonlinearity (2).

In [1, 2], the authors studied the models by applying a different signal function (with
more than one threshold). In [4-6], the authors investigated the periodic solutions of
a discrete neuron model when (8,,)5%_, is periodic with periods two and three.

If we consider the right side of difference equation (1) as a function h : R — R and
let z,, = h™(zp), x0 € R,n = 1,2,..., then we obtain the first-order difference equation
Zn+1 = h(x,) with initial condition zy € R. From the definition of difference equation
(1) it follows that first iteration of function A is in the form

- ]- 2 9
h(I) — ﬂom y X 0
Boxr+1, x<O0.

On the other hand, the second iteration emerges in the corresponding form

h(x)—1, h >0,
hQ(ZC) — ﬁl (iL’) (CU)
Bih(z) +1, h(z) <0
Bobrx —PB1—1, x
BoBiz—B1+1, 0Kz 3*10,
Bobrx + B1 — 1, *%<$<0,
BoBrx + B1 + 1, $<—[710~
Observe that replacing the difference equation (1) with a function & does not do much.
However, depending on the circumstance, sometimes it is more convenient to describe

the dynamics more easily with the behavior of a function, and at other times — with
a difference equation.
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Our aim is to perform a qualitative analysis of difference equation (1) or function h.
This includes the possibilities of chaotic behavior of the dynamical system. The chaotic
behavior of Eq. (4) has not been studied so far and is of paramount interest.

The paper outlines the following results. Section 2 will present results about differ-
ence equation (1). Section 3 will analyze the Lyapunov exponent and find this exponent
for dynamical system with (1). We will show that for certain values of coefficients 5, and
(1, there exists a chaotic attractor. Finally, we present conclusions about our model and
future work.

2 Some results about difference equation with period-two coefficients

First, notice that the difference equation (1) has no equilibrium points when (/3,,)22, is
a periodic two sequence. In [4], we proved that Eq. (1) with (2) has no periodic orbits of
odd period and has periodic orbits only with an even period. More precisely, we showed
that if the coefficients 0 < 5y < 1 and 0 < 1 < 1, that is, coefficients are in region I
(see Fig. 1), then only period-two solutions exist. If coefficients belong to region II,
then period-four solutions exist. If the coefficients belong to region III, then period-two
solutions exist. However, in this case, solutions with an arbitrary even period may also
exist. The surprising situation emerges in the case when $; = 1/8, (except for 8; =
Bo = 1). In this situation, there exist segments of initial conditions from which period-
four solutions arise.

Theorem 1. (See [4].) If BoB1 > 1, then the difference equation (1) has the corresponding
two unstable periodic cycles with period two:

{_ 118 146 } . { 148 1+ 6 }
Bobr—1" Bofr—1 BoBr—1" Bofr—1)°

Theorem 2. (See [4].) Suppose By > 1 and 51 > 1. If there exists a positive integer
n > 2 such that

ByBY — 2685718 +1 >0,

then the difference equation (1) has an unstable periodic orbit of period 2n.

B1

1I
1

1I

Bo
1

Figure 1. Existence of cycles depending on coefficients 59 > 0 and 81 > 0.
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Note that by assumption 8y > 1 and 3; > 1 the inequality
nlgn (BB —2) 41> 0, n>2
will hold only if 3p3; — 2 > 0. If n = 2, then
B3BT —2B0B1+ 1= (Bof1 —1)* > 0.

The above inequality holds always if Sp8; > 1. Indeed, the condition 81 > 1 as in
Theorem 2 does not need to hold for a cycle with period four to exist. For period four
to exist, it is sufficient that conditions 5y > 1 is fulfilled. For example, the cycle with
a period four is formed by the following points:

1+ 61 1+ 5

T = ——-— >0, Tog=———"t"" =30, <0,
07 Bopr+1 ? BoB1 +1 0
Bo—1 Bo—1
1= ——"">0, T3 =——— " = —g; <0.
T BB+ 1 ’ BoB1 + 1 !

Nothing can be said precisely about other cycles.
Next, we will prove that every solution with an initial condition that does not belong
to an interval what boundaries are points of periodic cycle in Theorem 1 is unbounded.

Theorem 3. Let 5y31 > 1. Then for any initial condition
[ 1+8  1+5
o ¢ - )
BoB1—1" BoBr—1
of difference equation (1), the solution is unbounded. More precisely,
_ : __1+B
lim x, = { o lfxo < [30[31—11’

. 1451
+oo  ifzg > BoBi—1"

Proof. We will consider the following two cases: zo < —(1 + 31)/(BoB1 — 1) or g >
(L4 B1)/(BoBr — 1).

First, we assume that o > (1 + £1)/(80f1 — 1). The proof for other case is similar
and will be omitted.
As we assumed that 881 > 1, then 29 > (1 + 1)/(Bo1 — 1) > 0. Therefore

Bo(1+ B1) 1 1+ fo

1 =Poxg—1>—"7">—-1= > 0.
P Bofr — 1 Bobr — 1
Consequently, we obtain
Bi(1 4+ Bo) 1+ b1
ro=Fr—1>————-1=——"—"—>0.
! Bofr — 1 Bofr — 1
By iterations and induction we procure
14+ 5 1+ Bo
Top > ————>0 and x9p41 > ——>0, £=0,1,2,...,.
27 BoBr— 1 T Bopy — 1

https://www.journals.vu.lt/nonlinear-analysis
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On the other hand,
zg9 > 0,
x1 = Boxo — 1> 0,
xy = PBofrxo — 1 — 1 >0,
x5 = B3 Brxo — PP — o — 1> 0,
x4 = B3Bixo — Boft — Bobr — B1 —1 >0,

ey

o, = BEBYze — BB — By = = BoBr — B — 1 >0,
Topr1 = By T Bimo — BEBY — BEBY T — - = BB — Bo — 1 >0,
Toniz = By T By g — BEBYT — BEBY — - — BoBr— B1— 1> 0,
Tonis = By 2B e — BETI BT — BaTIBE — - — BoBr — Bo — 1 >0,

Since g > (1 + £1)/(Bof1 — 1) > 0, then there exists ¢ > 0 such that zy =
((1+ 1) +¢)/(BoB1 — 1). We then obtain the corresponding difference between the
neighboring even-ordered terms o and Tojo:

oz — T2 = g BT w0 — By BT — By BY — By Bro
= BEBY ((BoB1 — 1)zo — B1 — 1)
- 1)((1+ +e€
Bofr — 1
=B6BY-e>0, k=0,1,2,....

Since By/31 > 1, then we see that limy_, o (30 31)¥ = o0 and therefore

To < X2 < Ty < < Top < Togyo < -+ and klimxgk:—l—oo.
—00

Similarly, we procure the difference between the neighboring odd-ordered terms zox41
and 2op13

Takrs = waksr = By B wo — By BT = By BY — 8o B
= By BF((BoBr — 1)z — 1 — 1)
i BB —D(A+B1) +e)
=T ( Bofr — 1 A 1>
=pBkpr . By-e>0, k=0,1,2,....

In addition, we get

T <x3 < T5 < < Topyl < Top43 < -+ and lim Top+1 = +00.
k—o0
We then conclude that if (1 + 31)/(B8081 — 1) < o, then lim,, _, o x, = +00. O

Nonlinear Anal. Model. Control, 29(1):111-123, 2024
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Our goal is to determine the largest possible invariant set.

Definition 1. Let f : X — X be a map. A set A C X is said to be invariant under the
map fif f(A4) = A.

Although we are interested in all such coefficients Sy and g; for which Sy3; > 1, itis
obvious that there is no invariant interval for all such coefficients. For example, let 8y = 2
and 51 = 3, then the significant period-two cycles are {—0.8,—0.6} and {0.8,0.6}.
However, the solutions with an initial value =, from the interval I = [—0.8, 0.8] may not
belong to the interval I. For example, if ¢y = 0.7, then we procure

2, =2-07-1=04,
20=3-04—-1=0.2,
25=2-02—1=-0,6,

24 =3-(=0.6)+1=—-0.8,

25 =2-(—0.8)+1=—0.86,
26=3-(—0,6)+1=-08, ....

Observe that this solution is eventually periodic with the corresponding period-two cycle
{—0.8,—0.6}. On the other hand, if we start with zy = 0, then

r1=2-0—-1=-1,

T = '(_1)4'1:_2’

x3=2-(-2)+1=-3,

24=3-(-3)+1=-8,
Notice that x,, 11 < =, foralln > 1 and lim,, oo ©,, = —00.

The last example shows that invariant interval always contains 0 and —1. The invariant
interval must contain the entire interval [—1, 1].

It is easy to prove. In fact, if 0 < By < 2,0 < B1 < 2, then the function A is invariant
in [—1,1] (thatis, h : [-1,1] — [-1,1)).

Now suppose that o € [—1, 1]. Then the following statements hold true:

() if0<ao <L then—1=0—1<h(z)=Biwg—1<2-1-1=1,i=0,1;
(i) if =1 < 29 < 0,then —1 =2 (=1) + 1 < h(zo) = Biwo + 1 < 0+ 1 = 1,
i=0,1.

Is it possible to extend the invariant interval and the set of coefficients 5y and 31 ?
By Theorem 3 it follows that

148 146
BoBr1—1" Bof1 —1

Then we see that

_1+B8 145
BoBr—1" Bof1—1)

[-1,1] C and [-1,1] C

1+ 5 >, 14+ 5o > 1.
BoB1 — 1 BoB1 — 1

https://www.journals.vu.lt/nonlinear-analysis
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B1

Figure 2. Area of coefficients 5o and (31 that satisfies the inequalities 5081 > 1,2 4+ 81 — Bof1 = 0 and
2+ Bo — Bob1 = 0.

Since ByB1 > 1, then

1+ 612 BB — 1, or 24 61— BB =
14 Bo = Bopr —1 2+ By — BB =

The area satisfying the system of inequalities is shown in Fig. 2.

Theorem 4. Let B0, > 1. Let (1+ 81)/(BoBy — 1) > L and (1+ Bo)/(BoBr — 1) > 1.
Then for any initial condition

IOE[:[ 1+ 5 1+ﬁ1]

BB — 17 BoBr — 1

of difference equation (1), the solution is bounded. More precisely,

Ia TL:0,2,47..., |: 1+/80 1+60:|
Tn € Il: - ) .
I, n=1,305,..., BoB1 —1" Bofr —1

PI‘O()f. If To — —(1 + 61)/(50ﬁ1 — 1) or (]. + 51)/(ﬂ051 — 1), then T — —(1 + 50)/
(BoB1 — 1) or (1 + Bo)/(BoB1 — 1), respectively, where the endpoints of interval I are
initial points of a period-two cycle, and hence x; € I;.

IfO< zo < (1+51)/(Bof1 — 1), then

o iea e BB | 1t
1=0 1<$1—50.’E0 1< 6061_1 1 IBO/Bl_l.
Similarly, if —(1+ £1)/(80f1 — 1) < g < 0, then
14 B Bl +5)
BoB1 — 1 BoB1 — 1

Hence 21 € 1.

+1<1’1250$0+1<0+1:1

Nonlinear Anal. Model. Control, 29(1):111-123, 2024
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If 0 < 2o < (14 Bo)/(Bof1 — 1), then

Bi(1 + Bo) o 1thA
BoB1 — 1 BoB1—1°

Similarly, if —(1 + So)/(80f1 — 1) < 1 < 0, then
1+81 Bl + o)

CBobi—1 Bofi—1

Hence x5 € I. For all other x,,, n > 2, the proof is similar. O

—1=0-1<2y=pr1 - 1<

+1<1’2:ﬁ1$1+1<0+1:1.

Remark. If 81 > (g, then I; C I. If 51 < Sy, then I C I;. This means that if 5; > Sy,
then h : I — I, but in second case, h : I — I;. We remark that if we choose zo € I \
in second case, then this solution by Theorem 3 will tend to infinity.

3 Lyapunov exponent and chaotic attractor

Let f be function with domain I. The orbit of point 2y € isaset {xg, x1 = f(zo), x2 =

flx1),... }
Definition 2. The Lyapunov exponent A(xq) of the orbit {xg, 1, x2, ... } is defined as

n—1

. 1
Mzo) = nhﬁngo - kz:%ln |f’(xk)|,

provided that the limit exists.

In [8], the authors showed that if the Lyapunov exponent A > 0, then the sensitivity
dependence on initial conditions exists. The Lyapunov exponent at a point x measures the
growth in error per iteration. As the Lyapunov exponent becomes larger, the magnification
of error becomes greater.

Theorem 5. If 551 > 1, then function h have a positive Lyapunov exponent for all
o ¢ C={0}U{z: 3j €N, z; = hI(z) = 0}.

Proof. If xg is 0 or such that z; = h7(z¢) = 0 for some j, then A(zg) is not defined
because the derivative is not defined. Such points make up a countable set C'. For every
Bo > 0and $; > 0 and arbitrary initial point zo ¢ C, the Lyapunov exponent is

. 1 n—1
Azg) = nlgrgo - kZ:O In | ()]

1
= lim g(lﬂﬁo +InBi+---+nfy+Inp +j-1Inpo)

= lim 1 <1n(6051)2. (n =) +J- lnﬁo> = 4111(52051),

n—o00 N

https://www.journals.vu.lt/nonlinear-analysis
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where

0 ifni
j:{ if n is even, 0

1 if nis odd.

The authors in [9] show that the first nonequilibrium chaotic system has been intro-
duced by Sprott [13] in 1994. We will show that for certain values of the coefficients [;
and (3, Eq. (1) forms a chaotic system.

A discrete dynamical system, denoted by DDS for short, is the description of an
evolutive phenomenon in terms of a map f whose image is contained in its domain 1.
Then the pair {I, f} is called DDS.

Definition 3. (See [12] and [10,11].) A set A C I is called an attractor for a DDS {I, f}
if the following conditions hold:
(i) Ais closed;
(ii) A is invariant;
(iii) there exists 7 > 0 such that, for any = € I fulfilling dist(z, A) < 7, we have
limy, o dist(f*(z), A) = 0;
(iv) A is a minimal, that is, there are no proper subsets of A fulfilling (i), (ii) and (iii).

In previous definition, the distance from a point z € R to a closed set K C R is
defined as
dist(z, K) = min{|z — y|, y € K }.

Definition 4. (See [12].) If A is an attractor of function f, then the set
{x €R: lim f*(z) € A}
k—o00
is called an attraction basin of attractor A.

Definition 5. (See [10, 11].) An invariant set A is called a chaotic attractor, provided
that it is an attractor and f has sensitive dependence on initial conditions on A (or f have
a positive Lyapunov exponent on A).

So far, in our research, we have not identified all possible cycles for any parameter val-
ues 5o > 1and 3; > 1. Before we prove the next theorem, we note that for all 5y > 1 and
B1 > 1, there exists a cycle with period two { (81 —1)/(Bof1 — 1), (1= o)/ (BoB1—1)}
and there exists a cycle with period four {(1 + £1)/(5of1 + 1), (Bo — 1)/(Bof1 + 1),
—(1 4+ B1)/(Bofr + 1), =(Bo — 1)/(BoB1 + 1)}. Both cycles lie inside the interval
[—1, 1]. Although the sets consisting of points of one cycle are invariant, they do not
form attractors here because, due to the fact that 5y > 1 and /3; > 1, cycles are unstable,
property (iii) of the definition of an attractor is not fulfilled.

Theorem 6. Let 1 < By < 2,1 < 81 < 2and By # P1. Then [—1,1] is a chaotic
attractor of function h, and attraction basin is
7 14061 1+ 6
Bobr —1" Bofr —1[

Nonlinear Anal. Model. Control, 29(1):111-123, 2024
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Proof. If1 < By <2,1< 1 <2and By # B, then (1+ 51)/(Bof1 —1) > 1as
L+p51>Bfr—1 = 2>pi(B—1).

Our aim is to show that for all zg €] — (14 51)/(BoB1—1), (1+51)/(Bofr —1)[\[—-1,1],
the orbit by the function h eventually falls in the interval [—1,1]. We will only consider
the case when 1 < zg < (14 81)/(Bof1 — 1). The case when —(1 + 31)/(Bof1 — 1) <
xo < —1 is similar and will be omitted.

If1 <z < (1+51)/(Bofr — 1), then

0<fo—1<m =pBowy—1<00FB) y_ 1+5

Bobr — 1 BB — 1
If 0 < 7 < 1, then the proof is complete. If this is not the case, then 1 < z1 < (1+ o)/
(BoB1 — 1) and therefore

B1(1+ Bo) 1= 1+ 6

0<ﬂ1—1<1‘2=61.’1¢1—1<

Bobr — 1 C B — 1
Provided that x,, ¢ [—1, 1], by induction we then conclude that
14+ 51 1+ Bo
1<agp < ——2  and 1<aopy < —0  k=0,1,2,....
2 BB — 1 LS BB — 1
Notice that all the points are in form
1+ 5
<2y < =——,
O™ Bobr — 1
1+ Bo
l<a = -1<—,
x1 = Boxo BB — 1
1+ 8
1<I2:5051$0—51—1<W_117
1+ 8
1<$3:53ﬁ1$0—5051—50—1<m_017
1+ 8
1< @y = BEBizo — BBt — Pofr — P1 — 1 < —
BoPr —1
_ L onl 1+8
1< o = BBTwo — By 1 BF — BB = = BB — P — 1<
Bof1 —1
_ 1+ 5
1< wopsr = By Breo — BEBY — BB — o = Bobr — o~ 1 <
BoB1 —1
_ k1 gkl k gk+1 _ ak gk 1+ 5
1<~T2k+2*ﬂ0 51 xO*BO 1 *6051*"'*5051*61*1<7a
Bobr — 1
k+2 gk+1 k+1ak+1 _ pk+1 gk 1+ Bo
L <@opys =By "Pi wo—By B =By B — =B —Po—1< BB —1’

https://www.journals.vu.lt/nonlinear-analysis
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Next, note that the difference between the even-ordered iterations zax and T2 is

k ok k+1 gk+1 k qk+1 k qk
Top, — Tart2 = By Brzo — (50—'— 51+ zo — By 1+ _5051)

= B5BY((1 = BoBr)zo + B1 + 1)

1
= By BY (BB — 1)(55;14_1 —xo>, k=0,1,2,....
Since BpB1 > 1land 1 < zg < (1 + B31)/(BoB1 — 1), then we obtain limy,_, (B0 1)* =
+ooand (81 + 1)/(Bof1 — 1) — xo > 0. Hence the difference between xo and xoxt2
increases, and we then get zo > x9 > x4 > -+ > Xop > Togt2 > ---. Thus we
conclude that there exists k¥ € N such that zo;, < 1.

Similarly, the difference between odd-ordered iterations xoy+1 and xag43 is

Bo+1
Bofr — 1
The difference between xaj1 and xox43 increases, and we get 1 > z3 > x5 > -+ >
Tog41 > Tog+s > -+ -. Thus we conclude that there exists £ € N such that 9511 < 1.

From what has just been proved it follows that all periodic points (cycles) lie in the
interval [—1,1]. Since 5y > 1 and 81 > 1, then all cycles are unstable. It is impossible
to choose an even smaller set than [—1, 1] that satisfies the definition of an attractor. In
case 1 < fBp < 2,1 < B < 2and By # fi, the interval [—1, 1] is an invariant set for
the function h, and the Lyapunov exponent is positive In(5p31)/2 > Inl = 0 for all
zo ¢ C ={0}U{a: 3j € N, z; = h/(x) = 0}. C is countable set (similar as for Tent
map). n = (14 f1)/(BoB1 — 1) — 1 > 0 — this was proved above. The interval [—1, 1] is
a chaotic attractor of function h. O

Tokt1 — Tok+s = BoBY(Bobr — 1)( 300>7 k=0,1,2,....

Example. Suppose that 5y = 1.9 and $; = 1.35. In this case, we obtain the period-two
cycle {1.501597444, 1.853035144} and the basin of attraction ]—1.501597444,
1.501597444]. If we start with initial condition z¢ = 1.49 (a point close to the boundary
of the interval), then we observe the situation described in Theorem 6, where the first
seven iterations of the solution are greater than 1. Then g = 0.99958814 < 1, and all
other points of the solution lie in the interval [—1, 1]. In Fig. 3, we see that g > zo >
T4 > Tg > xg and x1 > x3 > x5 > x7. The behavior of the other points cannot be
clearly described, but all other points of the solution lie in the interval [—1, 1].

Figure 3. First 120 values of solution of difference equation (1) when 89 = 1.9, 81 = 1.35 and o = 1.49.
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4 Conclusion

In this article, we investigated the boundedness and the chaotic character of solutions of
Eq. (1). First, we determined the necessary and sufficient conditions for every solution
to either diverge to 400 or to diverge to —oo as two subsequences. This then led us to
determining the existence of invariant and attracting intervals, where the chaotic behavior
of solutions of Eq. (1) arise. The most important result of the article is the last Theorem
6, which shows the possibility of constructing a chaotic attractor with noncontinuous
functions.

Our aim is to proceed with the examination of the boundedness and the chaotic
character of solutions of Eq. (1) when (3,,)%2 is a periodic sequence with period three
and higher. In particular, it is of paramount interest to investigate the monotonic properties
of Eq. (1), that is, into how many subsequences to decompose the solution of Eq. (1).
Furthermore, our objectives are to determine the existence of invariant and the attracting
intervals of Eq. (1).
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