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Abstract. In this paper, we study a Riemann—Liouville-type fractional Riemann—Stieltjes integral
boundary value problem under some conditions regarding the spectral radius of the relevant linear
operator. The existence of nontrivial solutions is obtained using topological degree, and our results
improve and generalize some results in the literature.

Keywords: Riemann-Liouville-type fractional-order differential equations, integral boundary
value problems, nontrivial solutions, topological degree.

1 Introduction

In this paper, we consider the existence of nontrivial solutions for the Riemann—Liouville-
type fractional-order Riemann—Stieltjes integral boundary value problem

=D x(t) +mx(t) = f(t, x(t), 0<t<1,
; (1)
0, x(1)= [ x(®)dy(?),
/

where 2 < a < 3, D, is the Riemann-Liouville derivative, and f satisfies the following
conditions.
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(H1) feC([0,1] x R,R),

(H2) There exist 0,6 € C([0,1],RT) and K € C(R,RT) with §(¢) Z 0, t € [0,1],
such that f(¢,z) > —o(t) — §(t)K(z) forallz € R, t € [0, 1].

(H3) im0 K()/]2] = 0.

We now consider conditions on 7 and . Let

+o0
B (ka + a — 2)(ka + a — 3)7F
9(r) = kz:o Ika + ) '

Then we have ¢’(7) > 0 on (0, +00), g(0) < 0, and lim;_, 4+ g(7) = 400. Therefore,
there exists a unique root 7* > 0 such that g(7*) = 0.

Throughout our paper, we assume that 7 and ~y satisfy the conditions:

(H4) 7 € (0,7*] is a constant.

(H5) -y is a function of bounded variation with v(¢) > 0, ¢ € [0, 1], and fo (t)dvy(t) €
[0,G(1)), where

Fractional calculus is used to describe problems in rheology, mechanics, material
science, signal processing, and there is much research on fractional-order equations in the
literature; see, for example, [1-6, 8—10, 12-24]. In [20] the authors investigated positive
solutions for the resonant fractional multipoint boundary value problem

Dg x(t) + f(t. x(t), Dy, x(t )) =0, te(0,1),

x(0) = x'(0) =0, 0+X Zﬂz 0+ X (&),

where Dg, is the Riemann-Liouville derivative, and in [22] the authors investigated
multiple positive solutions for the higher-order fractional integral boundary value problem

~DI(X"() + f(t.x(®) =0, 0<t<1,

X'(0) =x"(0) =---=x""2(0) =0,  D§I*X"(1) =0,

ax(0) — Bx'(0) = /x(s) dA(s),  yx(1) +6x'(1) = /x(s)dB(s)-
0 0

The spectral theory of linear operators can be used to study differential equations; see
[2,13,19,21,23]. In [23] the authors studied positive solutions for the fractional integral
boundary value problem

D§ x(t) + h(t) f(t,x(t)) =0, 0<t<]1,
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where f € C([0,1] x RT,R™) satisfies the conditions:

(HZ1) liminf, o+ f(t,x)/x > A1, limsup, ,, o f(t,x)/x < A1 uniformly with
respect to ¢ € [0, 1],

(HZ2) limsup, o+ f(t,x)/x < A1, liminfy o f(t,x)/x > A1 uniformly with
respectto ¢ € [0, 1], where \; is the first eigenvalue of the operator (Lz1x)(t) =
fol G(t, s)h(s)x(s) ds, and G is the Green’s function.

Motivated by the aforementioned works, in this paper, we use topological degree to
study nontrivial solutions for (1) under some conditions concerning the spectral radius of
the relevant linear operator. Note the considered linear operator can include the Riemann—
Stieltjes integral condition in (1), and the approach is quite different from previous works
in the literature. Also, we note that our conditions are more general than (H1), (H2).

2 Preliminaries

We first provide some useful definitions and conclusions, which are used to obtain our
main results.

Definition 1. (See [10, 14].) The a-order Riemann—Liouville fractional derivative of
a function ¢ : (0, 400) — R is given by

t

Do) = s () [y et

0

where n = [a] + 1. [@] denotes the integer part of number «, provided that the right-hand
side is point-wise defined on (0, +00).

Definition 2. (See [10,14].) The a-order Riemann—Liouville fractional integral of a func-
tion ¢ : (0,4+00) — R s given by

t
IO+L)0 / >d87
0

provided that the right-hand side is point-wise defined on (0, +00).
In what follows, we will calculate the Green’s function associated with (1).

Lemma 1. (See [17].) Suppose that (H1), (H2) hold, and v) € L0, 1]. Then the boundary
value problem

—Dgx(t) +7x(t) =), 0<t<1,

XO) = () =0, (1) = / x(8) dy(t)
0

https://www.journals.vu.lt/nonlinear-analysis
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has a unique solution

1 1
€0 = [ Ko ds + gg; [xwan
0 0
_ / O(t, s)i(s) ds,
0
where
1
()
O(t,s) = K(t,s T K(t,s)d ,
(69) = Ktso) + o G(t)dv(t)o/ (t.9) (1)
Kt )_L Gt)G(1 — s), 0<t<s<,
’ G(1) |GH)G(1—s)—G(t—s)G(1), 0<s<t<1.

Proof. We first consider the problem

—D§, x(t)+7x(t) =0, 0<t<1,

Using the method in [17, Lemma 2.1], we have

X(t) = a1G(t) + c2G'(t) + c3G" (1),

491

2

3)

where ¢; € R, i = 1,2,3. From x(0) = x’(0) = 0 we have c2 = ¢3 = 0. Hence,

x(1) = fol x(t) d~y(¢) implies that

x(1) = . G1) = / O md = / (1) (1),

Thus, we have

Next, we consider the problem

=D x(t) +Tx(t) =¥(t), 0<t<1,
x(0)=x'(0)=0, x(1)=0.

Nonlinear Anal. Model. Control, 29(3):488-508, 2024
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From [17, Lemma 2.1] we have

= /K(t,s)z/)(s) ds. (5)
0

Combining (4) and (5), we obtain (2).
We multiply both sides of (2) by dy(¢) and integrate over [0, 1], and then we have

[rwao = [ [Kesveasao [Gao [xoae
0 00 0 0
and ) o -
0/ XOD0) = / / K (1, 5)2(s) ds dy 1),
Consequently, we have
= | s G(t) GQ) [ s)y(s)ds
_O/K s)ds + G G1) — [ Gt)dy(t) O/O/K(t’ 9(s) da ()
:/@(t,s)¢(s)ds.
0
This is (3). This completes the proof. O

Lemma 2. Suppose that s* € (0,1) such that s* = (1 — s*)*2. Then O(t, s) has the
following properties:

(1) O(t,s) = kis(l —s)* 1t~ forall t, s € [0,1];

(i) O(t,s) < kas(1 —s)> L forallt,s € [0,1], where

.y — Jy @ =ty 1dv(t)
[G(1) - fo OGO ()]
g — [G'(1)]? - ( (1)
G(1)s* G(1) — [y G(t) dy(t) )

(iii) O(t,s) < G*(1)/(G(1) — fol G(t)dy(t))t* (1 — s)* L forall t,s € [0,1].
Proof. We first use [17, Thm. 3.1] and note that for all ¢, s € [0, 1],

st e < K < G- 9 @

https://www.journals.vu.lt/nonlinear-analysis
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Also, we note that
ta—l 1
— < G() <t7G(), ot 1. 7
R SO <70, e ™

Therefore, from (6), (7) we have

G

®) th s)dy(t
G- f! G(t)dy(t)o/ (19 )

O(t,s) = K(t,s) +

— )11 =)t L dy(t)

ot /1 1 s(1
[G(1) — [y G(t) dy()]T () ) G ()

>
= ry1s(1 —s)@ 1ot
and
1
O(19) = K{1:9) + oo ﬁ(g(t) e / K(t, s)dy(t)
0 0
GO e a) (GO e
S s (1= — [ G(t) d»y(t)o/ G(1)s* (1= )" drtt)
_@OP e G(1)y(1)
- G(1)s* (1=9) [H G(l)—folG(t)dy(t)}
= kos(1 —8)* L.
Furthermore, we have
= S G(t) 1 S
019 = K(t:9) + o T O/ K(t, s)dy(t)
G(H)G(1 - s) G(t) GG - s)
TG G(1) — [ G(1) dv(t)o/ G(1) “)
= G*(1) t* 1 -9t te|o,1]

This completes the proof.

Let E := C[0,1], [[9] := maxepo,1) [I(t)], P := {9 € E: 9(t) > 0Vt € [0,1]}.
Then (E, ||-]|) is a real Banach space, and P is a cone on E. Define an operator ¥ : E— F

Nonlinear Anal. Model. Control, 29(3):488-508, 2024
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as follows:

1 1
:/K(t,s)f(s, G#/ﬁ v(t), YeEE, telo1].
0 0

It is easy to find that if ¥ has a fixed point ¥* in E, i.e., ¥9* = 9*, then ¥* is a solution
for (1). Note that

:/K(t,s)f(s,ﬁ*(s)) ds+gg/ﬁ*(t)d

From Lemma 1 we have

/1@ F(5.9%(s)) ds

Hence, ¥* is also a fixed point of operator L o F', which can be denoted by ¥, where
F : E — FE is the Nemytskii operator defined by (F'9)(t) := f(t,9(t)), and

= /Q(t, s)d(s) ds
0

Lemma 3. Let Py; = {9 € P: 9(t) > (k1 /ko)t* H||9]], t € [0,1]}. Then L(P) C Py;.
Proof. 1If ¥ € P, from Lemma 2(i), (ii) we have

@00 < [ wasll = 5" Ho(s)ds

and

1 1

(L) (t / krs(1 — 8)°~ 1219 (s) ds %ta_l/@s(l—s)a_lﬁ(s) ds
0 2 0
o).

This completes the proof. O

Lemma 4. Let

1

(Lgﬂ)(t):g/K(t,s) ds+—t/z9 dy(t), €>0.
0

G(1
0
Then the spectral radius of L, denoted by r(L¢), is positive.

https://www.journals.vu.lt/nonlinear-analysis
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Note that r(L¢) > &r(Lk). So, we only need to prove r(Lg) > 0, where r(L) is
the spectral radius of the operator L i defined as follows:

1
(Lg9)(t /K
0

Moreover, we can use the similar method in [21, Lemma 5] to obtain r(Lg) > 0, so we
omit its proof here. Therefore, the Krein—Rutman theorem [11] implies that there exists
C¢ € P\ {0} such that

LeCe = 1(Le)Ce- (8)

Lemma 5. (See [7].) Let E be a Banach space, {2 C E a bounded open set, and T :
2 — E a continuous compact operator. If there exists xo € E \ {0} such that

x—Tx # pury Y€ o, u=0,
then the topological degree deg(I — T, (2, 0) = 0.

Lemma 6. (See [7].) Let E be a Banach space, {2 C E a bounded open set with 0 € (2,
and T : 2 — E a continuous compact operator. If

Te#px Veed, p>1

then the topological degree deg(I — T, £2, 0) = 1.

3 Main results

Now, we list some assumptions on f, which we need in this section.

(H6) There exists & > 0 with 7(Lg, ) > 1 such that liminf|,, o f(¢, z)/|z| > &
uniformly for ¢ € [0, 1],

(H7) There exists {& > 0 with r(Lg,) < 1 such that limsup,_,o [f (¢, 2)|/|2| < &
uniformly for ¢ € [0, 1].

Theorem 1. Suppose that (H1)—(H7) hold. Then (1) has at least one nontrivial solution.
Before the proof of Theorem 1, we present a lemma.

Lemma 7. Suppose that all assumptions in Theorem 1 hold. Let Pys = {0 € P: 9(t) >
kat® ||, t € [0,1]}. Then (¢, € Poa, where i3 and (e, are given in the proof.

Proof. By Lemma 4 and (8) we have

1

(Le,0)(t) = & / K(t,5)9(s)

0

‘ ~~

1
o [owa
(1)
0

QQ

Nonlinear Anal. Model. Control, 29(3):488-508, 2024
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and there exists (¢, € P\ {0} such that

L, G, = r(Le, )Ce, - )
Hence, we obtain

1

1
& [ Kt (s + ggg [ 1@ = rze) 0.
0

0
Note that 7(L¢, ) > 1, and (HS) enables us to obtain

1
G(1) fo fo (t,s 451 (s)dsdy(t)
1 d )
/ ‘)t r(Lgl — [1 G dyt)

and then

COL LRG0
7"( 51 fo

r(Le,)Ce, (1) = & / K(t, 5)Ce, (s) ds + &
0

Consequently, we have
1
Ce, (1) / A(t, 5)Ce, (s
0

where

g & s G(t) Jy K(t,s) dr(t)
9= T KO = f o)

Note that (6) and (7) imply that

[ ale' P Gn () e
C&(t)go/r(LsJG(l)s* {H (Lgl)G(l)—folG(t)dy(t)} 1= e ()
and
/ K. )dv (1)
s) dy
Ca(t) 2 Lgl O/TL& )dy()Cg (5 ds
S o1 fo (1 -ty 1d7()
G()[()P[r(Le,)G(1) — f) G

1
/sl—so‘ e, (s)
0

https://www.journals.vu.lt/nonlinear-analysis
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_ o s* fol 11—ttt dv( )
[G'(DP0(@)B[r(Le,)G(1) — f, G
" {1+ G(l)v(ll) ]
r(Le,)G(1) — [LG(t
[ alcP G(l)v(l)
. 0/ r L§1 (1)s* |:1 " L§1 fO :|

X 5(1—5)""Ce, (5) ds

> k3t |e, |,

where
o — s* fol 1—t) et dy(t )
(G (OR[N (@)P[r(Le, )GO) = [, G
s G(l)v(l) ] |
r(Le, )G fo
This completes the proof. O
Note that
K1 *fol L 1dv() {H Gn () } _—
Rz [G(DP[C(@)PG)- [y G G(1)— J, G(t)dy(t)
and let

Py = {9 € P:0(t) > rat* 9|, t € [0,1]},

where k4 = min{ks, 1/(G(1)I'(«))}. Then from Lemmas 3 and 7 we obtain

L(P) C Py (10)
and
Ce, € Py, i, (e (t) = mat® |¢e, |, t€0,1]. (11)

Proof of Theorem 1. As discussed in Section 2, we only need to prove that ¥ has a fixed
point. By (H6) there exist g > 0 and Xy > 0 such that

ft,z) = (& +¢eo0)|z| for|z| > X, ¢t €[0,1].
For any fixed € with g — ||6]le > 0, from (H3) there exists X; > X such that

K(z) <elz| for|z| > X;i.

Nonlinear Anal. Model. Control, 29(3):488-508, 2024
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Note (H2), and we obtain

f(t,2) = (& +eo)lz| = o(t) = (H)K(x)
= (§1—|—50—€||(5||)|l‘|—0'(t), te [0)1]7 ‘xl >X1.
Let
Cx, = (51 + g0 — 5||5H)X1 + max |f(t,x)|, K* = max K(z),

t€[0,1], |z|< Xy o] <X

and we have

) > (6 + 20— <ol ] - o(t) ~ O, "
IC( )<elz|+ K, te]0,1], z € R.
Note that € can be chosen arbitrarily small, and we let
rafllofl + I61K* + Cx, T (a)
R > ma ,
X{ (a4 2) — era|6]|T(c)
* rara(eo—e|S|PT () (&1+eo—el8DG*(1)
lllf +1101K" + O™ 55— + ety aw e (13)
g 8llm2T'(a) lI8]1(&1+e0—ell8INDG2(1)
Fa(eo = loDI = e 5] — € aje-jre@ amm)
In what follows, we prove that
4% 7é ,LLC&’ e aBRa > 0, (14)

where (¢, is defined in (9), and Br = {9 € E: ||¥|| < R}. Suppose the contrary. Then
there exist 1 € 0Bgr, 1 = 0 such that

U1 — U1 = 1, - (15)

Note that ;47 # 0, otherwise, ¥; is a solution for (1), and the theorem is proved. Let
1
/@ §) +8()K(91(5)) + Cx] ds, ¢ € [0,1],
0

where O(t, s) is defined by Lemma 1. From (2), (3), 51 can also be expressed by

+ =2 [ 9,(t)dy(t), te]o,1]. (16)
/

https://www.journals.vu.lt/nonlinear-analysis
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Recall that o(s) + 8(s)K(91(s)) + Cx, € P fors € [0,1], then J; € P. Furthermore,
(15) enables us to obtain

I1(t) +01() = pae, (1) + (F01)(t) + D1 (¢)

*/K (t,8)[f(s,91(5)) + a(s) + 6(s)K(91(s)) + Cx, | ds

/ ) 4 01(8)] dy(t) 4 pale, ().
0

Q\

From (H5) we have

1

/ [01(t) +01.(8)] dy(t)
0

_ / / K(t,)[f (5.91(5)) + 0(s) + 5()K (91 (5)) + Cx, ] ds d(t)

0

1
Sk
0
and
1
/ ) +01(t)] dv(t)
0

{ ) [ [ K517 0105)) +0(5) + SK(01(5) +Cx ] dsda (1)
0 0
0

1

/ﬁl )+ 0u(8)] dn(t +u1/<gl ) dy(t)

0

Q

1

— [} G(t) dv(t)

+mGQ) [ ¢ (t)dv(t)}G(l)

Consequently, we have

D1(t) + 94 (t)

_ /K(t,s) [f(s,01(5)) + () + 6()C(01()) + Cxy] ds + e, (£)
0

i G(t)
G(1) — [} G(t)d(t)

/ Ce, (B) dy(t)
0

Nonlinear Anal. Model. Control, 29(3):488-508, 2024
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G(t)
G(1) — Jy G dy (1)

xO/O/Kts F(5,01(5)) + 0 (s) + () (01(s)) + Cx,y ] ds dr(t)

_ /@(t, [F(5,01(5)) + 0 (s) + 8(s)K(91(5)) + Cx, ] ds + e, (1)
0

+ piG(t) /1C
0

— [ G(t)d
Note that
f(5,91(5) + 0(s) + 3(s)K (V1 (5)) + Cx, 20, s €[0,1],
and
et 1
o - m O/Cgl
- 1
> G(tl)r( @) G(1) MG 1()t ) dy(t) O/C& Ja). el

Then (10) and (11) imply that
191 + ’51 S PQ. (17)

From (16) we obtain

_ / O(t, 5)[0(s) + 6(s)K(91(s)) + Cx,] ds
0

Note that
o(s) +6(s)K(91(s)) + Cx, 20, se€][0,1],
and we have 51 € Py. Moreover, note that the choice of R in (13), Lemma 2(ii), and (12)

imply that

1
19l < /@su — )2 ds[flo ] + 1Bl (eR + K*) + Cxy] <R. (18)
0

https://www.journals.vu.lt/nonlinear-analysis
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From (12) and (H2) we have

(W91)(t) + 91 (¢)

- /K(t, O [F(5,01(s)) + 0(s) + 6(s)K(01(s)) + Cox, ] ds
0

t) + 91(t)] dy(t)

O\H

1
/K (62 + 20 — 81 [21.(5)] — o(s) — Cix, +a(s) + Cix,] s
0

(1)

@/ [@+h@]

+

Q‘Q
o _

1

K (t,s)9 (s d+—/ t) + 91(t)] dy(t)
0

> (& +e0 —ed])

= (&1 +e0—<ldl)

S O~ _

K(t,S) [191( )+’L91 dS-‘ri/ +’l91
0

1

(&1 + 20— 2]4]) /Kt ) (s
0

1

251/K(t,5)[?91( )+ 1 (s )] ds +—/ t) +01(t)] dvy(t)
0

0

using the fact that
1
(eo — ]3] /K(t, $)[91(5) + 91 ()] ds
0

1
(& 420 —<ll6]) /Ktsﬁl 0, telo1].
0

Indeed, from (17) and (18) we get

01 (t) +01(t) = kat® YOy + 01| = kat® L (J01]| — [9:])), te€[0,1].

Nonlinear Anal. Model. Control, 29(3):488-508, 2024
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Then note that the choice of R in (13), Lemma 2(iii), and (18) imply that

(20 = €l81) [ K(t.s)[91(5) + T(s)] ds = (€2 + 20— <[5]) [ K(t.5)r() s
0

K(t,5)ras® ™ (I191] = [91]]) ds — (€2 + 20 — €l|9]])

G*(1)
G(1) — [ G(t) dv(t)

Sa—l(l _ T)a—l

ral'(@) .
X [’@1(50—55”)(73— ﬁ[” ol +[[0l(eR + K )+Cx1]>

_ (& teo — llSNGZ() [|a|+||5||(gvz+/c*)+cxl]]

— [y G(t) dy(t)]

> 0.
Therefore, we have
(WI1)(t) + 01(t) = Le, (91 +01)(t), te[0,1].

Together with (15), we have

D1(t) + 91(t) = prle, () + (F91)(8) + V1(t) > pale, (£) + Le, (91 + 01)(t)
= ,UIC& (t)a te [Oa 1]

Define a set W = {p: 9, + 0 > wCe, } and p* = sup W. Then pq € W and p* > .
Hence, note that L¢, : P — P, by (9) we have

D1(8) +01(t) = paCe, (#) + Le, (91 + 1) () > e, (1) + (Le, 1™ e, ) (1)
= Mlgﬁl (t) + M*T(Lfl)C& (t) > (/J’* + Ml)C& (t)a

which contradicts the definition of p*. As a result, (14) holds, and Lemma 5 implies that
deg(I — ¥, Bg, 0) = 0. (19)
From (H7) there exists a sufficient small p € (0, R) such that

|f(t,2)] < &la| foraz €0, 0], t €[0,1]. (20)
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For this ¢ we claim that
U # pd, Y€0B,, p=1,

where B, = {¥ € E: ||¥|| < o} for ¢ > 0. If the claim is false and there exist ¥ € 0B,,
o = 1 such that
Uiy = M2192,

then (20) implies

1
1

/ ts|f(st92 ’d +?)0/1’192

1

0
< &/K(t, s)|92(s)| ds + g((?)/’ﬁg(t”d'y(t) = (Le, |02]) (2).
0 0

Note that r(Lg,) < 1, which implies that (I — Lg,) ™! exists, and
(I—Le) ' =T+Le,+ L+ + L%, +
Consequently, note that ([ — L¢,) ™! : P — P, and we have
((I = Le,)[92]) (1) 0 = [92(t)| < (I = Le,) 0 =0, (21)

which implies that ¥2(¢t) = 0, ¢ € [0,1], and contradicts ¥ € 0B,. Consequently,
Lemma 6 implies that
deg(I — ¥, B,, 0) =1.

Combining this with (19), we have
deg(I — ¥, Br \ By, 0) = deg(I — ¥, Bgr, 0) —deg(I — ¥, B,, 0) = —

Therefore, the operator ¥ has at least one fixed point in B \EQ. Equivalently, (1) has at
least one nontrivial solution. This completes the proof. O

From [16] we obtain that the conjugate space of E, denoted by E*, is
E* = {+: v has bounded variation on [0, 1]}.

Moreover, the dual cone of P and the bounded linear functional on F can be expressed
by
P* :={v € E*: ~is nondecreasing on [0, 1]}

and
1

= /19(t)d’y(t), YekE, veE".
0
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Note that 7(L¢) > 0 in Lemma 4, and there exists ¢ € P* \ {0} such that
L¢pe = r(Le) e,

where L : E* — E™ is the conjugate operator of L¢ denoted by

1
_g/ds/KTsdH )+ (t /0771—) (r), 6e€FE".
0

Now, we list some assumptions when the nonlinearity f grows sublinearly:

(H8) There exists {3 > 0 with r(L¢,) > 1 such that liminf |, f(¢,2)/|z] = &3
uniformly for ¢ € [0, 1].

(H9) There exists {4 > 0 with r(Lg,) < 1 such that limsup|,_, o | (¢, 2)|/]2] <
&, uniformly for ¢ € [0, 1].

Theorem 2. Suppose that (H1), (H4), (H5), (H8), and (H9) hold. Then (1) has at least
one nontrivial solution.

Proof. From (H8) there exists a sufficient small g; > 0 such that
f(t,z) > &lzf,  |z[ < o1, t €]0,1]. (22)

In what follows, we prove
9=V # poor, =0, (23)

where oy is a fixed element in P with ¢y (t) # 0,¢ € [0, 1]. Suppose the contrary. Then
there exist U3 € 0B,,, 13 = 0 such that

U3 — W3 = pzws,

where B,, = {¥ € E: ||| < p1}. This equation can also be expressed by

1 1
= /K t S f(S 193( d5+ 7;/193 +,u3w1( ) te [0,1].
0 0
Now (HS5) enables us to obtain
1 1
= 0 30 HG(t) w
0/ 0(:5)1 (- (5) s+ pamlt) + 0T / (1) d (1)

= (Lo F)d3)(t) + pswn (t) + o

This, combining with (22), implies that
3 € P.
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Consequently, we have

1

1
0a(0) > &0 [ K(t.s)a(s)as+ ot [ a0 rte)
0

0
= (Lgsﬁg)(t), t e [O, 1] 24)

Note that7(Lg,) > 1, and thus there exists ¢, € P*\{0} suchthat L} v¢, = 7(Lg;) e, -
Therefore, multiplying both sides of (24) by dt¢, (t) and integrating over [0, 1], we obtain

/ 93(t) die, (1)
0
/ (Le,93) (1) dide, (1)
0
1
= d’(ﬂgs < & K t, 8 193 dS + == 193 d’y( ))
oo w f
( s 1 1 G t
= 3 dr K t,T d’(/Jg3 +’Y d’(/)g3 >
[osonfe for [ [ 60
= (L e, U5) = (Le,) / 93(t) die, (1), 25)
0

Note that 93 € P and ¢¢, € P*\ {0}, and from the definition of the Riemann—Stieltjes
integral

1
/ 3 () dube, (¢ —hmzﬁg &) [en () — s (ti1)] = 0, 26)
0

where 0 = tg < t1 < - < th1 < t, =1, A = maxlgign(ti — tifl) for all
& € [ti—1,t;),i=1,2,...,n. Note that 7(L¢,) > 1, and by (25), (26) we have

1
[ vt ave, o =0 @7
0

Note that for all divisions ¢;, (27) holds, we only obtain ¥3(t) = 0, ¢ € [0, 1]. Therefore,

this contradicts ¥3 € 0B,,, and thus (23) holds. Lemma 5 implies that

deg(I — W, B,,, 0) = 0. 28)
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From (H9) there exists Cy > 0 such that
|f(t,2)] < &la[+ Co, z€R, te0,1].

Define aset S = {¥ € E: ¥ = pd, n > 1}. Now we prove that S is a bounded set in
FE. Indeed, if 94 € S, then there exists 114 > 1 such that

[93()] = [ #0a)0)

</K(t,s)’f(s,194(s))|ds+gg))/h%(t)‘dfy(t)

1 1
<§4/K(t,s)‘ﬁ4(s)‘ds+g((?)/‘ih(t)‘dfy(t)
0

0

[ G
+ C’go/ G)s* s(1—8)*""ds

[G" ()P CoT (@)

= (Le,[04]) (1) + G(1)s* T(a+2)

Note that 7(L¢,) < 1, and we use the similar method in (21) to obtain

[G" ()P CaT ()

[94(t)| < (I - L&)*lm,

te[0,1].

From the definition of our norm we obtain that there exists a M > 0 such that
[[94]] < M.

This implies that S is a bounded set in E as required. If we take R1 > sup S and Ry > o1,
we have

Uy # wd, ¥ €0Br,, p=1,
where Br, = {¥ € E: ||¥]| < R1}. Consequently, Lemma 6 implies that
deg(I — ¥, Bgr,, 0) =1.
Combining this with (28), we have
deg(I — W, Bg, \ B,,, 0) = deg(I — ¥, Bgr,, 0) —deg(I — ¥, B,,, 0) = 1.
Therefore the operator ¥ has at least one fixed point in Bg, \ B,,. Equivalently, (1) has

at least one nontrivial solution. This completes the proof. O
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