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Abstract. In this paper, we propose a class of predator–prey models with nonlinear state-dependent
feedback control in the saturated state. The nonlinear state impulse control leads to a diversity of
pulse and phase sets such that the Poincaré map built on the corresponding phase sets behaves
like the single-peak function and multi-peak function with multiple discontinuities. We start our
study by analyzing the exact pulse and phase sets of models under various cases generated by the
dependent parameter space of nonlinear state feedback control, then construct the Poincaré map that
is followed by investigating their monotonicity, continuity, concavity, and immobility properties.
We also explore the existence, uniqueness, and sufficient conditions for the global stability of the
order-1 periodic solutions of the systems. Numerical simulations are carried out to illustrate and
reveal the biological significance of our theoretical findings.

Keywords: nonlinear feedback control, precise pulse and phase set, periodic solution, Poincaré
map.

1 Introduction and model formulation

In recent years, predator–prey model research has been widely developed [4, 6, 9, 21],
pulsed semicontinuous dynamical systems can solve various biological problems in
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Dynamics analysis of a nonlinear controlled predator–prey model 467

reality, such as control of biological resources [18], integrated pest management [11, 14,
16], marine fisheries fishing strategies [1,3]. The study of pulsed semicontinuous dynam-
ical systems has not only theoretical values but also practical significance by establishing
pulsed differential equations that meet practical significance and studying their dynamical
properties to reveal the biological laws involved.

State-dependent impulsive differential equations are well able to analyze and study
threshold control strategies, and their qualitative theory and methods have been widely de-
veloped [2,8,19,22]. For example, Liu [10] constructed a state feedback control predator–
feeder model with Holling-II class and proved properties such as the existence and attrac-
tiveness of the system’s order-1 periodic solution. In the article [5], a pulsed semidynam-
ical system based on state feedback control of algal biomass was proposed, and the exis-
tence and stability of the order-1 periodic solution were investigated. Huang [7] proposed
a model for pulsed injection of type I and type II diabetic insulin and analytically demon-
strated the existence and local stability of the order-1 periodic solution. The dynamic
properties of a mathematical accumulator model with state feedback control were inves-
tigated in the literature [13], and the results showed that pulses complicate the dynamic
behavior. Nie [12] proposed a Lotka–Volterra predation model with state-dependent pulse
effects and proved sufficient conditions for the existence and stability of semitrivial and
positive periodic solutions of the system. Tang [20] developed a pulse culture-controlled
plant disease model and analyzed the stability of the periodic solutions. Sun in the litera-
ture [17] proposed a model for the linear pulse-controlled differential equation:

dw(t)

dt
= rw(t)

(
1− w(t)

K

)
− bw(t)g(t),

dg(t)

dt
= g(t)

(
kbw(t)

1 + bhw(t)
− d
)

w(t) < ET ,

∆w = −p(w)w(t),

∆g = −q(w)g(t) + τ(g)

}
w(t) = ET , g(t) 6 gET ,

(1)

r, K, b, k, d are positive and satisfy 0 6 h < k/d and

K > K ,
d+

√
d2 + rkd/(k − hd)

2b(k − hd)
,

where w(t), g(t) represent the population density of the prey and predator. Assuming
that there are no predators, the per capita growth of food bait is g(w) = r(1 − w(t)/K)
with r representing the endogenous growth rate of the prey population, and K is the
environmental carrying capacity. b represents the predation coefficient, and the density of
the predator depends linearly on the density of the predator and prey, which is bw(t)g(t).
Assume that f is the conversion rate per capita from prey to predator in a saturated state
and is defined by f = kbw(t)/(1 + bhw(t)), where 0 < k < 1 is the conversion factor.
Functions p(w), q(w) are linear.

In the literature [17], a predator–prey model for integrated pest management was
proposed in which the release rate of predators and the lethality of prey were linear,
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which assumes that resources such as labor, equipment, and costs are adequate. In reality,
resources are limited, and if these resources change, it will cause changes in population
density. However, resource change is a dynamic process that changes over time, so study-
ing resource limitation models can better manage and protect populations [15]. For this
purpose, we consider using nonlinear control functions α(w, g) = −σw/(w + m) and
β(w, g) = τ/(1+θg). That means that both the prey lethality and the number of released
predators depend on their densities. Therefore, we propose a predator–prey model with
nonlinear state-dependent feedback control with limited resource saturation:

dw(t)

dt
= rw(t)

(
1− w(t)

K

)
− bw(t)g(t),

dg(t)

dt
= g(t)

(
kbw(t)

1 + bhw(t)
− d
)

w(t) 6= ET ,

w
(
t+
)

=

[
1− σw(t)

w(t) +m

]
w(t),

g
(
t+
)

= g(t) +
τ

1 + θg(t)

w(t) = ET .

(2)

In the model, 0 < σ < 1, m > 0 denote the maximum lethality and half-saturation
constants of the prey-eating population, respectively. τ > 0 denotes the predator release,
and θ > 0 denotes the shape parameter. When the prey population density reaches the
economic threshold (ET ), pulse control is performed to reduce the prey population den-
sity to (1−σET/(ET +m))ET and increase the predator population density to g(t)+τ/
(1 + θg(t)). In particular, when m = 0, θ = 0 is satisfied. System (2) becomes a control
model (1) with linear state feedback.

To facilitate the discussion of the exact pulse and phase set, we consider the properties
of the state feedback function f(g) = g + τ/(1 + θg). It is easy to know that it has an
asymptote g = −1/θ, and there exists a positive minimal point gm = (

√
θτ − 1)/θ when

θτ > 1. Therefore, when g < gm (g > gm), f(g) is decreasing (increasing). When
θτ > 1, f(gm) = (

√
θτ − 1)/θ + τ/(1 +

√
θτ) < τ , f(0) = τ > f(gm).

The following discusses the nature of system (2) in the absence of pulse control:

dw

dt
= rw

(
1− w

K

)
− bwg , Q(w, g),

dg

dt
= g

(
kbw

1 + bhw
− d
)

, P (w, g).

(3)

The two isoclines of system (3) are

L1: w =
d

b(k − hd)
and L2: g =

r

b

(
1− g

K

)
.

System (3) has three equilibrium points: 0(0, 0), K(K, 0), and E∗(w∗, g∗) with

w∗ =
d

b(k − hd)
, g∗ =

r

b
− rd

b2(k − hd)K
.
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Let

∆ = A2−4B, A =
3rdλ

kb(k−hd)
−d, B=

rbd(k−hd)−krd2

bhK
− 3rd2

Kb(k−hd)
.

Lemma 1. The equilibrium points 0(0, 0) and K(K, 0) are saddle points of system (3),
and E∗(w∗, g∗) is a global asymptotically stable node or focus of system (3). We have:

(I) When bkK− bhdK−d < 0, there is no positive equilibrium point, and K(K, 0)
is globally stable.

(II) When bkK − bhdK − d > 0, B > 0, ∆ > 0, E∗(w∗, g∗) is a focal point.
(III) When bkK − bhdK − d > 0, B > 0, ∆ > 0, E∗(w∗, g∗) is a node.

Sun [17] discussed the existence, stability, and other dynamical properties of the
order-1 periodic solution under the condition of case (I) in Lemma 1 by the method of
the successor function. However, the properties under case (II) have not been solved. We
will use the Poincaré map, a tool to perform a more comprehensive study of the nonlinear
state feedback dynamics properties of case (II). The following discussion in this paper
holds under condition bkK − bhdK − d > 0, B > 0, ∆ < 0 if not otherwise stated.

Section 2 of the paper provides a discussion of the exact pulse and phase set resulting
from the dependent parameters due to nonlinear pulse control. Section 3 investigates the
properties of the Poincaré map in different cases and proves the existence, uniqueness, and
stability of the order-1 periodic solution. Finally, in Section 4, our results are illustrated
by numerical simulations, and the biological implications of the findings are given.

2 Construction of the Poincaré map

2.1 Exact pulse and phase set

From system (2) let the line EP = (1−σET/(ET +h))ET in the plane. We discuss the
following three cases according to the position relationships between ET , EP , and w∗:

(a) 0 6 EP < w∗ < ET ;
(b) 0 6 EP < ET 6 w∗;
(c) w∗ < EP .

Based on the biological significance, ET < K and R2
+ = {(w, g): w > 0, g > 0}

are assumed in this paper. For case (a), when ET > w∗ defines the line L3: w = ET ,
L4: w = EP in the plane, let the intersection of lines L2 and L3 be T (ET , gT ). There ex-
ists a solution curve Γ1 tangent to line L3 at point T (ET , gT ). Denote the point where Γ1

intersects with line L2 by C(wc, gc). Then, depending on the position of point C(wc, gc)
to line L4, one obtains the following two cases to discuss:

Case 1. When EP < wc, Γ1 does not intersect with L4 (as shown in Fig. 1(a));
Case 2. When EP > wc, Γ1 intersects with L4 (as shown in Fig. 1(b)).

For case 1, that is, when EP < wc, Γ1 does not intersect with line L4, denote the
intersection of lines L2 and L4 by P (EP , gp). There exists a solution curve Γ2 tangent to
L4 at point P (EP , gp). In addition, Γ2 intersectsL3 at pointA(ET , gA). It is known from
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(a) (b)

Figure 1. The relationship between Γ1 and L4, where the parameters for EP < wc and EP > wc are:
(a) r = 1.5, K = 6.8, ET = 1.5, b = 0.5, k = 0.9, h = 0.1, d = 0.4, σ = 0.9, m = 0.2; (b) d = 0.32.

(a) N1 = [τ, f(gA)] (b) N2 = [f(gA), τ ]

(c) N3 = [f(gm), f(gA)] (d) N3 = [f(gm), τ ]

Figure 2. When bkK − bhdK − d > 0,ET 6 w∗, images of the pulse and phase set with parameters as:
(a) r = 1.5, K = 6.8, ET = 1.5, b = 0.5, k = 0.9, h = 0.1, d = 0.5, σ = 0.9, m = 0.2, τ = 2, θ = 0.4;
(b) τ = 7, θ = 0.4; (c) τ = 4, θ = 0.3; (d) τ = 5, θ = 0.5.

the above analysis that the pulse set is: M1 = {(w, g) ∈ R2: w = ET , 0 6 g 6 gA}.
Based on the different positions of the minimal value point gm on the pulse set, we can
get the corresponding phase set as shown in Fig. 2.
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When θτ 6 1, gm 6 0,

`11 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N1

}
.

When θτ > 1, gA 6 gm,

`12 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N2

}
.

When θτ > 1, gA > gm,

`13 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N3

}
.

Here

N1 =
[
τ, f(gA)

]
, N2 =

[
f(gA), τ

]
, N3 =

[
f(gm),max

{
τ, f(gA)

}]
.

For case 2, when EP > wc, Γ1, which passes through point T (ET , gT ) and is tangent
to L3, intersects L4 at two points D1(EP , g+T1

) and D2(EP , g+T2
). It is easily known that

the trajectory starting from any point (EP , g+) (here g+T1
< g+ < g+T2

) will be unaffected
by the pulse. In this case, the pulse set is M2 = {(w, g) ∈ R2: w = ET , 0 6 g 6 gT }.
The phase set is shown in Fig. 3.

(a) N4 = {{[g+T2
,+∞)∪[0, g+T1

]}∩[τ,f(gT)]} (b) N5 = {{[g+T2
,+∞)∪[0, g+T1

]}∩[f(gT), τ ]}

(c) N6 = {{[g+T2
,+∞)∪[0, g+T1

]}∩[f(gm), τ ]} (d) N6 = {{[g+T2
,+∞)∪[0, g+T1

]}∩[f(gm),f(gT)]}

Figure 3. When EP > wc, images of the pulse and phase set with parameters as: (a) r = 1.5, K = 6.8,
ET = 1.5, b = 0.5, k = 0.9, h = 0.1, d = 0.5, σ = 0.9, m = 0.2, τ = 2, θ = 0.4; (b) τ = 7, θ = 0.4;
(c) τ = 4, θ = 0.3; (d) τ = 5, θ = 0.5.
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(a) N7 = [τ, f(gA)] (b) N8 = [f(gA), τ ]

(c) N9 = [f(gm), f(gA)] (d) N9 = [f(gm), τ ]

Figure 4. When EP > 0, ET 6 w∗, images of the pulse and phase set with parameters as: (a) r = 1.5,
K = 6.8, ET = 1.5, b = 0.38, k = 0.9, h = 0.1, d = 0.55, σ = 0.9, m = 0.2, τ = 2, θ = 0.4; (b)
τ = 7, θ = 0.4; (c) τ = 4, θ = 0.3; (d) τ = 5, θ = 0.5.

When θτ 6 1, gm 6 0,

`21 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N4

}
.

When θτ > 1, gT 6 gm,

`22 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N5

}
.

When θτ > 1, gT > gm,

`23 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N6

}
.

Here
N4 =

{{[
g+T2

,+∞
)
∪
[
0, g+T1

]}
∩
[
τ, f(gT )

]}
,

N5 =
{{[

g+T2
,+∞

)
∪
[
0, g+T1

]}
∩
[
f(gT ), τ ]

}
,

N6 =
{{[

g+T2
,+∞

)
∪
[
0, g+T1

]}
∩
[
f(gm),max

{
τ, f(gT )

}]}
.

For case (b), when ET 6 w∗, the equilibrium point is right of the pulse set. The pulse
set is: M1 = {(w, g) ∈ R2: w = ET , 0 6 g 6 gA}, the phase set shown in Fig. 4.
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(a) N10 = {{[g+T2
,+∞)∪[0, g+T1

]}∩[τ,f(gT)]} (b) N11 = {{[g+T2
,+∞)∪[0, g+T1

]}∩[f(gT), τ ]}

(c) N12 = {{[g+T2
,+∞)∪[0, g+T1

]}∩[f(gm), τ ]} (d) N12={{[g+T2
,+∞)∪[0, g+T1

]}∩[f(gm),f(gT)]}

Figure 5. When EP > w∗, images of the pulse and phase set with parameters as: (a) r = 1.5, K = 6.8,
ET = 1.5, b = 0.8, k = 0.9, h = 0.1, d = 0.1, σ = 0.9, m = 0.2, τ = 7, θ = 0.1; (b) τ = 7, θ = 0.4;
(c) τ = 7, θ = 0.2; (d) τ = 4, θ = 0.3.

When θτ 6 1, gm 6 0,

`31 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP0, g
(
t+
)
∈ N7

}
.

When θτ > 1, gA 6 gm,

`32 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N8

}
.

When θτ > 1, gA > gm,

`33 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N9

}
.

Here

N7 =
[
τ, f(gA)

]
, N8 =

[
f(gA), τ

]
, N9 =

[
f(gm),max

{
τ, f(gA)

}]
.

For case (c), when w∗ < EP the equilibrium point is left of the phase set, we can
obtain different phase sets. The pulse set is: M2 ={(w, g)∈R2: w=ET , 0 6 g 6 gT },
and the phase shown in Fig. 5.
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N12 = {{[g+T2
,+∞)∪ [0, g+T1

]}∩ [f(gm), f(gT )]}

Figure 6. When EP > w∗, images of the pulse and phase set with the same parameters as in Fig. 5.

When θτ 6 1, gm 6 0,

`41 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N10

}
.

When θτ > 1, gT 6 gm,

`42 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N11

}
.

When θτ > 1, gT > gm,

`43 =
{(
w
(
t+
)
, g
(
t+
))
∈ R2: w

(
t+
)

= EP , g
(
t+
)
∈ N12

}
.

Here
N10 =

{{[
g+T2

,+∞
]
∪
[
0, g+T1

]}
∩
[
τ, f(gT )

]}
,

N11 =
{{[

g+T2
,+∞

]
∪
[
0, g+T1

]}
∩
[
f(gT ), τ

]}
,

N12 =
{{[

g+T2
,+∞

]
∪
[
0, g+T1

]}
∩
[
f(gm),max

{
τ, f(gT )

}]}
.

In this case, as shown in Fig. 6, the trajectory from any point (EP, g+) (here g+∈
[g+T2

,+∞]∪ [0, g+T1
]) gradually approaches the equilibrium point E∗ after finite pulses (or

no pulses).

2.2 Definition of Poincaré map

Based on the above exact pulse and phase sets, this section defines the Poincaré map.
Let SET = {(w, g): w = ET , g > 0} and SσET = {(w, g): w = EP , g > 0}. The

sets SET and SσET are part of the lines L3: w = ET and L4: w = EP , respectively. Let
the initial point P+

k (EP , g+k ) ∈ SσET and the trajectory over point P+
k (EP , g+k ) reach

point Pk+1(ET , gk+1) ∈ SET . From the equations of system (2) it follows that the value
of gk+1 depends on the size of g+k , which we set as gk+1 = ρg+k . After the action of
the pulse, the trajectory finally intersects the line L4 at the point P+

k+1(EP , g+k+1), where
g+k+1 = gk+1 + τ/(1 + θgk+1). We only focus on the following areas:

Ω1 =

{
(w, g): w > 0, g > 0, g <

r(K − w)

kb

}
.
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Based on the above analysis, the Poincaré map is as follows:

g+k+1 = gk+1 +
τ

1 + θgk+1
= ρ
(
g+k ) +

τ

1 + θρ(g+k )
, PM

(
g+k
)
. (4)

Define

dg

dw
=
P (w, g)

Q(w, g)
=

gK(kbw − d− bdhw)

w(1 + bhw)(rK − rw − bgK)
, G(w, g),

g(EP) = g+0 .

(5)

Then system (2) is transformed into

g(w) = g
(
w; (EP , S)

)
, g(w, S).

Here EP 6 w 6 ET , S ∈ `ij (i = 1, 2, 3, 4; j = 1, 2, 3).
For model (5), one can obtain

g(w, S) = S +

w∫
EP

G
(
s, g(s, S)

)
ds.

The Poincaré map PM on region Ω1 takes this form:

PM (S) = g(ET , S) +
τ

1 + θg(ET , S)
.

3 Dynamical properties of system (2)

Bellow we discuss the properties of PM in case 1 and obtain the following result.

Theorem 1. When EP < wc and θτ 6 1, PM has the following properties (as shown in
Fig. 7(a)):

(I) The domain and range of PM are [0,+∞) and N1, respectively. gp is an extreme
point of PM , and PM increases on [0, gp] and decreases on [gp,+∞), respec-
tively. Furthermore, PM is continuously differentiable over its domain and, when
PM holds on the interval (0, gp] with dP 2

M (S)/dS2 < 0, PM is concave on the
interval (0, gp]. When g+k → +∞, there exists a horizontal asymptote g = τ for
PM . The maximum value of PM is PM (gp), and the minimum value is τ .

(II) PM has at least one fixed point. Especially, suppose the fixed point g̃ is unique
when g̃ ∈ [gp,+∞) ∩ N1, PM (gp) > gp. Then g̃ is globally stable. When
PM (gp) 6 gp, g̃ ∈ [0, gp] ∩N1, the sufficient condition for the global stability of
the order-1 periodic solution is P 2

M (g+) > g+ for all g+ ∈ [gp, g̃).

Proof. (I) Take a point P+
k from the set of pulses M1, its trajectory passes through the

pulses to reach the phase setN1. In this case, an infinite number of pulses are experienced,
so the domain of PM is [0,+∞).
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(a) (b) (c)

Figure 7. When bkK − bhdK − d > 0, ET 6 w∗, the image of PM with parameters as: (a) r = 1.5,
K = 6.8, ET = 1.5, b = 0.5, k = 0.9, h = 0.1, d = 0.5, σ = 0.9, m = 0.2, τ = 2, θ = 0.4; (b) τ = 7,
θ = 0.4, (c) τ = 10, θ = 0.11.

For any points P+
p1(EP , g+p1), P+

p2(EP , g+p2), here g+p1 , g
+
p2 ∈ [0, gp], let g+p1 < g+p2 and

gp1+1 = ρ(g+p ), gp1+1 < gp2+1 can be obtained from the theorem. After pulse, we can get

PM (g+p1) = g(ET , gp1+1) +
τ

1 + θg(ET , gp1+1)

< g(ET , gp2+1) +
τ

1 + θg(ET , gp2+1)

= PM
(
g+p2
)
,

so PM is increasing on [0, gp].
For any points Q+

q1(EP , g+q1), Q+
q2(EP , g+q2), satisfying g+q1 , g

+
q2 ∈ [gp,+∞), let

g+q1 < g+q2 . The trajectory passing the initial point either Q+
q1 or Q+

q2 crosses N1 once
before reaching M1, indicating that the coordinates of the two tracks intersecting N1 are
Q+
k1

(EP , g+k1), Q+
k2

(EP , g+k2). Note that point Q+
k1

is above point Q+
k2

(so g+k1 > g+k2 ),
and we obtain PM (g+q1) = PM (g+k1) > PM (g+k2) = PM (g+q2), so PM is decreasing on
[gp,+∞).

From model (2) we get that functions P (w, g), Q(w, g) are continuously differen-
tiable in their domain. According to the Cauchy–Lipschitz theorem, PM is continuously
differentiable.

Using (5), we can get

∂G

∂g
=

rK(K − w)(kbw − d− bdhw)

w(1 + bhw)(rK − rw − bgK)
2 ,

∂2G

∂g2
=

2rbK2(kbw − d− bdhw)(K − w)

w(1 + bhw)(rK − rw − bgK)
3 .

When w 6 ET < K, there is kbw− bdhw− d < 0, which yields kbw/(1 + bhw)−
d < 0, and when g < gp, there is rw(1 − w/K) − bwg > 0; When g > gp, there is
rw(1− w/K)− bwg < 0, so when g < gp, we can get ∂G/∂g < 0, ∂2G/∂g2 < 0.
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From the Cauchy–Lipschitz theorem with parameters we can obtain the scalar differ-
ential equation

∂g(w, S)

∂S
= exp

( w∫
(1−θ)ET

∂

∂g

Q(z, v(z, S))

P (z, v(z, S))
dz

)
> 0,

∂2g(w, S)

∂S2
=
∂g(w, S)

∂S

( w∫
(1−θ)ET

∂2

∂g2
Q(z, w(z, S))

P (z, w(z, S))

∂g(z, S)

∂S
dz

)
< 0.

From the above analysis it follows that

dPM (S)

dS
=

dg(ET , S)

dS

[
1− τθ

(1 + θg(ET , S))
2

]
,

dP 2
M (S)

dS2
=

d2g(ET , S)

dS2

[
1− τθ

(1 + θg(ET , S))
2

]
+

(
dg(ET , S)

dS

)2
2θ2τ

(1 + θg(ET , S))
3 .

Thus, when S < gp for all g(ET , S), if θτ 6 1, then we have dPM (S)/dS > 0. Note
that in dP 2

M (S)/dS2 the former term is positive, and the latter is negative, which means
that the sign of dP 2

M (S)/dS2 may change. Therefore, PM is concave on the interval
(0, gp] when PM has dP 2

M (S)/dS2 < 0 holding on the interval (0, gp].
Next, show that as g+k increases, PM converges to the asymptote g = τ . Define Ω1 as

Ω1 =

{
(w, g): w > 0, g > 0, g <

r(K − w)

bk

}
.

Since PM is increasing on [0, gp] and decreasing on [gp,+∞), Ω1 is an invariant set
of system (2). Let L = g − r(K − w)/(bk). If [P (w, g), Q(w, g) · (r/(bk), 1)]L=0 6 0,
where · represents the scalar product of vectors, then the vector field will eventually reach
the boundary Ω1. So Ω1 is an invariant set, which can be calculated by PM (w)|L=0

.
=

[rw(1− w/K)− bwg](r/bk + g(kbw/(1 + bhw)− d).
Since PM is increasing on [0, gp] and decreasing on [gp,+∞), so for any g+0 ∈ [0, gp],

PM (g+0 ) is bounded, and PM ([gp,+∞)) ⊂ PM ([0, gp]). According to the Cauchy–
Lipschitz theorem, gk+1 is determined by g+k and can be expressed as gk+1 = PM (g+k ).
It is always dg/dt < 0 at any point on the phase set, therefore, limg+k→∞

ρ(g+k ) = 0.
So limg+k→∞

PM (g+k ) = limg+k→∞
(ρ(g+k ) + τ/(1 + θρ(g+k )) = τ . Therefore, as g+k

increases, PM tends to the asymptote g = τ as shown in Fig. 7(a).

(II) First, prove that PM has at least one fixed point.
PM is decreasing on [gp,+∞), so there exists a g ∈ [gp,+∞) such that PM (g) < g.

When τ > 0, PM (0) = τ > 0, there must exist τ > 0, PM (0) = τ > 0 such that
PM (g̃) = g̃, and there is at least one fixed point on the interval [0,+∞).
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When PM (gp) 6 gp, for all gk ∈ [gp,+∞), that PM is decreasing on [gp,+∞),
yields PM (gk) < PM (gp) < gp < gk, so that PM has no fixed point on [gp,+∞). PM
is increasing on [0, gp], concave on [0, gp], and PM (0) > 0. So there is at least one fixed
point on the interval [0, gp].

When PM (gp) > gp, PM is increasing on [0, gp], concave on [0, gp], and PM (0) > 0.
It follows that PM has no fixed point on [0, gp]. PM is decreasing on [gp,+∞), so there
is at least one fixed point on the interval [gp,+∞).

The following evidence is sufficient. For all g+ ∈ (gp, g̃), we note that after one pulse
is PM (g+) = g+1 and after n pulses are PnM (g+) = g+n . According to g+ ∈ (gp, g̃),
we have gp < g+ < g̃, and according to the monotonicity of PM , we obtain PM (gp) >
PM (g+) > PM (g̃), which is g+1 > g̃. Then after the pulse, there is PM (g+1 ) < PM (g̃),
which is g+2 < g̃. After one more pulse, we get PM (g+2 ) > PM (g̃), which is g+3 > g̃. By
mathematical induction we get g+2n〈g̃, g

+
2n+1〉g̃, n = 0, 1, 2, . . . .

For all g+ ∈ [gp, g̃), P 2
M (g+) > g+, that is, g+ < g+2 < g̃. According to the above

analysis, we can get g+1 > PM (g+1 ) > PM (g+2 ) = g+3 , so we can get g̃ < g+3 < g+1 .
To summarize, we can obtain g+ < g+2 < g̃ < g+3 < g+1 . After one pulse there is

g+ < g+2 < g+4 < g̃ < g+5 < g+3 < g+1 . From mathematical induction we get g+ < g+2 <
· · · < g+2n < g̃ < g+2n+1 < · · · < g+3 < g+1 , that is, limn→∞ g+2n = limn→∞ g+2n+1 = g̃,
so g̃ is globally asymptotically stable.

Then we prove necessity, and if the assumption does not hold, then there exists at least
one g∗ ∈ [gp, g̃) such that P 2

M (g∗) < g∗. From the stability of periodic solutions and the
monotonicity of PM , it follows that for all ε > 0, there must exist g0 ∈ (g̃ − ε, g̃ + ε)
such that P 2

M (g0) > g0. Since PM is continuous, there must exist g0 ∈ (g̃ − ε, g̃ + ε)
such that P 2

M (g0) > g0. Since PM is continuous, there must exist g0′ ∈ [gp, g̃] such
that P 2

M (g′) = g′, which indicates there exist order-2 periodic solutions for the system,
contradicts the global stability of order-1 periodic solutions, so the assumption holds that
necessity holds. Where if there are nonnegative integers m > 0 and k > 1 such that k
is the smallest integer satisfying z+m = z+m+k and Tk =

∑m+k−1
i=m φ(zi) =

∑m+k−1
i=m si,

then the locus Πz ∈ (X,Π,M, I) is called order-k periodic solutions (k = 1, 2, 3, . . .).
When PM (gp) 6 gp, it can be proved similarly.

Theorem 2. When θτ > 1 and gA 6 gm, PM has the following properties (as shown in
Fig. 7(b)):

(I) The domain and range of PM are [0,+∞) and N2, respectively. It is decreasing
on the interval [0, gp] and increasing on the interval [gp,+∞); it reaches a min-
imum at the point gp. PM is continuously differentiable over its domain. When
g+k → +∞, it has a horizontal asymptote g = τ .

(II) There is at least one fixed point in PM as shown in Fig. 7(b). Furthermore,
suppose the fixed point is unique. When PM (gp) > gp, the fixed point g̃ is globally
stable. When PM (gp) < gp, the sufficient condition that for global stability of g̃
is for all g+ ∈ [gp, g̃), P 2

M (g+) > g+.

Proof. (I) Using the similar argument as in Theorem 1, we can get this conclusion.
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(II) For all g+ ∈ [0,+∞) \ N2, since g+ ∈ [0,+∞) \ N2 is an invariant set of
PM , one obtains PM (g+) ∈ N2. So we can guarantee the existence of the fixed points
of model (2) by the continuity, monotonicity, and symptoms of PM . Denote the unique
fixed point by g̃. If PM (gp) > gp, then g̃ ∈ (gp,+∞) as shown in Fig. 7(b).

When PM (gp) > gp, for g+ ∈ (g̃,+∞), g̃ < PM (g+) < g+, which is g̃ < g+1 < g+.
After n pulse, there is g̃ < PnM (g+) < · · · < PM (g+) < g+, so limn→∞ PnM (g+) = g̃.
For all g+ ∈ [gp, g̃), there is g+ < PM (g+) < g̃, which is g+ < g+1 < g̃, and after one
pulse, there is PM (g+) < PM (g+1 ) < g̃, which is g+ < g+1 < g+2 < g̃. After n pulses,
there is g+ < g+1 < · · · < PnM (g+) < g̃, which is limn→∞ PnM (g+) = g̃. Furthermore,
for all g+ ∈ [0, gp), because for all g+ ∈ [0,+∞), there is PM (0) = τ > PM (g+),
which can be discussed in the following three cases: (i) When PM (g+) > g̃, same as
g+ ∈ (g̃,+∞) after one pulse. (ii) When gp 6 PM (g+) < g̃, after one pulse as in
g+ ∈ [gp, g̃). (iii) PM (g+) = g̃, P 2

M (g+) = g̃, . . . , PnM (g+) = g̃.
Based on the above discussion, it can be concluded that g̃ is globally stable.
If PM (gp) < gp and the fixed point is unique, we can get that for all g+ ∈ [0, g̃), there

is PM (g+) > g+, and for all g+ ∈ (g̃,+∞), there is PM (g+) < g+. PM (g+) takes
a minimum at gp, gp ∈ (g̃,+∞), PM (g+) is decreasing on g+ ∈ (g̃, gp].

Analyze the following cases: (i) g+ ∈ (g̃, gp]; (ii) g+ ∈ [gp,+∞); (iii) g+ ∈ [0, g̃).
For (i), when g+ ∈ (g̃, gp], according to the monotonicity of PM , we can get g̃ >

PM (g+) > PM (gp), and according to the condition P 2
M (g+) < g+, we can get g̃ >

P 3
M (g+) > PM (g+), which is PM (g+) < P 3

M (g+) < g̃ < P 2
M (g+) < g+. Af-

ter n pulses, according to the mathematical induction method, we can get PM (g+) <
P 3
M (g+) < · · · < P 2n+1

M (g+) < g̃ < P 2n
M (g+) < · · · < P 2

M (g+) < g+. So there are
limn→∞ P 2n

M (g+) = limn→∞ P 2n+1
M (g+) = g̃.

For (ii), when g+ ∈ [gp,+∞), P 2
M (g+) < PM (g+), P 3

M (g+) < P 2
M (g+), so the

sequence P kM (g+) is decreasing as k increases, so there exists a positive integer m such
that PmM (g+) ∈ (g̃, gp], as in case (i).

For (iii), there exists an gp′ ∈ [0, g̃) such that PM (gp
′) = gp, then for all g+ ∈ [0, gp

′),
after pulsing corresponds to case (ii). For all g+ ∈ [gp

′, g̃], corresponds to case (i) after
the pulse, so it is globally stable in case (iii).

Theorem 3. When EP < wc, θτ > 1, and gA > gm, PM has the following properties
(as shown in Fig. 7(c)):

(I) The domain and range of PM with value fields [0,+∞) and N3, respectively,
PM is continuously differentiable over its domain, and there exists a horizontal
asymptote w = τ for PM when g+k → +∞. PM is decreasing on the interval
g+n ∈ [0, g+q1]∪[gp, g

+
q0] and increasing on the interval g+n ∈ [g+q1, gp]∪[g+q0,+∞),

reaching a great value at point gp and a very small value at g+q1, g+q0.

(II) PM on N3 may exist at last one fixed point g̃ as shown in Fig. 7(c). Especially,
suppose the fixed point is unique, there are three cases for its stability as follows:
(i) When PM (g+qi) > g+qi, i = 0, 1, g̃ is globally stable. (ii) When PM (g+qi) < g+qi,
i = 0, 1, g̃ is globally stable for all g+ ∈ (g̃, g+q1] with P 2

M (g+) < g+. (iii) If
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PM (g+q1) > g+q1 and PM (g+q2) < g+q2, then the sufficient condition for the global
stability of g̃ is that P 2

M (g+) < g+ holds for all g+ ∈ (g̃, g+q0].

Proof. (I) When f(gA) > τ , the phase set is N3 = [f(gm), f(gA)]; when f(gA) < τ ,
the phase set can also be N3 = [f(gm), τ ]. In the following, we only need to prove that
case (I) is correct when N3 = [f(gm), τ ]. The other case can be proved similarly. Since
gA > gm, there exists a unique point P0(EP , g+q0) ∈ L4 and g+q0 > gp such that the
trajectory from P0 (denoted `m) will reach M(ET , gm) of L3, and the other intersection
of `m and L4 is denoted P1(EP , y+q1). The same method as in Theorem 2(I) can be used
to prove that.

(II) (i) When PM (g+qi) > g+qi, we can obtain g̃ > g+q0, there exists a g′ ∈ [0, g+q0)

making PM (g′) < g̃. For all g+ ∈ [0, g′), there is a positive integer m such that
Pmm (g+) ∈ (g̃,+∞) and the sequence Pm+n

m (g+) decreases. For all g+ ∈ (g′, g+q0],
there is a positive integer m such that Pmm (g+) ∈ (g+q0, g̃) and the sequence Pm+n

m (g+)

increases. So limn→∞ P lm(g+) = g̃.
(ii) When PM (g+qi)<g

+
qi, i=0, 1, we can get PM (g+qi)<g

+
qi, i = 0, 1, and PM (gp)<

gp (by the uniqueness of g̃) for all g+∈(g̃, g+q1], by the monotonicity of PM we can obtain
g̃ >PM (g+)>PM (g+q1). From condition P 2

M (g+)<g+ we get g̃ <P 2
M (g+)<g+, after

one pulse, we get g̃ > P 3
M (g+) > PM (g+), and another pulse, we get g̃ < P 4

M (g+) <
P 2
M (g+)< g+, which is PM (g+)< P 3

M (g+)< g̃ < P 4
M (g+)< P 2

M (g+)< g+. After n
pulses, there are PM (g+)< · · ·<P 2n−1

M (g+)< g̃ <P 2n
M (g+)< · · ·<P 2

M (g+)<g+. So
there are limn→∞ P 2n

m (g+) = limn→∞ P 2n−1
m (g+) = g̃. Since Pm(g+q0) = Pm(g+q1), so

for all g+∈ [0, g̃)∪(g+q1,+∞), there is a positive integer m such that Pmm (g+)∈ (g̃, g+q1],
then the same as g+∈(g̃, g+q0], so g̃ is globally stable.

(iii) When PM (g+q1) > g+q1 and PM (g+q2) < g+q2, g̃ ∈ (g+q1, g
+
q0). For all g+ ∈ (g̃, g+q0],

there is g̃ < g+ 6 g+q0. By the monotonicity of PM we have g̃ > PM (g+) > PM (g+q0).
After the pulse, there is g̃ < P 2

M (g+), and according to the condition for all g+ ∈ (g̃, g+q0],
P 2
M (g+) < g+ holds, which means that g̃ < P 2

M (g+) < g+ holds, and after the pulse,
there is g̃ > P 3

M (g+) > PM (g+), which is PM (g+) < P 3
M (g+) < g̃ < P 2

M (g+) < g+,
so limn→∞ P 2n

m (g+) = limn→∞ P 2n−1
m (g+) = g̃. For all g+ ∈ [0, g̃) ∪ (g+q0,+∞),

there is a positive integer m such that Pmm (g+) ∈ (g̃, g+q0], then the situation is the same
as above. It can be seen from the above that g̃ is globally stable.

Case (b) in system (2), which has similar properties and proof methods to Theo-
rems 1–3, is omitted here. Next, the dynamic properties of system (2) in case 2 are
discussed and summarized as follows.

Theorem 4. When EP > wc and θτ 6 1, PM has the following properties (as shown in
Fig. 8(a):

(I) The domains and range of PM are [0, g+T1
] ∪ [g+T2

,+∞] and N4, respectively.
PM is continuously differentiable over its domain. When g+k → +∞, there exists
a horizontal asymptote g = τ for PM . PM is decreasing on g+n ∈ [g+T2

,+∞]
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and increasing on g+n ∈ [0, g+T1
]. Therefore, PM reaches its maximum value at

g+T1
, g+T2

.

(II) There may be zero or one fixed point of PM on N4 as shown in Fig. 8(a). That is,
there may be zero or one order-1 limit cycle of model (2). In particular, suppose
that the fixed point is unique when g̃ ∈ [0, g+T1

], then a sufficient condition for the
global asymptotic stability of g̃ is PM (g+T2

) > g+T2
, and P 2

M (g+) > g+ holds for
all g+ ∈ [g+T2

, g̃).

Proof. (I) The property can be proved in a similar way to Theorem 1, and case (II) is
discussed below.

(II) For the existence of fixed points, since PM is decreasing on g+n ∈ [g+T2
,+∞)

and increasing on g+n ∈ [0, g+T1
], there is a discontinuity region (g+T1

, g+T2
). So when

PM (g+T1
) > g+T1

and PM (g+T2
) < g+T2

are satisfied, PM has no fixed point. Suppose that
when limg+→g+T1

PM (g+) < g+T1
and g+ < g+T1

hold or limg+→g+T2

PM (g+) > g+T2
and

g+ > g+T2
hold, there exists at least one fixed point for PM . In particular, let the fixed point

be unique when g+n ∈ [0, g+T1
]. Then the proof method is similar to that of Theorem 1.

When g+ ∈ [g+T2
,+∞), PM (g+T2

) > g+T2
, so g̃ ∈ [g+T2

,+∞). For g+ ∈ [g+T2
,+∞), PM

is decreasing in the interval, and g+ < g̃, PM (g+) > g̃ is obtained after pulsing, and
P 2
M (g+) < g̃ is obtained by pulsing again. According to the conditions, we can obtain
P 2
M (g+) > g+, the synthesis can be obtained g+ < P 2

M (g+) < g̃, after a pulse to get
PM (g+) > P 3

M (g+) > g̃, which is g+ < P 2
M (g+) < g̃ < P 3

M (g+) < PM (g+) < g+.
After 2 pulses, we can get g+ < P 2

M (g+) < P 4
M (g+) < · · · < P 2n

M (g+) < g̃ <
P 2n−1
M (g+) < · · · < P 3

M (g+) < PM (g+) < g+, that is, limn→∞ P 2n
M (g+) =

limn→∞ P 2n−1
M (g+) = ũ.

That is, g̃ is globally asymptotically stable.

Theorem 5. When EP > wc, θτ > 1, and gT 6 gm, PM has the following properties
(as shown in Fig. 8(b):

(I) The domains and range of PM are [0, g+T1
]∪ [g+T2

,+∞] and N5, respectively. PM
is continuously differentiable over its domain. When g+k → +∞, there exists
a horizontal asymptote g = τ for PM . PM is decreasing on g+n ∈ [0, g+T1

]

and increasing on g+n ∈ [g+T2
,+∞]. Therefore, PM reaches a minimal value at

g+T1
, g+T2

.

(II) There may be zero or one fixed point of PM on N5 as shown in Fig. 8(b). That is,
model (2) may have zero or one order-1 limit cycle. In particular, suppose that
the fixed point is unique. When g̃ ∈ [0, g+T1

], the condition for g̃ to be globally
asymptotically stable is PM (g+T1

) 6 g+T1
; When g̃ ∈ [g+T2

,+∞), the sufficient
condition for global asymptotic stability is PM (g+T2

) > g+T2
, and P 2

M (g+) > g+

holds for all g+ ∈ [g+T2
, g̃).

Proof. (I) For any points F+
k1

(EP , g+k1), F+
k2

(EP , g+k2) (here g+k1 , g
+
k2
∈ [0, g+T1

]), let
g+k1<g

+
k2

and gk+1 =ρ(g+k ). By Cauchy–Lipschitz theorem we can obtain gk1+1<gk2+1.

Nonlinear Anal. Model. Control, 29(3):466–487, 2024

https://doi.org/10.15388/namc.2024.29.34680


482 H. Cheng et al.

(a) (b) (c)

Figure 8. When EP > wc, the image of PM with parameters as: r = 1.5, K = 6.8, ET = 1.5, b = 0.5,
k = 0.9, h = 0.1, σ = 0.9, m = 0.2, τ = 2, θ = 0.4; (a) τ = 4, θ = 0.2, d = 0.34; (b) τ = 10, θ = 0.3,
d = 0.32; (c) τ = 10, θ = 0.11, d = 0.32.

After one pulse, we can obtain PM (g+k1)=g(ET, g+k1)+τ(1+θg(ET, g+k1)>g(ET, g+k2)+

τ/(1 + θg(ET, g+k2)) = PM (g+k2).
So PM is decreasing at [0, g+T1

].
Similarly, we arbitrarily take two pointsQ+

q1(EP , g+q1),Q+
q2(EP , g+q2), where g+q1 , g

+
q2 ∈

[g+T2
,+∞) and set g+q1 < g+q2 . The trajectory of Q+

q1 , Q
+
q2 will cross L4 once before reach-

ing L3 and intersecting L4 at points Qq1
′(EP , gq1

′), Qq2
′(EP , gq2

′), respectively (here
gq1
′ > gq2

′). Then each of these two points intersects L3 at point Qk1+1(ET , gk1+1),
Qk2+1(ET , gk2+1). According to the Cauchy–Lipschitz theorem, gk1+1, gk2+1 is ob-
tained reversed (that is, gk1+1 > gk2+1). After pulsing, we getPM (g+q1) = g(ET , gq1+1)+
τ/(1 + θg(ET , gq1+1)) < g(ET , gq1+2) + τ/(1 + θg(ET , gq1+2)) = PM (g+q2). There-
fore, PM is increasing on [g+T2

,+∞) and reaches a minimal value at g+T1
, g+T2

.

(II) The existence of a fixed point can be proved by a similar method as in the proof
of Theorem 1. Moreover, if the fixed point is unique, when PM (g+T1

) 6 g+T1
, there exists

g̃ ∈ (0, g+T1
] such that PM (g̃) = g̃ holds. For any g+ ∈ [0, g̃), there is g+ < PM (g+) < g̃.

After n pulses, we can get PM (g+) > P 2
M (g+) > · · · > PnM (g+) > g̃, which means that

there is limn→∞ PnM (g+) = g̃.
For any g̃ ∈ [g̃, g+T1

), there exists g̃ < PM (g+)< g+, and since PM is decreasing on
[0, g+T1

], there is g̃ > P 2
M (g+)>PM (g+). After n pulses, there is g̃ > PnM (g+)> · · ·>

P 2
M (g+) > PM (g+), which means that there is limn→∞ PnM (g+) = g̃. Therefore, g̃ is

globally stable.
When PM (g+T2

) > g+T2
, g̃ ∈ [g+T2

,+∞), there is g̃ ∈ (g+T2
, PM (g+T2

)) such that
PM (g̃) = g̃. For any g+ ∈ (g+T2

, g̃), according to the monotonicity of PM and the
condition P 2

M (g+) > g+, we can obtain g+ < P 2
M (g+) < g̃. After one pulse, PM (g+) <

P 3
M (g+) < g̃ can be obtained, and after another pulse, PM (g+) < P 3

M (g+) < g̃ <
P 2
M (g+) < g+ can be obtained. After 2n pulses, we can get PM (g+) < P 3

M (g+) < · · · <
P 2n−1
M (g+) < g̃ < P 2n

M (g+) < · · · < P 2
M (g+) < g+, which gives limn→∞ P 2n

M (g+) =
limn→∞ P 2n+1

M (g+) = g̃. Therefore, g̃ is globally stable.
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Theorem 6. When EP > wc, θτ > 1, and gT > gm, PM has the following properties
(as shown in Fig. 8(c)):

(I) The domains and range of PM are [0, g+T1
] ∪ [g+T2

,+∞] and N6, respectively.
PM is continuously differentiable over its domain. When g+k → +∞, there exists
a horizontal asymptote g = τ for PM . PM is decreasing on g+n ∈ [0, g+q1] ∪
[g+T1

, g+q0] and increasing on g+n ∈ [g+q1, g
+
T1

]∪ [g+q0,+∞). Therefore, PM reaches
a great value at points g+T1, g+T2 and a very small value at g+q1, g+q0.

(II) There may exist at last one fixed point for PM on N6 as shown in Fig. 8(c). That
is, system (2) may have at least one limit cycle. If the fixed point is unique, there
are three cases for its stability as follows: (i) When PM (g+qi) > g+qi, = 0, 1, g̃
is globally stable; (ii) When PM (g+qi) < g+qi, i = 0, 1, for all g+ ∈ (g̃, g+q1]
such that P 2

M (g+) < g+ holds, g̃ is globally stable. For all g+ ∈ (0, g̃) such
that P 2

M (g+) > g+ holds, g̃ is globally stable; (iii) If PM (g+q1) > g+q1 and
PM (g+q2) < g+q2 hold, the sufficient condition for g̃ to be globally stable is that for
all g+ ∈ (g̃, g+q0], P 2

M (g+) < g+ holds.

Proof. Similar to the proof of Theorem 3.

Case (c) in system (2), which has similar properties and proof methods to Theo-
rems 4–6, is omitted here.

4 Numerical simulations

Figures 9 and 10 are the order-1 periodic solution of system (2) in two cases, respectively.
Here the blue line indicates the trajectory after pulse control, and the red line indicates the
trajectory without pulse control. The results show that the population density of prey and
predator is in a stable range under nonlinear state impulse feedback control. When pulse
control is not employed, the number of prey and predators increases for a short period of
time and finally drops to very small values. Comparing the prey and predators, they can

(a) (b) (c)

Figure 9. When θτ 6 1, the phase diagram and time series of system (2) with parameters as: r = 1.5,
K = 6.8, ET = 1.5, b = 0.5, k = 0.9, h = 0.1, d = 0.5, σ = 0.9, m = 0.2, τ = 2, θ = 0.4.
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survive stably for a long time under effective control. Figure 11 shows that system (2)
has an order-1 periodic solution. In Fig. 12, it can be seen that trajectories from different
initial points converge to the order-1 periodic solution, which indicates that the order-1
periodic solution is globally asymptotically stable.

(a) (b) (c)

Figure 10. When θτ > 1, the phase diagram and time series of system (2) with parameters as: r = 1.5,
K = 6.8, ET = 1.5, b = 0.5, k = 0.9, h = 0.1, d = 0.5, σ = 0.9, m = 0.2, τ = 7, θ = 0.4.

(a) (b) (c)

Figure 11. Periodic solution and time series of system (2) with parameters as: r = 1.5, K = 6.8, ET = 1.5,
b = 0.5, k = 0.9, h = 0.1, d = 0.5, σ = 0.9, m = 0.2, τ = 2, θ = 0.4.

Figure 12. Trajectories of system (2) at different initial points with parameters as: r = 1.5, K = 6.8,
ET = 1.5, b = 0.5, k = 0.9, h = 0.1, d = 0.5, σ = 0.9, m = 0.2, τ = 2, θ = 0.4.
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5 Conclusion

In this paper, we present a predator–prey model with nonlinear state pulse feedback
control. The model is constructed considering nonlinear impulse feedback control, which
means that the lethality of the prey population and the number of predators released
depend on their densities, which makes the model more objective in portraying reality.
We mainly discuss the influence of nonlinear state impulse on system dynamics and
comprehensively discuss the dynamic properties of system (2). In particular, nonlinear
impulse feedback control produces diverse sets of pulses and phases dependent on the
parameter space. As a result, the Poincaré map, which is defined on the phase set, changes
significantly with the parameter values, for example, producing single-peaked, multi-
peaked functions. In particular, discontinuous intervals may appear in the phase set (as
shown in Figs. 3 and 5), which gives the Poincaré map a more complex nature. Among
other things, the trajectory will have multiple motion scenarios due to the complexity of
the parameter space, and the trajectory may experience numerous pulses, finite pulses,
or even no pulses at all. Based on this we discuss the properties of the Poincaré map in
different cases. In this way, we prove the existence and uniqueness of the order-1 periodic
solution of system (2) and give a sufficient condition for the global stabilization of the
order-1 periodic solution.

Finally, through numerical simulations, we can see that the nonlinear state pulse
control model used in this paper is more consistent with the development of realistic
biological populations so that the predator and prey populations can be controlled under
the economic threshold ET and the biological populations maintain a stable cyclical and
benign developmental change.
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