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Abstract. In this paper, the dynamics of intricate chaotic attractors of the nonlinear system modeling
the dark matter and dark energy interactions is studied indulging fractal–fractional operator in
the Caputo sense. The constructed strange attractors witness that the dynamics of the universe
components is dominated by the fractal properties. The fractional entropies stemmed from the
classical entropy are estimated with fractal parameter and graphically portrayed to measure the
randomness of the dynamic variables associated with the proposed dynamical system.
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1 Introduction

All the atoms and light in the universe together constitute less than 5% of the total mass.
The rest is composed of dark matter (26.8%) and dark energy (68.3%), which are invisible
yet highly influence the structure, dynamics and evolution of the universe, according to
Planck data [12]. Dark matter, which makes up the mass of most galaxies and galaxy
clusters, is responsible for their organization on grand scales. Meanwhile, the unexplained
force responsible for the universe’s accelerating expansion is known as dark energy.
In [14], authors proclaimed that gravity exposes both attractive and repulsive behavior,
and the dark matter and dark energy are merely the properties of gravity. Following to
a potential phenomenon referred to as the “dark matter and dark energy interaction,” any
two matter fields in particle physics or other more theoretical contexts can interact. The
cosmology community is interested in this particular qualitative theory in light of its many
possible consequences. As in the interaction model dark energy decay into dark matter, the
interaction models of dark matter and dark energy provide an analogous, well-researched
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description of the dark sector of the Universe. They are driven by a workable solution to
the so-called coincidence and cosmological constant concerns; refer [8, 11, 18].

In the cosmological settings of dark matter and dark energy, the application of dynam-
ical systems has been revealing several surprising facts in connection with the theory of
fractals and chaos. The dynamics of dark energy models is studied applying centre mani-
fold theory to the dynamical system in [9]. The applications of dynamical systems in dark
energy models ranging from scalar fields to modified gravity are discussed in detail in the
thesis [22]. In [4], interactions among matter, dark matter and dark energy are investigated
based on Lotka–Volterra-like equations. The study reported that interaction dynamics of
these components are chaotic in nature, and the universe is evolving chaotically within
the cosmic time-line. Later, in order to improve the accuracy of these results under special
conditions, a new interaction concept is proposed to consider dark matter and dark energy
as an open and interacting thermodynamic system in [5]. A nonlinear interaction function
is generally a demanding tool to discuss the dynamics of the interacting model. Nonlinear
interaction models, however, are always an intriguing way to investigate the dynamics of
the Universe and see the extent to which we can extract any more insights from it. In this
work, we investigate a nonlinear dynamical system using a fractal–fractional technique,
motivated by the interacting scenarios. The nonlinear coupled equations modeling the
Interaction between Dark Matter and Dark Energy (IDMDE) is presented as follows:

x′(t) = y(t)z(t)− x(t),

y′(t) =
(
z(t)− p

)
x(t)− y(t),

z′(t) = 1− x(t)y(t),

(1)

where x(t), y(t) and z(t) are variables governing the dynamics of dark matter and dark
energy interactions, and p ∈ R+ is the control parameter of the system. In [5], it is shown
that the dynamics of the system has concretely evidence that the interactions between dark
matter and dark energy exhibit a chaotic behavior when p = 3.46, making a significant
contribution in the cosmology.

Being instigated from the chaotic dynamics of the integer-order system (1), this work
aims to construct a fractal–fractional-order system to potentially capture more fascinat-
ing dynamical behaviors such as self-similarity and complexity. The fractal–fractional-
order systems generalize both integer-order and fractional-order systems; see [3]. An
advancement in the field of differentiation and integration has been witnessed when the
classical differentiation has been extended to the theme of nonlocal operators. The clas-
sical derivative is blended with the power-law kernel, and ultimately, this leads to the
development of new calculus, popularly called as the fractional calculus. Among the
various fractional calculus methods, the Riemann–Liouville and Caputo fractional deriva-
tive, Caputo–Fabrizio fractional derivative and Atangana–Baleanu fractional derivative
are the three notable methods successfully applied in predicting chaotic behaviors of
linear, nonlinear, autonomous and nonautonomous dynamical systems; see, for instance,
[1, 10, 15, 19]. Since dynamical systems and fractals are opposite sides of the same coin,
to explore the fractal properties while dealing the fractional-order systems, the concept
of fractal differentiation is introduced; see [13, 20]. For detailed information on fractal
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dimension and its applications on nonlinear dynamics, we refer to [6,7]. In case of fractal
differentiation, if the fractal order tends to 1, then the classical derivative is recovered.
In [2], Atangana has introduced three fractal–fractional differential and integral operators
to attract more nonlocal problems displaying fractal behaviors.

Indeed, fractional derivative helps to address complex chaotic problems, and the frac-
tal derivative reveals the hidden self-similar nature, thus bringing the two concepts of
fractional order and fractal dimension into one (fractal–fractional) operator significantly
contributes to uncover strange dynamics of complex systems. Based on the through liter-
ature study, we identified that the dynamics of IDMDE is discussed only with the integer-
order system, and no work is reported with fractional or fractal derivative for dark matter
and dark energy interactions. Our paper addresses this short fall by utilizing the numerical
scheme of Caputo fractal–fractional derivative proposed in [2] to explore the dynamics
of dark matter and dark energy interactions. For different values of fractional order and
fractal dimension, the chaotic characteristics of IDMDE are investigated. Further, the dy-
namics of integer-order, fractional-order and fractal–fractional-order systems of IDMDE
are compared using numerical simulations. The main purpose of this work is to enlighten
that the dynamics of dark matter and dark energy interactions follows fractal patterns with
self-similar nature in addition to chaotic behavior.

Besides discussing the dynamics of system (1) under fractal–fractional operator, its
fractional entropies are studied in the fractal phase space. Entropy measures the rate of
increase in dynamical complexity as the system evolves with time; for more information
on the entropy of dynamical systems, see [23]. A variety of entropies with one, two
and three parameters are reviewed for different probability distributions in [16]. In this
work, entropy formulations are computed for the probability distributions of dynamic
variables associated with the fractal–fractional IDMDE system. The entropies are taken
with two parameters, namely, fractional order and fractal dimension, and upon particular
conditions, they converge to the classical Shannon entropy. The computed entropies are
simulated versus fractional order and fractal dimension to compare the randomness of
each dynamic variable.

The rest of this paper is structured as follows. Section 2 proposes a fractal–fractional-
order system in the Caputo sense to explore the dynamics of dark matter and dark energy
interactions. The numerical scheme discussed in this section is employed in graphi-
cal simulations for the visual flavor. To further illustrate the dynamical complexity of
the fractal–fractional IDMDE system, fractional-order entropies are computed with frac-
tal dimension in Section 3. The results presented in Sections 2 and 3 are concluded in
Section 4.

2 Modeling dark energy and dark matter interaction under fractal–
fractional derivative

In this section, we introduce the dynamical system modeling the interaction between dark
energy and dark matter using the definition of fractal–fractional derivative in the Caputo
sense. Consider the IDMDE system modeled using the fractal–fractional derivative under
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the Riemann–Liouville sense and given by
RLDα,τ

0,t x(t) = y(t)z(t)− x(t),

RLDα,τ
0,t y(t) = (z(t)− p)x(t)− y(t),

RLDα,τ
0,t x(t) = 1− x(t)y(t),

where RLDα,τ
0,t x(t) is the fractal–fractional derivative of a fractal differentiable function

x(t) with order τ and the fractional order α in the Riemann–Liouville sense with power-
law kernel [2] expressed by

RLDα,τ
0,t x(t) =

1

Γ(m− α)

d

dtτ

t∫
0

(t− s)m−α−1x(s) ds

with m− 1 < α, τ 6 m ∈ N and dx(s)/dsτ = limt→s(x(t)−x(s))/tτ − sτ ). Since the
fractional integral is differentiable, the fractal–fractional derivative can be converted into
the following system:

RLDα,τ
0,t x(t) =

1

Γ(1− α)

d

dt

t∫
0

(t− s)αf(x, y, z, s) ds
1

τtτ−1
,

RLDα,τ
0,t y(t) =

1

Γ(1− α)

d

dt

t∫
0

(t− s)αg(x, y, z, s) ds
1

τtτ−1
,

RLDα,τ
0,t z(t) =

1

Γ(1− α)

d

dt

t∫
0

(t− s)αh(x, y, z, s) ds
1

τtτ−1
,

(2)

where

f(x, y, z, s) = y(s)z(s)− x(s),

g(x, y, z, s) = (z(s)− p)x(s)− y(s),

h(x, y, z, s) = 1− x(s)y(s).

Then system (2) can be rewritten as
RLDα

0,tx(t) = τtτ−1f(x, y, z, s) ds,

RLDα
0,ty(t) = τtτ−1g(x, y, z, s) ds,

RLDα
0,tx(t) = τtτ−1h(x, y, z, s) ds.

To indulge the initial conditions, the Riemann–Liouville derivative is replaced with the
Caputo derivative. Thus,

CDα
0,tx(t) = τtτ−1f(x, y, z, s) ds,

CDα
0,ty(t) = τtτ−1g(x, y, z, s) ds,

CDα
0,tx(t) = τtτ−1h(x, y, z, s) ds,

(3)
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where CDα,τ
0,t x(t) is the fractal–fractional derivative of a fractal-differentiable function

x(t) with order τ and the fractional order α in the Caputo sense [2] expressed by

CDα
0,tx(t) =

1

Γ(m− α)

t∫
0

dx(s)

ds
(t− s)m−α−1 ds

with 0 < m − 1 < α 6 m ∈ N. On applying the Riemann–Liouville fractional integral
on both sides, we obtain

x(t) = x(0) +
τ

Γ(α)

t∫
0

sτ−1(t− s)α−1f(x, y, z, s) ds,

y(t) = y(0) +
τ

Γ(α)

t∫
0

sτ−1(t− s)α−1g(x, y, z, s) ds,

z(t) = z(0) +
τ

Γ(α)

t∫
0

sτ−1(t− s)α−1h(x, y, z, s) ds.

(4)

For n ∈ N, the solution of system (4) at t = tn+1 is expressed as

x(tn+1) = x(0) +
τ

Γ(α)

tn+1∫
0

sτ−1(tn+1 − s)α−1f(x, y, z, s) ds,

y(tn+1) = y(0) +
τ

Γ(α)

tn+1∫
0

sτ−1(tn+1 − s)α−1g(x, y, z, s) ds,

z(tn+1) = z(0) +
τ

Γ(α)

tn+1∫
0

sτ−1(tn+1 − s)α−1h(x, y, z, s) ds.

Approximating the above integrals in the finite interval [tj , tj+1], it is seen that

x(tn+1) = x(0) +
τ

Γ(α)

n∑
j=0

tj+1∫
tj

sτ−1(tn+1 − s)α−1f(x, y, z, s) ds,

y(tn+1) = y(0) +
τ

Γ(α)

n∑
j=0

tj+1∫
tj

sτ−1(tn+1 − s)α−1g(x, y, z, s) ds,

z(tn+1) = z(0) +
τ

Γ(α)

n∑
j=0

tj+1∫
tj

sτ−1(tn+1 − s)α−1h(x, y, z, s) ds.

(5)
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The piece-wise Lagrangian interpolation is employed to approximate the functions
sτ−1f(x, y, z, s), sτ−1g(x, y, z, s) and sτ−1h(x, y, z, s) such that

Pj(s) =
s− tj−1
tj − tj−1

tτ−1j f
(
x(j), y(j), z(j), t(j)

)
− s− tj
tj − tj−1

tτ−1j−1f
(
x(j − 1), y(j − 1), z(j − 1), t(j − 1)

)
,

Qj(s) =
s− tj−1
tj − tj−1

tτ−1j g
(
x(j), y(j), z(j), t(j)

)
− s− tj
tj − tj−1

tτ−1j−1g
(
x(j − 1), y(j − 1), z(j − 1), t(j − 1)

)
,

Rj(s) =
s− tj−1
tj − tj−1

tτ−1j h
(
x(j), y(j), z(j), t(j)

)
− s− tj
tj − tj−1

tτ−1j−1h
(
x(j − 1), y(j − 1), z(j − 1), t(j − 1)

)
.

(6)

Substituting Eq. (6) into Eq. (5) and solving the integrals, we obtain the numerical
scheme of system (2)

x(tn+1)

= x(0) +
τ(∆t)α

Γ(α+2)

n∑
j=0

[
tτ−1j f

(
x(j), y(j), z(j), t(j)

)(
(n+1−j)α(n−j+2+α)

− (n−j)α(n−j+2+2α)
)
− tτ−1j−1f

(
x(j−1), y(j−1), z(j−1), t(j−1)

)
×
(
(n+1−j)α+1 − (n−j)α(n−j+1+α)

)]
,

y(tn+1)

= y(0) +
τ(∆t)α

Γ(α+2)

n∑
j=0

[
tτ−1j g

(
x(j), y(j), z(j), t(j)

)(
(n+1−j)α(n−j+2+α)

− (n−j)α(n−j+2+2α)
)
− tτ−1j−1g

(
x(j−1), y(j−1), z(j−1), t(j−1)

)
×
(
(n+1−j)α+1 − (n−j)α(n−j+1+α)

)]
,

z(tn+1)

= z(0) +
τ(∆t)α

Γ(α+2)

n∑
j=0

[
tτ−1j h

(
x(j), y(j), z(j), t(j)

)(
(n+1−j)α(n−j+2+α)

− (n− j)α(n−j+2+2α)
)
− tτ−1j−1h

(
x(j−1), y(j−1), z(j−1), t(j − 1)

)
×
(
(n+1−j)α+1 − (n−j)α(n−j+1+α)

)]
.

(7)

The numerical scheme presented in Eq. (7) is employed to approximate the graphical
solutions of the following IDMDE system modeled using the Caputo fractal–fractional
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derivative operator. Consider the following IDMDE system:
CDα,τ

0,t x(t) = τtτ−1f(x, y, z, s) ds,

CDα,τ
0,t y(t) = τtτ−1g(x, y, z, s) ds,

CDα,τ
0,t x(t) = τtτ−1h(x, y, z, s) ds,

(8)

where f(x, y, z, s) = y(s)z(s) − x(s), g(x, y, z, s) = (z(s) − p)x(s) − y(s) and
h(x, y, z, s) = 1 − x(s)y(s) with control parameter p = 3.46. The dynamics of the
proposed system is studied by maintaining a fixed fractional order α, while varying the
fractal dimension τ and, conversely, by keeping the fractal dimension τ fixed and altering
the fractional order α. The system’s behavior is graphically portrayed with two set of
initial values x(0) = y(0) = z(0) = 1 and x(0) = 2.5, y(0) = −5.8, z(0) = 5.15
in Figs. 1–3 and Figs. 4–6, respectively. In Fig. 1, both the fractional order and fractal
dimension are set to 1 (i.e., α = τ = 1), it is and observed that the results coincide with
the dynamics of integer-order systems. Figure 1(a) represents the chaotic attractor of the
three-dimensional dynamical system (8), Figs. 1(b), 1(c) and 1(d) illustrate the dynamics
of two variables x vs y, x vs z and y vs z, respectively. In Fig. 2, blue (2(a)), pink (2(b)),
orange (2(c)) and green (2(d)) curves represent the chaotic attractors obtained by fixing
α = 1 and τ = 0.73, whereas red (2(a)), black (2(b)), blue (2(c)) and violet (2(d)) are
the chaotic attractors obtained by fixing α = 0.92 and τ = 1. Specifically, decreasing
fractal dimension preserves the self-similar pattern while manifesting a decrease in the
oscillation count within the system. The tendency toward a limit cycle attractor is also
significant. On the other side, a reduction in fractional order generates one portion of
attractor with less oscillation count. By varying both τ and α, the dynamical behaviour of
the system is simulated in Fig. 3. With the values τ = 0.92 and α = 0.92, Fig. 3 depicts
strange attractors with lacking perfect symmetry, which is caused by the power-law effect
as this function not possesses statistical setting. Such complex attractors could not be
captured neither by fractional differential operator nor by fractal differential operator at
individual basis. Thus, a combination of fractional and fractal operator enables the system
for depicting additional complexities.

Figure 4(a) depicts the chaotic attractor of system (8) with the initial conditions x(0) =
2.5, y(0) = −5.8, z(0) = 5.15 fixing both τ and α to be 1. Figures 4(b), 4(c) and
4(d) demonstrate attractors in the phase planes x vs y, x vs z and y vs z, respectively.
As both fractional order and fractal dimension are one, Fig. 4 resembles the attractors
corresponding to the integer-order system. Figure 5 presents the dynamical evolution of
the system with varying τ and α. The curves in blue (5(a)), pink (5(b)), orange (5(c)) and
green (5(d)) represent the simulations with α = 1 and τ = 0.73, whereas red (5(a)), black
(5(b)), blue (5(c)) and violet (5(d)) are the simulations with α = 0.92 and τ = 1. While
varying the fractal dimension, it is observed that the system evolves towards a butterfly-
type attractors, which seems to be symmetric, on the other hand, decreasing the fractional
order produces the attractor with less oscillations. Figure 6 portrays strange attractors
with τ = 0.72 and α = 0.92. Comparison of varying fractal dimension τ with fixed
fractional order α and, similarly, fixed fractal dimension τ with varying fractional order
α of system (1) are graphically presented in Figs. 7 and 8 corresponding to two different
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set of initial conditions. Ultimately, the dynamics of the nonlinear chaotic systems are
significantly influenced by the fractal and fractional orders.

(a) (b)

(c) (d)

Figure 1. Dynamical behavior of fractal–fractional system (8) with x(0) = y(0) = (0) = 1 and α = τ = 1.

(a) (b)

(c) (d)

Figure 2. Dynamical behavior of fractal–fractional system (8) with x(0) = y(0) = (0) = 1, varying α and τ .
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(a) (b)

(c) (d)

Figure 3. Dynamical behavior of fractal–fractional system (8) with x(0) = y(0) = (0) = 1, α = 0.92 and
τ = 0.92.

(a) (b)

(c) (d)

Figure 4. Dynamical behavior of fractal–fractional system (8) with x(0) = 2.5, y(0) = −5.8, z(0) = 5.15,
α = τ = 1.
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(a) (b)

(c) (d)

Figure 5. Dynamical behavior of fractal–fractional system (8) with x(0) = 2.5, y(0) = −5.8, z(0) = 5.15,
varying α and τ .

(a) (b)

(c) (d)

Figure 6. Dynamical behavior of fractal–fractional system (8) with x(0) = 2.5, y(0) = −5.8, z(0) = 5.15,
α = 0.98 and τ = 0.72.
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(a) (b)

Figure 7. Dynamics of system (8) with x(0) = y(0) = z(0) = 1: (a) fixed α and varying τ , (b) fixed τ and
varying α.

(a) (b)

Figure 8. Dynamics of system (8) with x(0) = 2.5, y(0) = −5.8, z(0) = 5.15: (a) fixed α and varying τ ,
(b) fixed τ and varying α.

3 Fractional entropy in fractal phase space

This section discusses fractional entropies for the proposed dynamical system in the
fractal phase space, that is, entropies involving fractional order and fractal dimension. The
Shannon entropy, denoted by S, of a discrete probability distribution P={p1, p2, . . . , pN}
with

∑
i pi = 1 and pi > 0 is defined as

S =
∑
i

piI(pi) = −
∑
i

pi ln pi, (9)

the expected value of the information content is represented by I(pi) = − ln pi. In [21],
authors have introduced a fractional entropy involving two-parameters expression and
given by

S1
q,β =

∑
i

pqi (− ln pi)
β+, q, β > 0. (10)

The two parameters q and β are associated with fractality and fractionality, respectively.
Therefore, entropy expressed in Eq. (10) is referred as a fractional entropy in the fractal
phase space. In addition, if {q, β} = {1, 1}, then the expression in Eq. (10) reduces to the
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(a) (b)

(c)

Figure 9. Values of S1
q,β versus β ∈ [−0.6, 0.6] and q ∈ [1.2, 2.2] for probability distributions of (a) x(t), (b)

y(t) and (c) z(t) associated with the dynamical system (8).

standard Shannon entropy expressed in Eq. (9). In the perspective of fractional calculus,
the formulation of information of order β ∈ R is given by

Iβ(pi) = DβI(pi) = − p−βi
Γ(β + 1)

(ln pi + Ψ̃), (11)

where Dβ denotes a fractional derivative operator, Ψ̃ = Ψ(1) − Ψ(1 − β), and Ψ(·)
represents the digamma function. In [17], authors defined one more fractional entropy
based on Iβ(pi) expressed in Eq. (11), and its formula is provided by

S2
q,β =

1

1− q
ln

{∑
i

pi exp
[
(1− q)Iβ(pi)

]}

=
1

1− q
ln

{∑
i

pi exp

[
(1− q) p−βi

Γ(β + 1)

]}
. (12)

For more details on fractional entropies with one and two parameters, readers are recom-
mended to visit [16]. Using the above presented formulations in Eqs. (10) and (12), the
fractional entropies are estimated for the probability distributions of dynamic variables
x(t), y(t) and z(t) associated with the IDMDE system (8). The estimated entropies
are graphically illustrated individually for each variable in the specified domain. For the
values of q ∈ [1.2, 2.2] and β ∈ [−0.6, 0.6], the two-parameter entropy S1

q,β is computed

https://www.journals.vu.lt/nonlinear-analysis
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(a) (b)

(c)

Figure 10. Values of S2
q,β versus β ∈ [−0.4, 0.4] and q ∈ [1.8, 2.8] for probability distributions of (a) x(t),

(b) y(t) and (c) z(t) associated with the dynamical system (8).

(a) (b)

Figure 11. Overlapping mesh of (a) S1
q,β and (b) S2

q,β versus α and q for dynamic variables x, y and z
associated with system (8).

for x, y and z and plotted in Figs. 9(a), 9(b) and 9(c), respectively. Similarly, the entropy
S2
q,β is computed for x, y and z with the values of q ∈ [1.8, 2.8] and β ∈ [−0.4, 0.4],

and its corresponding graphs is provided in Fig. 10. It is observed that in the considered
domain of q and α, the entropies S1

q,β and S2
q,β do not diverge though varies slightly. To

compare the dynamics of x, y and z, the fractional entropies mesh are plotted in a single
graph in Fig. 11. In Fig. 11(a), three mesh of S1

q,β corresponding to red (x), blue (y) and
green (z) are plotted. The meshes overlap with each other portraying that each one shows
different dynamical behavior. On the other side, three mesh red (x), blue (y) and green (z)
of S2

q,β sliding one above the other depicts that the rate of dynamics vary moderately.
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4 Conclusion

The fractal dimension measures roughness and captures irregularities where the tradi-
tional notion of integer dimensionality fails. The interesting connection between fractal
dimension and fractional order is aroused from the fact that fractals often show nonin-
teger dimension. This attribute highlights the necessity of employing fractal–fractional
derivative to better portray and understand complex systems. The application of fractal–
fractional derivative facilitates a profound understanding of physical phenomena display-
ing intricate self-similar dynamics across scales. In this work, the dynamics of dark matter
and dark energy interactions are studied under fractal–fractional derivative in the Caputo
sense. As a result of indulging both fractional order α and fractal dimension τ , new
strange attractors are obtained with higher complexities than the existing attractors as-
sociated with the integer-order dynamical system. The results obtained confirm that at the
limiting case of α = 1 and τ = 1, the original attractors (of the integer-order system) are
retrieved, indicating the diversity of the proposed system. The examples discussed with
two different initial conditions x(0) = y(0) = z(0) = 1 and x(0) = 2.5, y(0) = −5.8,
z(0) = 5.15 clarify that the chaos and the self-similarity highly influence the dynamics
of IDMDE system, and its dynamics is sensitive to the initial conditions. In addition,
decreasing fractal dimension preserves the self-similarity of the attractors, and decreasing
fractional order produces complex asymmetric attractors. The fractional entropies for the
probabilities of dynamic variables of fractal–fractional IDMDE system are discussed, the
results aid to measure the statistical complexity of the system. The findings of this paper
contribute to a deeper understanding of the dynamics of dark matter and dark energy
in the universe. The fractal–fractional IDMDE system evidences the chaotic dynamics
of universe along with fractal properties, benefiting as a tool to understand how nature
functions.
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