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Abstract. This paper is devoted to the existence of random mild solutions for a general class of
second-order abstract random differential equations with state-dependent delay. The technique used
is a generalization of the classical Darbo fixed point theorem for Fréchet spaces associated with
the concept of measures of noncompactness. An application related to partial random differential
equations with state-dependent delay is presented.
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1 Introduction

Many researchers have expressed interest in the study of differential equations with state-
dependent delay since they are fundamental in applications and qualitative theory, and
they describe many physical, chemical, and biological problems. For more details, see the
papers of Biiger and Martin [10], Si and Wang [27]. The literature on this topic is mostly
concerned with first-order ordinary differential equations on finite dimensional spaces,
we mention the works [1, 11, 12]. While there are several papers in which authors discuss
differential problems with various forms of delays (see [5, 8, 18]), there are few studies on
abstract second-order ordinary differential equations with state-dependent delay applied
to partial differential equations, we cite [4, 19,21, 22]. The authors of [2, 3, 6,9, 16, 28]
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investigated multiple differential problems using various tools and approaches, one of
which was the fixed point theory.

The authors of [13] presented the existence of mild solutions for the following partial
integro—differential equations with state-dependent nonlocal local conditions:

t

y'(t) = Ty(t) + / Y(t—0)y(o)do+ ht(t, Yp(ty,)), tERT,
0
yo = K(¢(),y) € C([-p,0], E),

where 7 : D(Y) C E — E is the infinitesimal generator of Cyy-semigroup (T(¢)):>0
on a Banach space F, Y (¢) is a closed linear operator with domain D(Y") > D(Y), h :
Ry xC([-p,0], E) = E, ¢ : C(]-p,+0), E) = Ry, p: Ry x C([-p,0], E) = Ry,
and K : Ry x C([-p, +00), E) = C(|—p, 0], E) are suitable functions (here and bellow
Rt = [0, +00)).

In [20], Hernandez studied the global existence and uniqueness of solutions and well
posedness of the following general class of abstract second-order differential equations
with state dependent delay:

y"(t) =Ty(t) + gt y(t —or(t, ),y (t — o2(t, ), te0,a],
Yo=x€B, W)o=x€B, B=C(-w,0};E),

where 7 : D(Y) C E — FE is the generator of a strongly continuous cosine family of
bounded linear operators (H(t)):cr defined on a Banach space (E, ||-||), o: € C([0,a] x
B;[0,w]) fori =1,2,and g € C([0,a] x E x E; E).

Motivated by the above-mentioned papers and the works [24, 25], where the authors
presented some existence results for a random fractional equation, in this paper, we
discuss the existence of mild solutions defined on unbounded interval for general class
of abstract second-order differential equations with state dependent delay of the form

Y (t, 1) = Py(t, 1) + Bt Yoo (o) Yos (rgepy 1)y LERL, pe (1)
y(tuu’) = @(ta ,LL), t e [7pa O]a (2)
y'(0, 1) = (0, ), 3)

where @ : D(®) C E — F is generator of strongly continuous cosine family of bounded
linear operator (H(t)):cr) on a Banach space (E, ||||), and i : Ry x C([—p,0], E) x
C([-p,0l, E)xY — E, 0; : Ry xC([-p,0],E)xY — E,and ¢ € C([-p,0], E) xT
are suitable functions.

It is important to highlight that our paper serves as a logical extension of the previously
referenced studies. Specifically, our investigation focuses on second-order differential
equations involving a random variable, as opposed to considering first-order differen-
tial equations in [13]. Furthermore, our research builds upon the work done in [20] by
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exploring differential equations on an unbounded domain in conjunction with random
variables.

The following is how this work is organized. Section 2 presents notations, definitions,
and lemmas that will be used throughout the work. Section 3 shows the existence of
random mild solutions for abstract differential equations with state dependent delay. We
will also provide an example to demonstrate the abstract consequence of our effort.

2 Preliminaries

We denote by (G(t)):cr the associated sine family, where

t) /tH(Q)d
0

Consider now the second-order abstract Cauchy problem

y'(t) = Py(t) + (), teRT, @)
y(0)=y, ' (0)=z, 5)

where ¢ : R™ — E is an integrable function, and y, z € E. The function
o(t) =Mt + (0= + [ Gt~ 0v(e)de. te R,
0
is a mild solution of (4)—(5), and when y € (2, y(-) is a C! function on R, and

ywzéamw4wv+/ﬂu—mwm@,tew:

We refer the reader to the papers of Fattorini [17], Vasil’ev and Piskarev [29] for additional
details.
Let © := [0,k], k > 0. L}(O, E) denotes the Banach space of Bochner-integrable

functions y : ©® — FE with
lolls = [ o] at.
0

By §(F) we denote the Banach space of bounded linear operators from F into E with
N[5 = Sup, [R(y)]|-
Let C(O, E) be the Banach space of continuous functions from © into E with the

norm
[yl = sup{||y(®)||, t € O}

https://www.journals.vu.lt/nonlinear-analysis
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Let ®  be the o-algebra of Borel subsets of . The map 3 : 7 — FE is measurable if
for any B € D p, we have

g '(B)={per: yu) eB}C2Z2

Definition 1. (See [23].) A mapping U : 7 x E — E is jointly measurable if for any
B € D, we have

U'(B)={(1n,y) €T x E: U(p,y) € B} C Z x D,

where Z x O is the direct product of the o-algebras Z and © g defined in 7" and F,
respectively.

Lemma 1. (See [23].) LetU : T x E — E be a mapping such that U (-, y) is measurable
forally € E, andlet U(u, -) be continuous for all n € Y. Then the map (1, §) — U(p, )
is jointly measurable.

Definition 2. (See [23].) A function A : © X E x T — FE is called random Carathéodory
if the assumptions that follow are verified:

e The map (t, 9, u) = A(¢t, v, y, p) is jointly measurable for all y € F, and
o y — A(t, 9, y, p) is continuous for almost all (¢,7) € O and u € 7.

The map U : T x E — FE is a random operator if U(y, y) is measurable in p for all
y € Eanditis given as U(u)y = U(p,y). U(n) is a random operator on E. A random
operator U (u) on E is continuous if U (1, y) is continuous in y forall 4 € 7",

Definition 3. (See [15].) Let P(S) be the family of all nonempty subsets of S, and let
R be a mapping from 7" into P(S). U = {(p,¥): p €T, ¥ € R(u)} — S is a random
operator with stochastic domain fR if R is measurable (i.e., for all closed B C S,
{p € T: R(u) NB # 0} is measurable), and for all open B C S and all ) € S,
{pn e T ¢ e R(w), U(p,v) € B} is measurable. U is continuous if every U(u) is
continuous. A mapping ) : " — S is a random fixed point of U if for almost all u € 7,

Y(p) € R(p) and U (1) (1) = 1(p), and for all open B C S, {p € T: ¥(p) € B} is
measurable.

Let C(R.) be the Fréchet space of continuous functions y from R into E with the
family seminorms

lyll; = sup [ly®)]|, JjeN,
t€[0,5]

and the distance
> 27 ||ly — x|
d(y,%) :ZM Yy, € C(R+)

S+ ly =l
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Definition 4. (See [14].) Let My, be the family of all nonempty and bounded subsets
of a Fréchet space 2. {a;}jen, where a; : Mg — RT is a family of measures of
noncompactness in {2 if it verifies the following for all IC, IC1, Ko € M g:

() {a;}jenisfull,ie., a;(K) = 0for j € Nif and only K precompact;
(i1) O(j(lcl) < Oéj(]Cg) for IC; C Ko andj eN;
(ili) oj(conv ) = o;(K) for j € N;
(@iv) If {KC;}i=1,... is a sequence of closed sets from M, such that ;41 C K;, 7 =
1,..., and if lim; ,o o;(K;) = 0 for each j € N, then the intersection set
Koo := N2, K; is nonempty.

Example 1. For K € Mg,y € K, j € N, and € > 0, let us denote by 1’ (y,¢), j € N,
the modulus of continuity of the function y on the interval [0, j], that is,

1 (y,e) = sup{|y(t) — y(o)|t, 0 € [0,]], [t — o <&}

Further, let us put

(K, e) = sup{,uj(y,a), y € IC}, u%(IC) = lim p/(K,e¢),

e—0t

al(K) = sup a(lC(t)) = sup a({y(t), y € IC}),
t€[0,5] t€(0,5]

and
an(K) = u(K) + & (K).

The family of mapping {c, } jen, where o, : M, — R, satisfies conditions (i)—(iv)
from Definition 4.

Definition 5. (See [14].) A nonempty subset K C (2 is said to be bounded if

sup [[yll; < oo, jeEN.
yeK

Lemma 2. (See [7].) If A is bounded subset of Banach space (2, then for each € > 0,
there is a sequence {yi }5°, C A such that

a(A) < 20({yr}is)) +e

Lemma 3. (See [26].) If {y;}2, C L'(O) is uniformly integrable, then o({y;}52,) is
measurable for j € N, and

a({/tyi(g)dg}i) < 2]&({%(9)}21”9, t €10, 4].
0 0

https://www.journals.vu.lt/nonlinear-analysis
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Definition 6. (See [14].) Let T be a nonempty subset of a Fréchet space (2, and let @ :
T — (2 be a continuous operator, which transforms bounded subsets of onto bounded
ones. One says that & satisfies the Darbo condition with constants (k;) jen with respect to
a family of measures of noncompactness (¢;);en if

a; (B(K)) < kja;(K)

for each bounded set £ C T and j € N. If £; < 1, j € N, then @ is called a contraction
with respect to {; }jen.

3 Existence of mild solutions

For sake of simplicity, in the following, we always assume that o1(-) = o2(-), and we
note that the case o # o4 can be studied.

In this section, we present the main results of the existence of solutions for our
problem.

Definition 7. A function y € C*([—p, +o0], E) x T is said to be a mild solution of (1)—
(3) if y satisfies condition (2) for all ¢ € [—p, 0], 1 € T and y is solution of the following
integral equation:

y(t, 1) = H(t)p(0, 1) + G ()" (0, 1)

t

+ /Q(t — 0) 10, Yo (0.00.1)s Yor (0, > 1) A0y t ERY, €Y.
0

The hypotheses:

(A1) There exists a constant I; > 1, where
16Ol 5p) <Trs tERy.
(A2) There exists Is > 0 such that
|[H®)| < I, teR,.

(A3) The function /i is random Carathéodory on R xC([—p, 0],E)xC(|—p, 0],E)XY.

(A4) There exist a continuous function p : Ry x Y — R with p(-, p) € Li . (Ry; RS)
and a continuous nondecreasing function A : Ry — (0, 00) such that for any
peT,

|At, y, 5, w)|| < plt, WAyl + 112
forae.t € Ry andy, s € C([—p,0], E).

Nonlinear Anal. Model. Control, 29(3):528-542, 2024
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(A5) For each bounded and measurable sets C,D C C([—p, 0], E) and for any €7,
we have

a(h(t,K,D, 1)) < p(t, p) es[l_lpo](Jc(lC(T) + D(7)), ae.teRy,

where « is a Kuratowski measure of noncompactness on the Banach space E.
(A6) There exists a random function R : 7" — (0, 0o0) such that

max (L2, I) [||¢(0, )| + | (0, 1) || + M(R; (1)) 05 ()] < R;(p).

For j € N, let
j
p; (1) =/p(9,u) de
0

and define on C([—p, 00), E) the family of measure of noncompactness by

a(D)= sup a(D(1)) + (D),

where D(t) = {x(t) € E; € D}, t € [—p, j].
Theorem 1. Assume that (A1)—(A6) are satisfied, and
max{I, I} [4p}(n)] <1 (6)
for each j € N. Then (1)—(3) has at least one random mild solution.

Proof. Consider the operators 8,8 : 7 x C* — O defined by
(R(w)y) (t) = H()(0, 1) + G(t)¢' (0, 1)
¢
+ /g t_ Q Q ya(g,yg,u)vy;(g,yg,uylu') d@a te R-ﬁ-;
0

and

(N'(m)y) = G(1)e(0, 1) + H(t)¢' (0, 1)

¢
- /H (t = o)hle, y”(@yw“)’yg(g,ymu)’“) do, teRy.
0

Since the function 7 is continuous on R, then N(u) and N'(u) define the mappings
N, N : T'x Ct — C*. Thus, y is a random solution for (1)—~(3) if and only if y = (X(u))y.
We will demonstrate that X and N’ verify all requirements of Darbo’s fixed point theorem
for Fréchet spaces [14].

https://www.journals.vu.lt/nonlinear-analysis
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Step 1. N(u) and W' (p) are a random operators with stochastic domain on C'!. Since
h(t,y, s, ) is random Carathéodory, 1 — A(t,y, s, ) is measurable in view of Defini-
tion 1. Therefore, the map

1= H()p(0, 1) + G(t)¢' (0, )

t
+/g(t— 0) 70, Yor (0,501 Yooy )» 1) dO
0

is measurable. Thus, X and X’ are a random operators on 1" x C' Linto C.
Let A: 7 — P(C") be the ball given by

A(p) = Kr, (1) = K(0, R; (1))
={yeCh yll; +I¥'ll; <R;(w)}, me? jeN,

Then A(p) is a bounded, closed, convex, and solid for all u € 7. Consequently, A is
measurable by Lemma [15]. Let i € 7" be fixed, then from (A1)-(A4), for any j € N and
each y,y € u(u) and ¢ € [0, j], we get

1 (RG29) ()| < HH(t)w(O,m L G(1)e (0. )

t
+/g (t = )10 Yo (o) Yo (o) M) dQH
0
t

< Lo (0, )] + I ][/ (0, 1) +11/ (A (lyl; + [1'l) d

t
< [0, 1) || + L[ (0, 1) | + LA (R /p o,
0
< Lol )| + Ll (0, )| + DA (R; (1)) 25 ()
< Rj(p)

) ()] < Hg@)so(o,u) L HWP 0, 0)

+/H(t_g)h(ga ya(g,yg,,u)vy:;(g,yg”u)vﬂ) dQH
0

t
< Ii|[(0, )| + La|| ¢’ (0, ) || + I /p(@, wA(llyll; + 1v']l;) de
0

Nonlinear Anal. Model. Control, 29(3):528-542, 2024
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t

< In|jo(0, )| + T2 ||’ (0, )| + T2 A (R (1)) /p(g,u)dg
0
L{j(0, )| + Laf|¢' (0, )l + LA (R (1) 5 (1)

g J
< Rj(w).

Therefore, N and N’ are random operators with stochastic domain A, and RX(p) : A(u) —

N(u), W(u) : A(n) — N (u). Furthermore, N(u) and N (1) map bounded sets into
bounded sets in C'.

Step 2. N( ), N (1) : Kg, (1) = K, (1) are continuous. Let {y/* } ren be a sequence
such that y* — y in Kg, (). Then for each ¢ € [0, j] and p € 7, we have

[(R()y* (1) — (R(w)y) (0]

k k
= H /Q(t = ) [0, Yz (01 1) Yoot 1) — PO Yo (0yan) Yor(gryn))] A
0

< |Gt - Q)HS(E)

x / 15005 Y 0.5y Yoty 1) = 10 Yo (esyai)s Yoy || de
0

< Il / Hh(ga ygj(@ﬂ’;#)’ y,/;k(g,y?My /”') - h(Qa ya(g,yg,p,)a y:;(&ywu); /J/)H dg
0

Since y* — y as k — oo, the Lebesgue dominated convergence theorem implies that

R(y") = R(y)|[;, >0 ask = +oc

k k
/H(t -0 [h(g’ya(g,y’g,uﬁy:f(@:y’g,u)’u) — h(e, Yo (oyeon)> y;(g,yg»u))] de

<[t = 0l

t
X/HH o ya(@ yk.n) ya(g yk.n) 1) = (0 Yo (o,yan)> Y (oyeuy )| de
0

k k
st / I (e, Yo(oyl ) yg(w’g,u)’“) = 10 Yo (o.auis) Yor(o.gny» 1)|| de-
0

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Abstract random differential equations with state-dependent delay 537

Since y* — y as k — oo, the Lebesgue dominated convergence theorem implies that
IR (%) =N ()|, » 0 ask— +oo.

As a consequence of Steps 1 and 2, we can conclude that R(u) : A(p) — N(u) and
W(p) : A() — N(p) are continuous random operators with stochastic domain A, and
N(p)(A(p)) and X' (p)(A(p)) are bounded.

Step 3. For each bounded subset D of A(u),

a;(R(u)(D)) < ljay(D)
and

a;(N(1)(D)) < lja;(D).

From Lemmas 2 and 3, for any D C Kg,(p) and any e > 0, there exist a sequence
{yx}72, C Dsuchthatforallt € [0, ] and u € T, we have

a((R(u)D) (1))
—a <{’H(t)<p(0, 1) +G(t)e' (0, 1)

t
+ /g t_ Q Qa yo(g,yg,,u)vy:y(g,yg,p,)aﬂ) an yvyl € D})
0

t
<{ /g t_ Q Qayo(g Yo,rlt)? yo’(gﬂ/g) WM) an Y, y € D})
0
t o'}
({ /g (t—o) (Q’ Yook .m0 yU(@,yQ,u) M) dg} ) Te
0 1

k=

S 4/O‘(Hg (t—o Hs(E){h(Q’ y];(&ygw)’ytlflzg,y’gw)’ﬂ)}zil) do+e
0

o~

<411/04{5(9,yg(g7y§7u),y,/f(g,yg,u)aﬂ)}:il) do+e

[}

t
<AL /p( a({yg(&y’;u)}:o:l + {ytlfk(g,y’g,u)};iJ do+e

t

< 4La(D /p ) do + e < 46Lpj(u)a; (D) + e
0

Nonlinear Anal. Model. Control, 29(3):528-542, 2024


https://doi.org/10.15388/namc.2024.29.34969

538 A. Heris et al.

Since € > 0 is arbitrary, then

a((R()D) (1) < ATp; (w)ay (D).

Thus,
a; (R(n)D) < 4Ipia;(D).

On the other hand, we have

a((N(u)D)(t))
=« <{Q(t)s0(0, 1) +H(t)¢' (0, )

t
+/H(t— 0) 10, Yo (o) Yo(ory, s M) d0s 4,y € D})
0
t
< a({ /H(t— M0 Yo (o) Yo(ory, ) 1) dos ¥y € D})
0

t o0
< 2a<{ /H(t — 010 Y (gt ) Yoty ) d@} ) +e
0 1

k=
t

S 4/a(||g(t o Q)HS(E){E(& y];(g,y’g,u)’ y?(g,y’g,u)’”)}zil) do+e
0

S 4L a{h(g, yg(g,y’g,u)’ y:fk(g,y’g,u)’ M) }:ozldg Te

<4l p(g, M)a({yg(g,y’g’u)}:il + {ysz.(g,y’g,u)}iil) do+e

S . O ——__

t
< 4La(D) /p(g, ) do + € < 4Lp} (u)a; (D) + €.
0

Since € > 0 is arbitrary, then

a((N(u)D)(t)) < 4Lpj(1)ey (D),
Thus,
a; (N (1) D) < 4Ipjay(D).
Consequently, by Darbo’s fixed point theorem for Fréchet spaces [14] we can conclude

that X and N’ have at least one fixed point in A(y), which is a random mild solution of
problem (1)-(3). O]

https://www.journals.vu.lt/nonlinear-analysis
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4 An example

We consider the following abstract differential equation with state dependent delay:
0%y 0%y
b =53 3 (67 + Bty (t = Syt p), ),
y'(t—C(ty(tp)n)vsm), teRY, yelOn], nel,
y(t,0,p) = y(t,mp) =0, teRY pel,
y(r.y,m) = @o(r,v,1), 7€[-p,0], peT,
y'(0,1) = ¢'(0, ),
where p € C([—p,0]; E)xT,¢ € C(RTxR; R, ), ¢(0, ¢, 1) = 0, and £ is Carathéodory

on Rt x R x R x T. To make system (7) as problem (1)—(3), we need to define 7 :
RTxRxRxY — Fando : RT x C([—p,0;R) x 7" — R by

(t, X, 6, 1) (7) = Bt A0, 7, 1), $(0,7, 1), 1)

)

and
U(Qv /\hu) =0- C(Q7)\(O,H),,u).

It is easy to show that ii(-) and o(+) are Lipschitz, which implies that hypotheses (A3)-
(AS) are satisfied.
Consider E = L?([0, 7], R) and the domain
D(® —{yEEy € E, y(0) —0}

Let the operator ¢ : D(®) C E — FE be the operator given by &y = y”. Clearly, @ is
the infinitesimal generator of a strongly continuous cosine family (#(¢));cg on E. The
spectrum of @ is discrete with eigenvalues —j52, j € N, and eigenvectors

25(0) = (i)wsm(jc)

The set of functions {z;, j € N} is an orthonormal basis of E. We note that

H(t)y = ZCOS JO(Y, 2) 24,

o}
bll’l
E y, Z] Zjs

Jj=

the sine family G(-) is compact, ||H(t)|| = ||G(¢)|| = 1 for all ¢ € R. Thus, hypothe-
ses (A1) and (A2) are satisfied.

Furthermore, by choosing a suitable function R we can verify that (A6) and (6) hold.
Thus, Theorem 1 implies that (7) has at least one mild solution on [—p, 4+00).

[
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5 Conclusions

In the present research, we have investigated the random mild solutions for a general
class of second-order abstract random differential equations with state-dependent delay.
To achieve the desired results for the given problem, the fixed point approach was used,
namely, the Darbo fixed point theorem for Fréchet spaces associated with the concept
of measures of noncompactness. An example is provided to demonstrate how the major
results can be applied. Our results in the given configuration are novel and contribute to
the literature on this field of study. We believe that there exist numerous potential avenues
for further exploration, including but not limited to coupled systems, problems involving
infinite delays, extensions to fractional-order derivatives, and more. The limited number
of publications on this class of differential equations suggests promising opportunities for
additional research.
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