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Abstract. This article depicts an approximate solution of systems of nonlinear fractional
biochemical reactions for the Michaelis–Menten enzyme kinetic model arising from the enzymatic
reaction process. This present work is concerned with fundamental enzyme kinetics utilised to
assess the efficacy of powerful mathematical approaches such as the homotopy perturbation method
(HPM), homotopy analysis method (HAM), and homotopy analysis transform method (HATM) to
get the approximate solutions of the biochemical reaction model with time-fractional derivatives.
The Caputo-type fractional derivatives are explored. The proposed method is implemented to
formulate a fractional differential biochemical reaction model to obtain approximate results subject
to various settings of the fractional parameters with statistical validation at different stages. The
comparison results reveal the complexity of the enzyme process and obtain approximate solutions
to the nonlinear fractional differential biochemical reaction model.

Keywords: fractional differential equation, nonlinear biochemical reaction model, Caputo
fractional derivative, homotopy perturbation method, homotopy analysis method, homotopy
analysis transform method.

1 Introduction

The theory of fractional calculus was developed primarily as an exclusively theoretical
field of mathematics. Fractional calculus focuses on the investigation of derivatives and
integrals of arbitrary real or complex order, which join and extend the concept of an
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integer-order derivative and integral. The triumph of the fractional methodology is ac-
knowledged in many applications in nonlinear dynamics, complex system dynamics, and
image processing. This, in turn, has led to a continuing interest in the theory of fractional
differential equations (FDEs). It is identified that the integer derivative of a function is
only related to its nearby points, while the fractional derivative has a connection with
all the function history information. As a result, a model represented by fractional-order
equations possesses memory. The integer-order differential operator is a local operator,
but the fractional-order differential operator is a nonlocal operator, which means that
the next state of a system depends not only on its current state but also on all its past
states. This is possibly one of the most relevant features for making this fractional tool
significant from an applied standpoint and innovative from a mathematical standpoint.
Integrals and derivatives of integer order are the standard integrals and derivatives of
analysis. But in the case of the fractional order, these ideas manifest their peculiar features.
Because several alterations happen naturally in different situations, the interconnections
between these alterations have to be investigated. Numerous authors have tried to model
real processes using FDEs. The theory of FDEs has been broadly studied by Podlubny
[28]. Miller and Ross [25] discussed that almost every field of science and engineering
has the function of fractional derivatives. Significant phenomena in fluid flow, rheology,
electrical networks, electromagnetics, and diffusive transport akin to diffusion, acoustics,
electrochemistry, mathematical biology, viscoelasticity, and material science are well
explained by FDEs.

Fractional integrals or fractional derivatives can generate more accurate fractional
integrals or fractional derivatives than integrals or classical integer-order derivatives in
physics and engineering. Fractional derivatives are a powerful tool for describing the
memory and heredity characteristics of many materials and processes. This is the major
benefit of fractional derivatives compared to classical integer-order models in which such
effects are deserted without being taken into account. The benefits of fractional deriva-
tives are obvious when simulating the mechanical and electrical characteristics of real
materials, as well as when accounting for the rheological features of rocks and many
other disciplines. The fractional derivative, which has nonlocal property, can be applied
by many researchers [5, 22]. Nieto investigated the logistic differential equation for the
generalized proportional Caputo fractional derivative in [27]. Seadawy et al. [30–33] dis-
cussed various kinds of equations to solve with numerical approaches. The mathematical
modeling and simulation of systems and processes based on the classification of their
properties in terms of fractional derivatives inevitably leads to FDEs and the necessity to
solve such equations. However, effective general techniques for solving them cannot be
found even in the most useful works on fractional derivatives and integrals. The Adomian
decomposition method (ADM) [3, 14], differential transform method (DTM) [2], and
HPM [8, 16] are relatively novel ways to provide analytical and approximate solutions
for linear and nonlinear FDEs.

Mathematical models of biochemical reactions have been discussed for many phe-
nomena. Now that the genome is known, there is an advanced interest in the mathemat-
ical models of the cell’s biochemical reactions. Enzymes are natural, sustainable cata-
lysts. They are biodegradable, biocompatible, and derived from organisms. Enzymes are
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enormous, live, globular protein molecules that are responsible for thousands of metabolic
processes that sustain life and operate as catalysts to facilitate specific chemical reac-
tions within each cell. These reactions are required for the organism’s survival. The
living cell is the site of a huge amount of biological activity known as metabolism.
Enzymes promote life processes in all forms of life, from viruses to people, by under-
going physical and chemical changes regularly. Enzymes operate as catalysts for life
or chemicals that accelerate the rate of a chemical reaction. By reducing the activa-
tion energy necessary to activate the reaction and taking a different path through the
process, the reaction rate can be dramatically increased. Enzymes do not initiate pro-
cesses that would not otherwise occur, but they do allow the reaction to continue faster
and at a lower temperature, as is the case in living systems. The substrate physically
secures the enzyme at its active site during an enzyme-mediated reaction, transform-
ing the substrate into new product molecules. The majority of enzymatic processes are
millions of times faster than comparable uncatalyzed reactions. Enzymes are not ob-
sessive by the reactions that are catalyzed, nor do they modify the balance of these
reactions [10]. The membrane of an enzyme cell with a biochemical structure inherently
possesses fractional-order electrical conductivity in biochemical reactions [9]. The goal of
the fractional order, as well as significant reaction parameters on the enzymatic reaction,
is to solve the fractional-order differential biochemical reaction model. Because it is
difficult to find an accurate solution for every FDE, it is necessary to employ various
numerical approaches [1, 11, 29]. Recently, several researchers discussed various mathe-
matical models in [4, 26, 35]. Sen [34] investigated the ADM to analyze the short-term
characteristics of a biochemical reaction model. The studies of FDEs have attracted,
developed, and involved the HPM as a mathematical tool for solving ordinary and partial
FDEs. HPM was introduced by He, which is the combination method of the homotopy
techniques and the perturbation technique [15, 19]. HPM finds the estimated solution
without any discretization or preventive assuming, and it avoids round-off errors. This
method yields a closed-form power series solution with easily assessable components.
The HPM has been adapted to solve fractional differential equations, which have ap-
plications in modeling anomalous diffusion, viscoelasticity, and other phenomena that
exhibit fractional-order behavior. HPM has been used to solve various nonlinear differen-
tial equations in physics such as those arising in quantum mechanics, general relativity,
and fluid dynamics. It allows physicists to explore the behavior of complex physical
systems. HPM has been applied to a wide range of engineering problems, including heat
transfer, fluid dynamics, structural analysis, and electrical circuits. Its ability to handle
complex nonlinear equations has made it a valuable tool for solving practical engineering
problems.

This work is organized as follows: The basic concepts of the general fractional deriva-
tive are given in Section 2. Section 3 focuses on the mathematical formulation of the
Michaelis–Menten enzyme kinetics model. Section 4 discussed stability analysis for the
biochemical reaction model. In Section 4.1, HPM is used for analysis of the systems
of FDEs and the purpose of implementation, an efficient numerical method is proposed
in Section 5. Results and discussion, as well as graphical representation, are shown in
Section 6. Finally, the conclusions are given in Section 7.
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2 Preliminaries

Definition 1. A real function g(t), t > 0, is said to be in the space Cµ, µ ∈ R, if there
exists a real number p > µ such that g(t) = tpg1(t), where g1(t) ∈ C(0,∞), and it is
said to be in the space Cnµ if and only if gn ∈ Cµ, n ∈ N.

Definition 2. The Riemann–Liouville fractional integral operatorQδ1 of order δ1 > 0 of
a function f ∈ L1(R+) is defined as

Qδ10+g(t) =
1

Γ(δ1)

t∫
0

(t− θ)δ1−1g(θ) dθ, δ1 > 0, (1)

where Γ(δ1) is the well-known gamma function. For integer δ1 > 0, Eq. (1) is known as
Cauchy’s integral formula.

Riemann–Liouville function integral satisfies the following properties for suitable
functions Φ(x) and ϕ(x):

(i) Qδ1 [Φ(x) + ϕ(x)] = Qδ1Φ(x) +Qδ1ϕ(x);
(ii) Qδ1Qδ2Φ(x) = Qδ1+δ2Φ(x);

(iii) Qδ1Qδ2Φ(x) = Qδ2Qδ1Φ(x);
(iv) Qδ1tϑ = (Γ(ϑ+ 1)/Γ(δ1 + ϑ+ 1))tδ1+ϑ, ϑ > −1, δ1 > 0.

Definition 3. (See [20].) The Riemann–Liouville fractional derivative Dδ1 of order
δ1 > 0, n− 1 < δ1 < n, n ∈ N, is defined as

Dδ1
0+g(t) = Dn

0+Q
n−δ1
0+ g(t) =

1

Γ(n− δ1)

(
d

dt

)n t∫
0

(t− s)n−δ1−1g(s) ds,

where the operator Dn is the ordinary differential operator, and the function g(t) has
absolutely continuous derivatives up to order n− 1.

Definition 4. (See [7].) The Caputo fractional derivative Dδ1 of order δ1 > 0, n − 1 <
δ1 < n, is defined by

CDδ1
0+g(t) =

1

Γ(n− δ1)

t∫
0

(t− θ)n−δ1−1gn(θ) dθ

for n − 1 < δ1 6 n, n ∈ N, t > 0, h ∈ Cn−1, where the function g(t) has absolutely
continuous derivatives up to order n− 1. If 0 < δ1 < 1, then

CDδ1
0+g(t) =

1

Γ(1− δ1)

t∫
0

g′(θ)

(t− θ)δ1
dθ,

where g′(θ) = Dg(θ) = dg(θ)/dθ.
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There are two properties of the Caputo fractional derivative [13]:

(i) Let g ∈ Cn−1, n ∈ N. Then Dδ1g, 0 6 δ1 6 n, is well defined, and Dδ1g ∈ C−1.
(ii) Let n− 1 < δ1 6 n, n ∈ N, and h ∈ Cnµ , µ > −1. Then

(
Qδ1Dδ1

)
g(t) = g(t)−

n−1∑
k=0

g(k)
(
0+
) tr
r!
.

The Caputo fractional derivative has better convergence properties compared to the Rie-
mann–Liouville fractional derivative operator. This means that it can be approximated
more accurately using numerical methods, which is important for numerical simulations
of physical phenomena. It is a more practical, physically meaningful, and numerically
efficient fractional derivative operator that is suitable for a wide range of physical phe-
nomena involving nonsmooth functions.

3 Mathematical formulation of Michaelis–Menten enzyme kinetics
model

Enzymes are proteins that function as catalysts for biochemical reactions and are called
biocatalysts. Each reaction that an enzyme catalyzes consists of a very small number of
reactions, frequently only one, and hence enzymes are reaction-specific catalysts. Tradi-
tional models of enzyme kinetics in biochemical systems have used ordinary and partial
differential equations based purely on reactions with no spatial dependency on the various
concentrations. In 1913, Michaelis and Menten [24] developed rate laws that characterise
enzyme catalysed processes, utilising model reduction by time-scale separation. This
became known as Michaelis–Menten kinetics.

This research focuses on a single substrate enzyme catalyzed reaction [21]

E + S
k1


k−1

P
k2→ E + X , (2)

where E is the enzyme, S is the substrate, P is the enzyme–substrate intermediate com-
plex, and X is the product. The parameters k1, k−1, and k2 are positive rate constants
for each reaction when researching reactions in which the initial velocity was connected
to the initial subtract concentration. The time evolution of scheme (2) may be calculated
from the solution of the systems of coupled nonlinear ODEs [34] by using the law of mass
action, which says that reaction rates are proportional to the concentration of the reactants

dS
dt

= −k1ES + k−1P, (3)

dE
dt

= −k1ES + (k−1 + k2)P, (4)

dP
dt

= k1ES − (k−1 + k2)P, (5)

dX
dt

= k2P (6)
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subject to the initial conditions

S(0) = S0, E(0) = E0, P(0) = 0, X (0) = 0.

Since the enzyme E is a catalyst, its overall concentration must remain constant. This
concentration law is easily derived by adding Eqs. (4) and (5):

dE
dt

+
dP
dt

= 0 =⇒ E(t) + P(t) = E0.

Furthermore, at any moment, the sum of the concentrations of the free substrate S,
complex P , and product X must be equal to the initial substrate S0; that is, adding Eqs.
(3), (5), and (6), it can be shown that

dS
dt

+
dP
dt

+
dX
dt

= 0 =⇒ S(t) + P(t) + X (t) = S0.

These two conservation laws reduce the system of differential equations (3)–(6) to only
two equations for S and P in dimensionless form of concentrations of substrate u and
intermediate complex between enzyme and substrate v, which are provided by

du

dt
= −u+ (ψ − φ)v + uv,

dv

dt
=

1

τ
(u− ψv − uv)

(7)

subject to the initial conditions

u(0) = 1, v(0) = 0,

where φ, ψ, and τ are dimensionless parameters.
The integer-order models do not save memory effects on themselves (7). We convert

model (7) to a fractional-order one to study the impact of memory in the above biological
models. As a result, we use the general form of the Caputo fractional derivative rather than
the (7) ordinary time derivatives. Additionally, to prevent dimensional mismatching [12],
we change the fractional operator via the auxiliary parameter γ > 0. The new model then
takes the following form:

γδ1−1Dδ1
t u = −u+ (ψ − φ)v + uv,

γδ2−1Dδ2
t v =

1

τ
(u− ψv − uv)

(8)

subject to the initial conditions

u(0) = 1, v(0) = 0.

In Eq. (8), it is necessary to have the same dimensions on both sides [6]. After dividing
by a constant, we have the same system without the term γδ1−1.
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4 Stability analysis

The critical points are determined by reducing the right-hand side of the system of equa-
tions (8) to zero, i.e., γδ1−1Dδ1

t u = 0, γδ2−1Dδ2
t v = 0, which provides a set of algebraic

expressions as

−u+ (ψ − φ)v + uv = f1(u, v),

1

τ
(u− ψv − uv) = f2(u, v).

(9)

Then, for v = 0, system (9) has equilibrium points (0, 0).
Let

J (u, v) =

[
∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

]
be the variational matrix of system (9).

Then

J (u, v) =

[
−1 + v (φ− ψ) + u
1
ε (1− v) 1

ε (−φ− u)

]
.

Now the variational matrix J (ζ0) for system (9) at the critical point ζ0 is computed as

J (ζ0) =

[
−1 (φ− ψ)
1
ε

−φ
ε

]
.

The eigenvalues of J (ζ0) are the roots of the characteristics equation

Φ(λ) = λ2 +

(
1 +

φ

ε

)
λ+

ψ

ε
= 0.

Their are expressed as follows:

λ1 =
1

2

[(
φ

ε
− 1

)
+

{√(
1 +

φ

ε

)2

− 4
ψ

ε

}]
and

λ2 =
1

2

[(
φ

ε
− 1

)
−
{√(

1 +
φ

ε

)2

− 4
ψ

ε

}]
.

The equilibrium point ζ0 is locally asymptotically stable if all of the eigenvalues
λj of J (ζ0) satisfy the Matignon’s conditions [23] as |arg(λj)| > ψπ/2, j = 1, 2.
The eigenvalues of J (ζ0) are both real and positive; | arg(λj)| = 0 < ψπ/2, so the
equilibrium point ζ0 = (0, 0) is unstable.
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4.1 Analysis for systems of FDEs

Many real-world applications have been represented in recent decades by systems of
FDEs, which can be expressed as follows:

γδ1−1Dδ1u1(t) = g1(t, u1, u2, . . . , un),

γδ2−1Dδ2u2(t) = g2(t, u1, u2, . . . , un),

· · ·
γδn−1Dδnun(t) = gn(t, u1, u2, . . . , un)

(10)

subject to the initial conditions

ur(0) = cr, r = 1, 2, . . . , n.

To construct the homotopy technique [15, 19],

γδi−1Dδiui = qgi(t, u1, u2, . . . , un), (11)

where i = 1, 2, . . . , n, and q is an embedding parameter that ranges between 0 and 1.
If q = 0, Eq. (11) becomes the linear eqnarray γδi−1Dδiui = 0, and when q = 1,
the homotopy (11) turns out to be the original systems provided in (10). We usse the
parameter q to expand the solution of system (10) as follows:

ui(t) = ui0 + γ1−δi
(
qui + q2ui2 + q3ui3 + q4ui4 + q5ui5 + q6ui6 + · · ·

)
. (12)

Substituting (12) into (11) and collecting terms with the same powers of q yields a se-
quence of linear equations of the form

q0: γδi−1Dδiui0 = 0,

q1: γδi−1Dδiui1 = gi1(t, u10, u20, . . . , un0),

q2: γδi−1Dδiui2 = gi2(t, u10, u20, . . . , un0, u11, u21, . . . , un1),

q3: γδi−1Dδiui3 = gi3(t, u10, u20, . . . , un0, u11, u21, . . . , un1, u12, u22, . . . , un2),

q4: γδi−1Dδiui4 = gi4(t, u10, u20, . . . , un0, u11, u21, . . . , un1, u12, u22, . . . , un2,

u13, u23, . . . , un3),
. . . ,

where the functions gi1, gi2, gi3, gi4, . . . , satisfy the following equation:

gi
(
t, u10 + qu11 + q2u12 + . . . , un0 + qun1 + q2un2 + . . .

)
= gi1(t, u10, u20, . . . , un0) + qgi2(t, u10, u20, . . . , un0, u11, u21, . . . , un1)

+ q2gi3(t, u10, u20, . . . , un0, u11, u21, . . . , un1, u12, u22, . . . , un2)

+ q3gi4(t, u10, u20, . . . , un0, u11, u21, . . . , un1, u12, u22, . . . , un2,

+ u13, u23, . . . , un3) . . . .

These linear equations can be readily solved by using the operatorQδi , that is, the inverse
of the operator γδi−1Dδi , which is defined by definition (2). As a result, the components
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of the HPM solution uir (r = 0, 1, 2, . . . ) can be determined. That is, by specifying q = 1
in (12) the HPM series solutions are completely determined, and ui(t) =

∑∞
r=0 uir(t).

The convergence and asymptotic behavior of the series are addressed in [17,18], then the
numerical computations approximate the HPM series solution, ui(t) =

∑∞
k=0 uir(t), by

the following N -term truncated series: φiN(t) =
∑N−1
r=0 uir(t).

5 Numerical implementation

Consider the following nonlinear fractional differential biochemical reaction model:

γδ1−1Dδ1
t u = −u+ (ψ − φ)v + uv,

γδ2−1Dδ2
t v =

1

τ
(u− ψv − uv)

(13)

subject to the initial conditions

u(0) = 1, v(0) = 0,

where δ1 and δ2 (0 < δ1, δ2 6 1) are parameters describing the order of the fractional
derivative. According to (11), we construct the following homotopy technique:

γδ1−1Dδ1u = q
(
−u+ (ψ − φ)v + uv

)
,

γδ2−1Dδ2v = q

(
1

τ
(u− ψv − uv)

)
.

(14)

Substituting (12) into (14) and collecting terms of the same powers of q yields the follow-
ing two sets of nonlinear equations:

q0: γδ1−1Dδ1u0 = 1,

q1: γδ1−1Dδ1u1 = −u0 + (ψ − φ)v0 + u0v0,

q2: γδ1−1Dδ1u2 = −u1 + (ψ − φ)v1 + u1v0 + u0v1,

q3: γδ1−1Dδ1u3 = −u2 + (ψ − φ)v2 + u2v0 + u1v1 + u0v2,

q4: γδ1−1Dδ1u4 = −u3 + (ψ − φ)v3 + u3v0 + u2v1 + u1v2 + u0v3,

. . . ,

q0: γδ2−1Dδ2v0 = 0,

q1: γδ2−1Dδ2v1 =
1

τ
(u0 − ψv0 − u0v0),

q2: γδ2−1Dδ2v2 =
1

τ
(u1 − ψv1 − u1v0 − u0v1),

q3: γδ2−1Dδ2v3 =
1

τ
(u2 − ψv2 − u2v0 − u1v1 − u0v2),

q4: γδ2−1Dδ2v4 =
1

τ
(u3 − ψv3 − u3v0 − u2v1 − u1v2 − u0v3),

. . . .
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As a result of applying the operatorsQδ1 andQδ2 to the above sets of nonlinear equations,
the first few terms of the approximate series solution for system (13) are as follows:

u0 = u(0) = 1,

u1 = − tδ1

Γ(δ1 + 1)
,

u2 =
t2δ1

Γ(2δ1 + 1)
+

(ψ − φ)

τ

tδ1+δ2

Γ(δ1 + δ2 + 1)
+

1

τ

tδ1+δ2

Γ(δ1 + δ2 + 1)
,

u3 = − t3δ1

Γ(3δ1 + 1)
− (ψ − φ)

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
− 1

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)

− (ψ − φ)

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
− (ψ − φ)

τ2
ψ(tδ1+2δ2)

Γ(δ1 + 2δ2 + 1)

− (ψ − φ)

τ2
tδ1+2δ2

Γ(δ1 + 2δ2 + 1)
− Γ(δ1 + δ2 + 1)

τΓ(δ1 + 1)Γ(δ2 + 1)

t2δ1+δ2

Γ(2δ1 + δ2 + 1)

− 1

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
− ψ

τ2
tδ1+2δ2

Γ(δ1 + 2δ2 + 1)
− 1

τ2
tδ1+2δ2

Γ(δ1 + 2δ2 + 1)
,

. . . ,

v0 = v(0) = 0,

v1 =
1

τ

tδ2

Γ(δ2 + 1)
,

v2 = −1

τ

tδ2+δ1

Γ(δ2 + δ1 + 1)
− ψ

τ2
t2δ2

Γ(2δ2 + 1)
− 1

τ2
t2δ2

Γ(2δ2 + 1)
,

v3 =
1

τ

tδ2+2δ1

Γ(δ2 + 2δ1 + 1)
+

(ψ − φ)

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)
+

1

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)

+
ψ

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)
+
ψ2

τ3
t3δ2

Γ(3δ2 + 1)
+
ψ

τ3
t3δ2

Γ(3δ2 + 1)

+
Γ(δ1 + δ2 + 1)

τ2Γ(δ1 + 1)Γ(δ2 + 1)

t2δ2+δ1

Γ(2δ2 + δ1 + 1)
+

1

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)

+
ψ

τ3
t3δ2

Γ(3δ2 + 1)
+

1

τ3
t3δ2

Γ(3δ2 + 1)
,

. . . .

Similarly, u4, u5, u6 . . . , and v4, v5, v6 . . . can be estimated following in this manner, and
the approximate series solutions are obtained as follows:

u(t) = 1 + γ1−δ1
(
− tδ1

Γ(δ1 + 1)
+

t2δ1

Γ(2δ1 + 1)
+

(ψ − φ)

τ

tδ1+δ2

Γ(δ1 + δ2 + 1)

+
1

τ

tδ1+δ2

Γ(δ1 + δ2 + 1)
− t3δ1

Γ(3δ1 + 1)
− (ψ − φ)

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
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− 1

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
− (ψ − φ)

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
− (ψ − φ)

τ2

ψ(tδ1+2δ2)

Γ(δ1 + 2δ2 + 1)
− (ψ − φ)

τ2
tδ1+2δ2

Γ(δ1 + 2δ2 + 1)
− Γ(δ1 + δ2 + 1)

τΓ(δ1 + 1)Γ(δ2 + 1)

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
− 1

τ

t2δ1+δ2

Γ(2δ1 + δ2 + 1)
− ψ

τ2
tδ1+2δ2

Γ(δ1 + 2δ2 + 1)

− 1

τ2
tδ1+2δ2

Γ(δ1 + 2δ2 + 1)
− · · ·

)
,

v(t) = γ1−δ2
(

1

τ

tδ2

Γ(δ2 + 1)
− 1

τ

tδ2+δ1

Γ(δ2 + δ1 + 1)
− ψ

τ2
t2δ2

Γ(2δ2 + 1)
− 1

τ2
t2δ2

Γ(2δ2 + 1)

+
1

τ

tδ2+2δ1

Γ(δ2 + 2δ1 + 1)
+

(ψ − φ)

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)
+

1

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)

+
ψ

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)
+
ψ2

τ3
t3δ2

Γ(3δ2 + 1)
+
ψ

τ3
t3δ2

Γ(3δ2 + 1)

+
Γ(δ1 + δ2 + 1)

τ2Γ(δ1 + 1)Γ(δ2 + 1)

t2δ2+δ1

Γ(2δ2 + δ1 + 1)
+

1

τ2
t2δ2+δ1

Γ(2δ2 + δ1 + 1)

+
ψ

τ3
t3δ2

Γ(3δ2 + 1)
+

1

τ3
t3δ2

Γ(3δ2 + 1)
+ · · ·

)
.

6 Result and discussion

In this section, the effect of fractional order δ1, δ2 on the concentration of substrate and
enzyme–substrate intermediate complex is investigated. The numerical simulations of the
fractional-order differential biochemical reaction model through the use of HPM, HAM,
and HATM consider different values of fractional order δ1, δ2 for dimensionless reaction
parameters φ = 0.375, ψ = 1.0, τ = 0.1. Now consider that HPM at time step ∆t =
0.001, HAM at ∆t = 0.001, and HATM at ∆t = 0.001 have been constructed.

6.1 Comparative study

In this section, a comparison study is conducted with a few existing approaches, the
HAM and the HATM, to validate the solution produced by the proposed method. The
results are presented in Tables 1–4 for various fractional parameter values δ1 = δ2 =
0.25, 0.50, 0.75, 1.0 and γ = 2. The proposed technique has great agreement with the
HAM and HATM as shown in Tables 1–4. The comparison results for the four different
fractional parameter values are represented in the figures. The analysis confirms that HPM
can be used as a powerful mathematical tool for solving the fractional-order biochemical
reaction model. Furthermore, to validate the variations, a statistical analysis has been
discussed.
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Table 1. Numerical results of system (13) for δ1 = δ2 = 0.25 and γ = 2 using HPM,
HAM, and HATM.

t u(t) v(t)

HPM HAM HATM HPM HAM HATM
0.0 0.0010 1.0000 1.0000 0 0 0
0.1 −0.1078 −44.4666 −13.2243 0.1342 0.5426 −0.5042
0.2 −0.1843 −77.3264 −24.5607 0.2286 0.9362 −0.8830
0.3 −0.2518 −106.4947 −34.8221 0.3119 1.2858 −1.2205
0.4 −0.3140 −133.4748 −44.4189 0.3886 1.6093 −1.5333
0.5 −0.3725 −158.9266 −53.5401 0.4609 1.9145 −1.8286
0.6 −0.4282 −183.2180 −62.2941 0.5297 2.2058 −2.1108
0.7 −0.4818 −206.5818 −70.7508 0.5958 2.4860 −2.3823
0.8 −0.5335 −229.1776 −78.9589 0.6596 2.7570 −2.6451
0.9 −0.5837 −251.1212 −86.9543 0.7216 3.0202 −2.9004
1.0 −0.6326 −272.5002 −94.7642 0.7819 3.2766 −3.1492
1.1 −0.6802 −293.3826 −102.4100 0.8407 3.5271 −3.3923
1.2 −0.7269 −313.8233 −109.9090 0.8983 3.7723 −3.6303
1.3 −0.7726 −333.8667 −117.2755 0.9547 4.0128 −3.8637
1.4 −0.8175 −353.5499 −124.5213 1.0101 4.2489 −4.0930
1.5 −0.8615 −372.9041 −131.6565 1.0645 4.4811 −4.3185
1.6 −0.9049 −391.9560 −138.6897 1.1180 4.7097 −4.5405
1.7 −0.9477 −410.7284 −145.6283 1.1708 4.9349 −4.7593
1.8 −0.9898 −429.2414 −152.4789 1.2228 5.1570 −4.9751
1.9 −1.0313 −447.5125 −159.2471 1.2741 5.3762 −5.1881
2.0 −1.0724 −465.5571 −165.9381 1.3247 5.5928 −5.3985

Table 2. Numerical results of system (13) for δ1 = δ2 = 0.50 and γ = 2 using HPM,
HAM, and HATM.

t u(t) v(t)

HPM HAM HATM HPM HAM HATM
0.0 1.0000 1.0000 1.0000 0 0 0
0.1 −0.0093 −2.9499 0.1987 0.0127 0.0460 −0.0332
0.2 −0.0296 −11.1960 −2.1279 0.0376 0.1442 −0.1234
0.3 −0.0564 −22.3805 −5.5892 0.0706 0.2778 −0.2490
0.4 −0.0885 −35.9553 −9.9821 0.1102 0.4400 −0.4030
0.5 −0.1252 −51.5992 −15.1848 0.1555 0.6272 −0.5816
0.6 −0.1661 −69.0939 −21.1137 0.2059 0.8365 −0.7820
0.7 −0.2107 −88.2786 −27.7067 0.2609 1.0662 −1.0023
0.8 −0.2588 −109.0284 −34.9154 0.3202 1.3146 −1.2410
0.9 −0.3101 −131.2424 −42.7006 0.3835 1.5807 −1.4970
1.0 −0.3646 −154.8374 −51.0299 0.4506 1.8633 −1.7691
1.1 −0.4219 −179.7426 −59.8757 0.5213 2.1616 −2.0566
1.2 −0.4820 −205.8973 −69.2143 0.5954 2.4750 −2.3588
1.3 −0.5447 −233.2485 −79.0249 0.6728 2.8027 −2.6750
1.4 −0.6100 −261.7493 −89.2891 0.7533 3.1442 −3.0047
1.5 −0.6778 −291.3582 −99.9907 0.8369 3.4990 −3.3473
1.6 −0.7480 −322.0376 −111.1150 0.9233 3.8667 −3.7025
1.7 −0.8204 −353.7536 −122.6486 1.0127 4.2468 −4.0698
1.8 −0.8951 −386.4753 −134.5795 1.1048 4.6390 −4.4488
1.9 −0.9719 −420.1746 −146.8964 1.1995 5.0429 −4.8393
2.0 −1.0509 −454.8253 −159.5893 1.2969 5.4582 −5.2410
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Table 3. Numerical results of system (13) for δ1 = δ2 = 0.75 and γ = 2 using HPM,
HAM, and HATM.

t u(t) v(t)

HPM HAM HATM HPM HAM HATM
0.0 1.0000 1.0000 1.0000 0 0 0
0.1 0.2924 0.7550 0.9800 0.0082 0.0024 0.0028
0.2 −2.5995 −0.2723 0.8739 0.0436 0.0143 −0.0050
0.3 −8.4249 −2.5053 0.4211 0.1151 0.0406 −0.0271
0.4 −17.5938 −6.1537 −0.4877 0.2279 0.0838 −0.0656
0.5 −30.4077 −11.3669 −1.9261 0.3855 0.1458 −0.1224
0.6 −47.1097 −18.2636 −3.9503 0.5910 0.2280 −0.1987
0.7 −67.9055 −26.9430 −6.6065 0.8470 0.3315 −0.2956
0.8 −92.9746 −37.4908 −9.9338 1.1556 0.4573 −0.4142
0.9 −122.4766 −49.9831 −13.9661 1.5187 0.6065 −0.5552
1.0 −156.5563 −64.4882 −18.7341 1.9382 0.7798 −0.7196
1.1 −195.3458 −81.0686 −24.2652 2.4157 0.9779 −0.9079
1.2 −238.9675 −99.7817 −30.5843 2.9527 1.2016 −1.1209
1.3 −287.5351 −120.6808 −37.7148 3.5506 1.4515 −1.3592
1.4 −341.1551 −143.8157 −45.6780 4.2107 1.7281 −1.6234
1.5 −399.9279 −169.2332 −54.4942 4.9342 2.0321 −1.9139
1.6 −463.9485 −196.9775 −64.1821 5.7224 2.3639 −2.2313
1.7 −533.3068 −227.0905 −74.7597 6.5762 2.7242 −2.5761
1.8 −608.0886 −259.6121 −86.2438 7.4968 3.1132 −2.9488
1.9 −688.3761 −294.5802 −98.6506 8.4852 3.5316 −3.3498
2.0 −774.2476 −332.0312 −111.9954 9.5423 3.9798 −3.7794

Table 4. Numerical results of the system .(13) for δ1 = δ2 = 1.0 and γ = 2 using HPM,
HAM, and HATM.

t u(t) v(t)

HPM HAM HATM HPM HAM HATM
0.0 1.0000 1.0000 1.0000 0 0 0
0.1 0.9242 0.9471 0.9573 0.0007 0.0004 0.0017
0.2 0.6486 0.8740 0.9830 0.0039 0.0011 0.0034
0.3 −0.1992 0.6126 1.0120 0.0141 0.0039 0.0030
0.4 −1.9914 −0.0046 0.9790 0.0360 0.0110 −0.0014
0.5 −5.1003 −1.1456 0.8188 0.0740 0.0243 −0.0117
0.6 −9.8984 −2.9782 0.4663 0.1328 0.0459 −0.0298
0.7 −16.7578 −5.6700 −0.1437 0.2169 0.0777 −0.0575
0.8 −26.0509 −9.3890 −1.0765 0.3310 0.1217 −0.0970
0.9 −38.1501 −14.3029 −2.3971 0.4795 0.1800 −0.1500
1.0 −53.4276 −20.5795 −4.1709 0.6671 0.2546 −0.2184
1.1 −72.2558 −28.3867 −6.4629 0.8983 0.3475 −0.3043
1.2 −95.0069 −37.8922 −9.3384 1.1777 0.4607 −0.4095
1.3 −122.0533 −49.2638 −12.8626 1.5098 0.5961 −0.5359
1.4 −153.7674 −62.6693 −17.1006 1.8994 0.7558 −0.6855
1.5 −190.5213 −78.2766 −22.1176 2.3508 0.9419 −0.8601
1.6 −232.6875 −96.2533 −27.9789 2.8687 1.1563 −1.0618
1.7 −280.6383 −116.7674 −34.7495 3.4577 1.4009 −1.2924
1.8 −334.7459 −139.9866 −42.4948 4.1223 1.6779 −1.5538
1.9 −395.3826 −166.0787 −51.2798 4.8671 1.9893 −1.8479
2.0 −462.9209 −195.2115 −61.1698 5.6967 2.3370 −2.1767
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6.2 Statistical analysis

The statistical significance of the difference between the group of means and various
values of the fractional parameter δ1, δ2 has been processed utilizing the t-test investi-
gation at the 5% level of significance. The outcomes are displayed in Tables 5 and 6.
The means for the u(t) and v(t) for various stages are significantly different at the 95%
confidence interval, except since the means for the u(t) and v(t) are significantly different.
Particularly compared to the integer-order model (when δ1 = δ2 = 1), the various values
of the fractional parameter are significant.

The approximate results are compared with those of HAM and HATM as shown in
Figs. 1, 2, 3, and 4, respectively. The above results conclude that the proposed method
reveals great agreement with other existing methods such as HAM and HATM. According
to the results, HPM is a relevant mathematical tool for solving the fractional differential
biochemical reaction model.

Table 5. The pairwise mean difference of u(t) using t-test.

t Mean difference 95% confidence interval
δ1 = δ2 = 1 and 0.75 123.174890 [74.828858, 171.520923]
δ1 = δ2 = 1 and 0.50 −118.101976 [−183.529235,−52.674717]
δ1 = δ2 = 1 and 0.25 −117.918500 [−183.368224,−52.468776]
δ1 = δ2 = 0.75 and 0.50 −241.276867 [−353.850942,−128.702792]
δ1 = δ2 = 0.75 and 0.25 −241.093390 [−353.686908,−128.499873]
δ1 = δ2 = 0.50 and 0.25 0.183476 [0.143998, 0.222955]

Table 6. The pairwise mean difference of v(t) using t-test.

t Mean difference 95% confidence interval
δ1 = δ2 = 1 and 0.75 −1.519671 [−2.116654,−0.922689]
δ1 = δ2 = 1 and 0.50 0.946662 [0.321492, 1.571832]
δ1 = δ2 = 1 and 0.25 0.719667 [0.063203, 1.376130]
δ1 = δ2 = 0.75 and 0.50 2.466333 [1.265880, 3.666786]
δ1 = δ2 = 0.75 and 0.25 2.239338 [1.013404, 3.465272]
δ1 = δ2 = 0.50 and 0.25 −0.226995 [−0.275660,−0.178330]

Figure 1. Graphical illustrations of system (13) with δ1 = δ2 = 0.25 and γ = 2.
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Figure 2. Graphical illustrations of system (13) with δ1 = δ2 = 0.50 and γ = 2.

Figure 3. Graphical illustrations of system (13) with δ1 = δ2 = 0.75 and γ = 2.

Figure 4. Graphical illustrations of system (13) with δ1 = δ2 = 1.0 and γ = 2.

7 Conclusion

This paper discussed an algorithm for a nonlinear fractional differential biochemical
reaction model that was simulated by the HPM, HAM, and HATM. Additionally, the com-
parison is done between HPM, HAM, and HATM. The above-mentioned techniques can

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A study of nonlinear fractional-order biochemical reaction model 603

be utilized as alternative and equivalent methods for establishing approximate solutions
for the nonlinear differential biochemical reaction model with fractional-order derivatives.
HAM is the generalized Taylor series technique for exploring an infinite series solution
for developing the convergence region; to classify the value of h, the convergence radius
of the obtained infinite series has to be determined. So HAM was not efficient for solving
the nonlinear fractional differential biochemical reaction model. Similarly, HATM results
are also not efficient for solving the fractional biochemical reaction model. On the other
hand, HPM is a new perturbation method that searches for an asymptotic solution with few
terms; no convergence theory is needed. HPM presented excellent approximate results
for the nonlinear fractional differential biochemical reaction model. Hence, the proposed
method HPM is a powerful mathematical technique for solving the nonlinear fractional
differential biochemical reaction model. In future work, the utilization of HPM can be
stretched to analyze various mathematical models, nonlinear differential equations, and
fractional differential equations that emerge in the various areas of science and engineer-
ing.
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