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Abstract. In this paper, we study a Cauchy problem for a space—time fractional diffusion equation
with exponential nonlinearity. Based on the standard LP-L? estimates of strongly continuous
semigroup generated by fractional Laplace operator, we investigate the existence of global solutions
for initial data with small norm in Orlicz space exp LP(R?) and a time weighted L™ (R) space. In
the framework of the Holder interpolation inequality, we also discuss the existence of local solutions
without the Orlicz space.
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1 Introduction

Fractional calculus serves as a useful tool for describing nontrivial physical phenomena,
such as anomalous diffusion phenomenon, and the memory effect of the complex or
viscoelastic media; see, for example, [1,6,16,17,19,20,23,26,30,31]. The nonlocality of
fractional derivatives can also capture many interesting phenomena like the thermoelectric
MHD non-Newtonian fluid in heat transfer [7], the Rayleigh—Stokes problem in a heated
generalized second grade fluid [27], the viscoelasticity medium for wave equations [9,11,
22], the jumps and long-distance interactions in Lévy processes [4], etc.
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Existence of solutions to a nonlinear fractional diffusion equation 287

In this paper, we consider a Cauchy problem for space—time fractional diffusion equation
Iu+ (=A) u= f(u), (tz)€ (0,00) xRY, (1)

associated with an initial condition u(0,z) = wo(x), € R?, d > 1, where f is the
exponential growth function, like asymptotic growth f(u) ~ e4lul® and with a vanishing
behavior at zero and 0;* standing for the Caputo fractional partial derivative of order
a € (0,1) defined by

t

! —8) %0u(s, x)ds T 00) x RY:
)/<t )=e0.u(s,z)ds, (t,z) € (0,00) x RY;

0

see, e.g., [15]. In (1), (—A)" (y € (0,1)) stands for the fractional Laplacian operator
defined by

u(zr) —u
(A u(e) = Oy [ Ty
Rd
with C, 4 = v22T((d + 27)/2)/ (72T (1 — 7)).

Now we dwell on the literature dealing with the nonlinearity of exponential growth
problems of diffusion and wave equations. The Cauchy problem for heat equation with
exponential nonlinearity was studied by Ioku [13]. Inspired by this paper, Furioli et
al. [10] discussed the asymptotic behavior and decay estimates of solutions for a nonlinear
parabolic equation with exponential growth. Ioku et al. [14] obtained the existence and
nonexistence results for a heat equation in Orlicz space exp L(R?). Fino and Kirane [8]
investigated the global solutions for heat equation with fractional Laplacian and exponen-
tial nonlinearity with small initial data, also the local solution in Orlicz space. As for the
wave equation, the global well-posed solutions with exponential growth-type nonlinearity
was studied in the critical Sobolev space in [25]. In order to overcome a problem of inva-
lidity of the embedding H'(R?) C L°°(R?), Ibrahim et al. [12] discussed the existence
and asymptotic behavior of finite energy solutions for large time for the subcritical case
of the wave operators via Trudinger—Moser-type inequality. On the supercritical regime
of large energies for smooth and radially symmetric initial data, Struwe [28] established
the global well-posedness of solutions for a nonlinear wave equation with nonlinearity
fu) ~ ue*”. Mahouachi and Saanouni [21] derived the well-posed and ill-posed results
for a wave equation with exponential growth. In terms of the fractional derivatives, Bekkai
et al. [3] discussed the local existence and blow-up of solution for a space—time fractional
diffusion equation with nonlocal nonlinearity of the form f(u) ~ J! *(e*), where
J! ™% represents the Riemann—Liouville fractional integral operator. Alsaedi et al. [2]
proved the existence and uniqueness of the local mild solution for a system of space—time
fractional evolution equations with nonlocal nonlinearities of exponential growth. They
also established a blow-up result by applying Pokhozhaev capacity method and presented
an estimate for the life span of blowing-up solutions under suitable conditions.

We note that there is no work concerning the existence of global solutions for space—
time fractional diffusion equations with exponential growth data in R% An appropriate
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space needs to be considered for this purpose, contrary to the technique of energy func-
tional used in the previous works, this paper will consider the global solutions to the
fractional Cauchy problem on Orlicz spaces exp LP(R?) via the subordinate principle and
the semigroup theory. It is worthwhile to notice that C§°(R9) is not dense in exp L (R?),
but it works in LP(R?) for 1 < p < oo. It is difficult to consider a generic global
space C([0, 00), exp LP(R?)) for solving the Cauchy problem (1). So, we shall deal with
this issue in the sense of a weak topology. Furthermore, since L'(RY) N L>®(RY)
exp LP(R%) and in order to solve Cauchy problem (1) under the minimum required con-
ditions, we will establish the local solutions in L' (R9) N L>°(R?).

Our main goal in this paper is to investigate the existence of solutions for Cauchy
problem (1). In the next section, we introduce the definition of Orlicz spaces, and the
relevant solution operators of (1), and then we study the space—time estimates in the
frameworks of LP-LY and LP-exp L?. In Section 3, we establish the existence of global
solution for initial data with small norm in space exp L”(R?) and the decay estimate of
solution. In Section 4, we prove the existence of local solutions in subspace L*(R%) N
L>°(R?) of the Orlicz spaces.

2 Orlicz spaces and space-time estimates

Throughout this paper, the notation a < b stands for a < Cb, and ~ stands for a < Cb and
b < Ca for a positive generic constant C' that does not depend on a, b. Symbols V and A
are expressed by a Vb = max{a, b} and a Ab = min{a, b}, respectively. It is well known
that the fractional Laplace operator (—A)? can generate a strongly continuous semigroup
T,(t) = exp(—t(—A)7)) on LP(R?) for p > 1, d > 1 with its Fourier transformation
(—A)Yu = F~L(|¢]>7 F(u)). Moreover, a space—time estimate of this semigroup is given
by
HT'y(t)¢||Lp(Rd) S td(l/pfl/q)/(%)||¢|\Lq(1Rd)
fort > 0 and for all ¢ € Lq(Rd), q > 1; see [24].
Forany o € (0,1), 8 € [0,00), v € (0,1), we introduce a subordinate operator

«ﬂﬂﬂ=/MW@wn@wwat>Q
0
where (, (+) is the Wright-type function

l0) = 30 )
“ = kID(—ak+1 - a)’

z € C.

Obviously, the operator A, ;(-) is well defined due to the estimate
2.6 (2| 1

< [ P0G O)IT, (10)0] oy 40 5 [ 0%0%(6)00 6]
0 0
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and the properties of (,(-) (see [29])

/95@(9) 6 = m 5 € (~1,00).

Specially, if u is a solution of (1), by using the strategy employed in [29], we have the
following integral representation of Cauchy problem (1):

t

u(t) = A o(t)uo + / (t—s5)*"TAL (£ —5)f(u(s)) ds. )

0

Recall that a space is Orlicz type if it can be expressed as
exp LP(R?) = {u € L{ . (R%): ullexp £ ey < +00},

endowed with the Luxemburg norm

p
||uHexpLP(Rd) = inf{T > 0: /(eXp % — 1) dr < 1}.

R
Clearly, an Orlicz space is a Banach space.

Lemma 1. (See [13].) For every 1 < p < q < oo, the embedding exp LP(R?)
L(R4) holds, moreover

1/q
q
el oy < (r(p ; 1)) I

Lemma 2. (See [8].) For every 1 < q < p < 400, the embedding L4(R?) N L>°(RY) —
exp LP(R?) holds, moreover

||uHexpLP(]Rd) <In /P2 (HUHLq(Rd) + ||u||L°°(Rd))~

Lemma 3. Let o € (0,1), 8 € [0,00), v € (0,1), and let d(1/p — 1/q)/(27) < 1 for
1 <p<qg<+oo. Then fort > 0,

M) AL 5O fllpagay St~ od/CNAP=YD| £l Lo (may;

(ii) ”"4’Y B(t)f”oxpLP(]Rd) g ”f“cxpLP(]Rd)forf € exp Lp(Rd);

(iii) ||A 3O Fllexp agay S 7Y@V I~V (=00 1) f|| 1oy for f €
( d

);
(iv) ||AZ () fllexp Lr ey S fad/(2w)||f||m(ned) + | f | zoray for f € LP(RY) N
)-
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Proof. By the LP-L1 estimates of semigroup T, (¢), for the operator Al7 5(), we obtain

oo

42,50 oy < [ @0 CalOT, (20 ] ey 0 S 4
0

fort > 0, where 1/r := 1/p — 1/q, and then (i) follows. Additionally, for any 7 > 0,
t > 0, it follows by Taylor expansion combined with (i) that

(2 )

e ” ( )f”ka(Rd) ||f||ka (RY) f P
= s < Z PERTRS /(exp<T> — 1) dz,

k=1 R4

which implies that for f € exp LP(R%),
||A275(t)f||expr(]Rd) 5 Hf”expLP(]Rd)-

Next, by virtue of (i), for t > 0, we have

flen(E22) )
J

00 ||A ()fHqu(Rd) it—ad/(Q"/)(l/P 1/(qk))quf||L b )

klrak S klrak )
k=1 k=1

X

which implies that there exists a constant C' > 0 such that

AT (1) f\ ¢ C¢—d/(27p) ) a
/(eXp< a8 )f> B 1) de < 194/ (exp( /1 (Rd)) B 1>7
T T
Rd

and then

| A7 5( $-ad/(2vp) =1/ (p-ad/(29) 4 1)

) F || exp Lo ey S Ky

The last inequality can easily be proved by using the standard LP-L9 estimates of .AZ(’ 3 ()

and the embedding L?(R?) N L>°(R?%) — exp LP(R?) in Lemma 2. In consequence, we
get

4250 ety ety S 4800 oo + 148507
StV £ sy + [l o ).

Hence, this completes the proof. O

https://www.journals.vu.lt/nonlinear-analysis
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Observe that C§°(R?) is not dense in exp LP(R?) for p > 1; for more details, see
[13,14]. For the fractional version of Aly (+), we have the following conclusion.

Remark 1. The operator A7, ,(t) is not strongly continuous at ¢ = 0 in exp LP(R4) for
p > 1, that is, for any ¢ € exp LP(R?), the following inequality holds:

%E}(l) ||Al,0(t)¢ - ('ZSHexpLT’(Rd) 2 L. (3)

Proof. In fact, for any A > 0, let u,(\) := |[{z € R% |v(z)| > A}| be a distribution
function of v, and let v* be a nonincreasing rearrangement of v given by

v*(r) :==inf{X > 0: p,(N) <r},

and the maximal function of v* is denoted by v** as follows:

By using the rearrangement technique, we have

(A%0¢ — &) (r)

o<r<i  In'/P(e/r)

< || 040 ¢ ('bHexpLP(]Rd)

for any ¢ > 0, where the following holds:

v**(r)

V|| ex o < osup ————
Il pLr(RY) 0<r<1 lnl/p(e/r)
The first inequality can be established as in [18, Thm. 3.4], and function ¢ (t) = (1+Int)/
In(1 + t) has a maximum value for ¢ > 1, while the second inequality can be shown by
the method employed in [13, Lemma 5.2].

Therefore, due to the triangle inequality for v**, that is, (f + ¢g)** < f** + ¢g**, we
have

+ HUHLP(Rd N HU”expLP (R4)-

97 (r) = (Aa o (1)) (r) _ (¢ = A5 o()9)™(r)
lnl/p(e/r) h lnl/p(e/r)
which implies from the nonnegative property of v* (v*(r) > 0 for any » > 0) that
¢ (r) — (A0®)™(r) _ (A o()p — @) (r)
r—=0 In*/?(e/r) Yo<r<t  In'/P(e/r)/p
5 HAZ,O(t)(b - ¢||exp Lr(R4)"

According to Lemmas 1 and 3, we get A, ((t)¢ € L>°(R) for all t > ¢ with any € > 0.
This means that (A7, ;(t)¢)**(r) € L>(0, 00) for all t > . Hence we have

iy Ao ()
r—0 lnl/p(e/r)

)

Nonlinear Anal. Model. Control, 29(2):286-304, 2024
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Let
p—1—pln(walz|?)
¢(z) = { PO—Tn(walz| D)) @=D77 0<la] <1,
0 otherwise,
where wy is the measure of the unit ball in RY. For ¢(t) = e*” — 1 with p > 1, it is known
that

1

L/wwumdxz/wuww>w

0

Further, it is easy to check that ¢** () = In*/?(e/r) for 0 < r < w,4. Consequently, we
get

1<1imL()<H A7

~ =0 1n' /P (e /r) o(t)9 - (bHCXPLT’(Rd)’

which establishes (3). The proof is completed. [

In view of Remark 1, we consider a solution concept of Cauchy problem (1) in the
following weak sense.

Definition 1. A function u € C((0,0); exp LP(R?)) is a weak mild solution of Cauchy
problem (1) if it satisfies the integral equation (2) in exp L?(R?) for almost all ¢ > 0 and

the initial data
; l ; P (R4
}IH(I) u(t) =uo in exp LP(R?).

Observe that u(t) — ug as t — 0 in weak-* topology if and only if

lim [ (u(t,z)é(z) — uo(z)g(x)) dz =0

t—0
]Rd,

forevery ¢ € L' In'/PL (R%), the predual space of exp LP(R?).

3 The global existence

In this section, we show the global existence of solutions to the Cauchy problem (1). In
order to achieve this aim, we assume that the exponential growth function f associated
with f(u) ~ |u|” near zero is given by

FO) =0, |f(w) = )] S Ju—vl(jul7 N 4 ul7 M)

for some constants g, A > 0 and o > 1. A typical example satisfying previous nonlinearity
is f(u) = u(e*™ — 1), itis considered in [5].

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 1. Ler 1 < d < 2yp,p > 1, v € (0,1), and 0 > 1 + 2vp/d. If there exists
X > 0 such that, for all uy € exp LP(RY), U ||exp Lr(r1) < X, then there exists a unique
weak mild solution u of the Cauchy problem (1) satisfying

B [u(t) = A2 o (ol oy £ sy = 0

Moreover, for some r > 2yp?/d + p, the decay estimate holds:
||u(t)| < ¢—ad/(2v)(1/p=1/r

Lr(Rd) ~ )”uO”expLP(Rd)'
Proof. Let p = ad/(27)(1/p — 1/r). For any € > 0, define a complete metric space X,
by

X = {u € C((0,00); expr(Rd)):

?glthHu(t” L7 (R4) + ||u||L°°(O,oo;expLP(]Rd)) < E}a

endowed with the distance d(u,v) = sup;~ o t¢|u(t) — v(t)| - ®e)-
In the sequel, we set an operator () by

t
Q) = A g6+ [ (¢ 5)7 A7 y(t = 5) (u(s)) .

0

We solve the current problem with the exponential growth term by a contraction mapping

argument by splitting the proof into four steps.

Step 1. @ is a contraction on X.. For any u,v € X, Lemma 3(i) implies that
t
1Q)(®) ~ QWD gy S / (1= )" () — F(0)]] 1 g s,

0

where d(1/1 — 1/r) < 2. From the assumption of f it follows by Taylor expansion that

t
[t = D ) = )] 1y
0

© Lk A
€352 (e D ) gy

k=09
By Holder and Minkowski inequalities, for 1/l = 1/r + 1/p, we have

H|“ - “‘(|u|a_1+<k + |U‘J_1+<k) HL’(Rd)

‘o—1+<k + ‘,UlU—l-'r{k)

S ||U_U||L““(]Rd)H(|u HLP(Rd)

— k — k
S lu— U”LT(]R”’) (||u||2P(£’t§+§k)(Rd) + ||U“Zp(1at§+<k)(Rd))-

Nonlinear Anal. Model. Control, 29(2):286-304, 2024
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For some 0 < ¢ < (0 — 1)(r —p)/(ypr) A2(c — 2)/(d(o — 1)), let

(1 —9)yp?re ypre 1 2
C = o\ ¥ = ) — =5 —C
d(r —p —p%c) (0 =1+4<k)(r —p) wood
Then ¢ > p, 0 < ¥ < 1foreach k € NU{0} and o — ad/(2vp) — 0(c — 1 4+ <k)¥ = 0.
Hence the Holder interpolation inequality implies that

el oo+t ety < Ml 2 ey el < Gy

where
1 v 19
plo—1+¢k) r ¢

Additionally, for any y € exp L? (Rd), Lemma 2 shows that

(o—14ck)(1—9) ¢ (eERsRICERI/E (0—14ck)(1—9)
Il < (r(S 1)) Iyl L=,

By virtue of T'(z + 1) < Cx®+'/2 for all z > 1 and for some constant C' > 0, from
Stirling’s formula and the inequality (¢ — 1 + ¢k)(1 — ) < ( it follows that

¢ (o—14<k)(1—9)/¢
<r( + 1)) < CFD(k +1).
p

Moreover, by the fact

t

r
/(t — )1t ds = F((Z)—l;—(ll)))) vt ab>0,t>0,
0

combined with d < 2pvy,0 < @ < 1,and ¢+ o(c — 1 + k) < 1, we obtain

[Q(u)(1) — Qv)(1)

" (R4)
- o—1+4ck)d o—1+4ck)(1—9
ch/ 1 s — ol gy (sl Nl
k=0 o
o—1+4ck)¥ o—1+ck)(1-9
ol ™ el s ) d
o t
< ZCkAkgg'flJrgk) /(t B S)aflfad/(?}/p)S*Q*Q(Ufl+§k)19 ds d(u, v)
k=0 0
< Z CF ko= 1Hsk e (y, ),
k=0

https://www.journals.vu.lt/nonlinear-analysis
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which means that for any v € X, there exists a constant C' > 0 such that

d(Q(u),Q(v)) < C i CF\Feo=1Hk gy, ).

k=0

For some small enough ¢ > 0 satisfying

Cch)\kEU—l-‘r{k < }

4 )
k=0
we deduce that () is a contraction on X..

Step 2. () maps X into itself. Continuity of ) follows from that of the operator
A, 5(t) and the strongly continuous behavior of semigroup T’ (¢) for all ¢ > 0. Since
g(x) = In(z + 1) — /2 = 0 has two zero points, it follows by letting a € (2,4)
with a/2 = In(a + 1) that In=V?((t — s)=4/ @0 4 1) < 2V/2(t — 5)*d/ (%) for
0< s<t—a2/(d) and lnfl/p((t — s)_o‘d/(h) +1) < 1fort— a2/ (ad) L g ¢,
Therefore, by Lemma 3(iii), for some 1 < d < 2p~y, we have

/wwwﬂm—www
0

t

< /(t — g)almad/Cpn) (g g)med/(27) 4 [| £ (u
0
t—

exp LP(R%)

)HLP(Rd) ds

o =27/ (erd)

S B (Gl P

0
t

+ / (t _ S)aflfad/(Qp'y) Hf(u

t—q—27/(d)

)HLP(Rd) ds

t

S /(t - 5)a71||f(u(5)) HLP(]Rd) ds + ig% ||f(u(s)) HLP(Rd)

0
=141

By Taylor expansion, we have

] < 30 Al
k=0
For r > 2yp?/d +pand o > 1+ 2yp/d, let
0 2ypr 2yp*r(1 - 6)
frd — w = .
d(r —p)(sk + o) 0(d(r —p) — 27p?)

Nonlinear Anal. Model. Control, 29(2):286-304, 2024
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Clearly, for each k € NU {0}, we have 6 € (0, 1] and o = (sk + 0)6p. Next, by virtue
of Holder interpolation inequality, we get

6 —0
ol csrsmqmay Nl sl

where
1 0 1-0

—— =+
(ck+o)p w
Similar to the proof to Step 1, it follows by Lemma 1 that

t
J = [ ey

0
- (sk+o)(1-6)/w
< (F( + 1)) /(t - s)a_1||u(s ‘
p
0

S CMT(k + 1)ekt
foru € X. and I'(w/p + 1) < C*T'(k + 1) since (ck + o)(1 — ) < w. Therefore, by

(sk+o (sk+0)(1-0)
;T(Ed) H ||ejcpJ;P(]R'i ds

ul*+ || Lo ey = HUIIL]?jL‘L)p(Rd), we obtain
Sk s)*1 skto < ey koo
1<y o5 [ = a7 ey ds S DD CRAFt @)
k=0 "9 k=0

Let us prove the second term. In fact, by the assumption of f and Holder inequality
with 1/p = 1/(a1p) + 1/(azp) for some constants a; > 1V 1/, a2 > 1, we have

Hf HLP(]Rd) < He)\lu“ _ ]_HLalp(]Rd)||u||%ga2p(Rd) + ||u||zUp(Rd)o (5)

For a;p > 1,T(z + 1) < Cax™ /2, we obtain by Stirling’s formula that
Alul®
[ = 1] oy < Z -

A .
<Y 5 (C(skay + )Pl gy

In addition, we have

oo
iglg Hf(u)HLP(]Rd) /S Z Ck)\kggk”u"gxpLT’(]Rd) + ||u||gxpLT’(]Rd)
k=0
< Z Ch\Feshto 4 g0, (6)
k=0

https://www.journals.vu.lt/nonlinear-analysis
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By Lemma 3(ii), we find that

H‘AZuO(t)uOHexpr(Rd) S ||u0||exp Lp(R4)- @)

Then it follows by (4), (6), and (7) that

HQ(u)(t)Hexpr(]Rd) S; Z Ck)\lcqu—i-a +e% + ”uO”cxpLP(Rd)- (8)
k=0

Furthermore, by using Lemmas 3(i) and 1 and letting f(v) = 0 for v = 0 as in Step 1, we
get

t
||Q(u)(t)| Lr(ra) S HAZ,O(t)UOHLT(Rd) + /(t - S)aflAlvl(t —8)f(u)ds
0 L7 (R4)
St wollexp e (ra) +tfngk)\k€§k+”. )

k=0

Consequently, by virtue of (8) and (9), there exists a constant C' > 0 such that

HQ(“)HXE S C<u0|expLP(Rd) + Z)\k’sg’“r" + 50>_

k=0

If we take £ =4Cx with y small enough such that Ce” <e/4 and C Y2, CFAFesk < 1,
then @ is a contraction from X into itself. Thus, by the contraction mapping principle,
there exists a unique solution to the Cauchy problem (1).

Step 3. Next, we prove the continuity of solution at zero. According to Lemma 3(iv),
we have

Hu(t) - Al,o(t)UOHexp Lp(R4)
t

t
S/(tiS)a—l—ad/(2w)||f(u)HLp(Rd)ds+/||f(u)||Lp(Rd)ds.
0

0

For the estimate of || f(u)||»(r«) given by (5) and for any v € X, with small € > 0, we
have

||u(t) - Al,o(t)uo Hexp Lp(R4)
t

t
5/(t7S)aflfad/@“/p)Hu(s)HeXPLF(Rd) d5+/||u(s)Hexpr(Rd) ds
0

0
5 ta(lfd/(Z’yp)) HUHL‘X’(O,OO; exp L (R%)) + t”uHL‘X’(O,oo; exp L? (R%))

—0 ast—0.

Nonlinear Anal. Model. Control, 29(2):286-304, 2024
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Step 4. Finally we check the weak-* convergence at ¢ = 0. Let X = L* In'/? L(R%)
be the predual space of exp LP(R?) (that is, X* = exp LP(R%)). Since X is a Banach
space and C5°(R?) is dense in X, it follows by the properties of ¢, (-) that

(AL o(B)uo — w0, &) .
- / (AL o (Do) — uo(x))d(z) de

Rd

- / / Ca(0) (exp((—A) %0 uo(x) — uo(2))b(z) dO da
Rd 0

- / (a(0) / (exp((—A)#0)ug (z) — o (x)) ¢(x) d A6
0 R4

- / Ca(0) / (exp((—A)16)d(x) — b(a) ) (x) dz dB
0 Rd

which, by the Holder inequality for Orlicz space, implies that

(AL (D)t = w0, &) o | S ol [| AT o ()6 — @] .-

By virtue of the density of C§°(R?) in X, we have AL o) — dllx — Oast — 0.
Consequently, the conclusions are achieved, and the proof is complete. O

Remark 2. Notice that the solution of Cauchy problem (1) is in exp L?(R) for v €
(1/4,1/2], while the global solution may not exist for v € (0,1/4]. If v — 1 in (1),
then one can establish the global existence result for v € (0, 1) by the same method by
replacing the operator (—A)?Y with the Laplace operator.

Remark 3. Consider the embedding H*7(RY) < exp LY (R?) togethered with the
Trudinger inequality (see, e.g., [10]), where exp L (R?) is an Orlicz space defined by
the convex function
k—1
tjq/ (g=1)
o (t) *exp tq/(q 1)
j=0

.

k is the smallest integer satisfying k > ¢ — 1, H*9(R?) is the Sobolev spaces for any
s € Rand 1 < ¢ < oo defined by

H9(RY) = {p € S'(RY): (1-A)? e LI(RY)}.

Then the solution of the Cauchy problem (1) can be considered for initial data ug €
H*4(R%). In particular, the growth of the nonlinearity at infinity is of the form f(u) ~

""" for ug € H™/11(R9).
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4 The local existence

In this section, we set X = LY(R%) N L>°(R%) for each d > 1 and obtain the local
solutions to Cauchy problem (1) for a small initial data uy € X. We are concerned with
the local existence and uniqueness of mild solution of (1). First, we give the definition
of a mild solution of (1). Since C§°(R?) is dense in L'(R?), by Lemma 2, it is clear
that X < exp LH(R?) for all p > 1, where exp L§(R?) is the closure of C§°(RY) in
exp LP (Rd) with respect to the same norm; see, for example, [14]. So, it is natural to
consider the local solution in X without the Orlicz space.

Definition 2. Let ug € X and T' > 0. We say that u € C(]0,T]; X) is a mild solution to
Cauchy problem (1) if (2) holds.

Theorem 2. Let ug € X and o > 3/2. Then the Cauchy problem (1) has a unique mild
solution on [0, T.] for some T, > 0.

Proof. For given T > 0 and R > 0, we define a ball in Banach space C([0, T]; X) by
Br ={ue C([0,T]; X): |Jul. < R},

where the norm ||ul[. = ||u||ze(0,7;x). Considering the operator @) defined in Theo-
rem 1, we shall show the existence of local solution by the fixed point argument. We first
verify that Q(Br) C Bg.

In fact, for 0 > 3/2, let = 1/(ck + o) for each k € NU {0}. Clearly, § € (0,1).
The Holder interpolation inequality implies that

(4
ol ot ety S Nl gyl 5y

For any u € By, we obtain

t t
J = )5 85 5 = o) o) ) o) 0 s
0 0

STQR§’C+O”

which yields by Lemma 3(i) that

||Q(u)(t)||L1(Rd) S HUOHLl(]Rd) + (t - S)Oéile(u)(s)HLl(Rd) ds

(oo}
S lluollx +) [ (

) T [l ] o gy s

o\w oY~ .

(R?)
k=0
t
> >\k a, k+o
S ol + 3 35 (= )" a7 ey s
k=0 0
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Therefore, for any © € Bg, we have
— A k ARS
||Q(U)(t)”L1(Rd) < lluollx +> gTQRg <ol x + T*R7eME.
k=0

In addition, for any p € (d/(27) V 1, c0), we have

t
Q)] e gty S 1ol o ey + / (t =)oV F(w)(5)|] 1y gy ds
0
t

< Jluollx +Z/ yo= 1—ad/(2w)H|u|<k+aHLP(Rd) ds
k=07
Nk / k+

< lwollx + Z T /(t - 3)a—1—ad/(2wp)H HZ(S;UW ey

Moreover, letting r € (1,0p), we have that 9 = r/((sk + o)p) € (0,1) for each k €
N U {0}. Hence the Holder interpolation inequality yields

[
el pcssorm ey S Ml gy lull ey S Iull g lull ;<00

forww = 1/r € (0,1). This shows that

Q) ®)] o ety

N )\k o)w o =
Sluollx + 57 /(t — )10/ 20 oy ) | S 5)|| SO g
s

0

< ||U0||X + Z Ta ad/(2’yp)ng+U 5 ”UOHX +Ta7ad/(2’yp)Rae)‘R§,

Therefore, there exists a constant C' > 0 such that
lR(w) ()| < Clluollx + T W R7TM 4 CT*R7M".

Consequently, letting R = 2C||uo|| x and choosing T" small enough, we get

—_

O(Toz _|_j’vozfozd/(Q’yp))R(J'fleARg g g (10)

[\)

Thus, we deduce that ||Q(u)||x < R and hence Q(u) € By, for any u € Bp.
Next, we verify that () is a contraction map. Let 4 = 1/(2(ck +0 — 1)) foro > 3/2,
k € NU {0}, and observe that ;1 € (0,1). Then, by Holder interpolation inequality, we
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have
N AT
i " :Zﬁ||“||22<<k+a—l>(w>
k=
Z || ||;L(gk+0 l)” ||(l ) (sk+o—1)
L1(R%) Loo(R4)

<
< Ra le)\R

for any u € Bpg. Letting u,v € Bg, it follows by Lemma 3(i) and the Holder inequality
that

1£ () () = F@))| 11 oy S = ol (Jul 772X 4 ol M) |y

S M = vl gy [[Jul 7t

)
<
SR T ||u—v||L1(]Rd)||u UHLoo(Rd)
< RTM lu — v x.
Consequently, we get

t

|Qu)(t) — Q(v)(t)||L1(Rd) N /(t —5)* | f(u)(s) — f(v)(s)HLl(Rd) ds
0
STOROIMNE ||y — o) x.

On the other hand, for any fixed p € (d/(2v) V 1, 00), we have by the previous arguments
that

[[£(u)(s) = F0)($)| Lo ey

5 H|u _ v|(|u‘a'—1e)\|u\< + |U|a—le)\\v|§)

S llu— UHL”’(Rd [Jul]o X + |U|a_leMU|§||L2P(Rd)

1 2 1-1/(2 k — k —
S Z — ol A e = ol (lll ST ey + IS )
S Z Hu — ol x R S 7L [ — v,

which implies that

t

HQ(U)(t) — Qv ||L°C(]Rd) /(t ) ad/ @) Hf (s) — f(v)(S)HLP(]Rd) ds

0
< Ta—<3¢d/(2'yp)‘sz—lekRC ”u _ v||X~
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Thus, there exists a C' > 0 (may be the same C' given in (10)) such that
[Q)(t) = Q) (1)[| < CT~*VEW RT1AM ||y — o] x.

Let T be small enough such that (10) holds, then @ is a contraction on Bg. Since (—A)?
generates a strongly continuous semigroup 7 (¢) on L'(R?), it is easy to check the
continuity of ). Hence, according to the Banach fixed point theorem, the Cauchy problem
(1) admits a unique local mild solution v € Bg. This finishes the proof. O
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