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Abstract. This paper discusses the large deviations for stochastic predator—prey model driven by
multiplicative Lévy noise. Using Galerkin approximation, we initially prove the existence and
uniqueness of solution. Due to the equivalence between Laplace principle and large deviation
principle under a Polish space, the method of weak convergence has been followed in order to
establish our results for this coupled system of equations.
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1 Introduction

Biological models play a crucial role in maintaining ecological balance by determining
the existence, behavior and exit time of various species in the environment. Many popu-
lation models depict the ideal behavior of variety of species by analyzing their mutations,
interdependence among them and their death rate. The initial descriptions of the predator—
prey population was given by the model constructed independently by Lotka (1925) and
Volterra (1926). Though this model proved to be a kick-start for many such biological
models, its shortcomings like exclusion of many unavoidable factors were inevitable.
Later, many more illustrious models were developed based on this model by bringing
in more realistic factors into consideration.

The earlier models denoting the predator—prey population available in the literature
were deterministic in nature. The prevalence of many random factors, which are not deter-
ministic yet has the capability of destabilizing or affecting the ecology, were neglected in
these models thus failing to completely model the phenomenon or process. This concern
can be mitigated by considering stochastic versions of the models, which are prone to
more accuracy than their deterministic counterparts.
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In our case, a stochastic predator—prey model seems to be efficient in use since ran-
domness occurs naturally in these systems. Fluctuations in a stable environment caused
due to random factors like a natural calamity reiterates the necessity of opting a stochastic
model. These disturbances can be modeled using noise terms.

In literature, there are abundant works on stochastic differential equations perturbed
by Brownian motion. The choice of noise used is completely based on the characteristics
of disturbances affecting the systems. The occurrence of flood or an earthquake can cause
sudden discrete jumps in the population, and hence combination of continuous random
process and random jumps are more appropriate for our system. These combined effects
are modeled using Lévy noise [1] in the system considered in this work.

Large deviations is the analysis of decay of tail probabilities of those events with very
less probability of occurrence but has a massive impact on the event of occurrence. The
concept of large deviations has gained popularity over the recent years only because it
has become evident that the knowledge of dynamics of such rare events have proven to
be actually essential in many ways. It is used to gain knowledge about the impact, either
positive or negative created due to rare events with the help of a rate function. Though
many other theorems like law of large numbers and central limit theorem talk about the
deviations, the Large Deviation Principle (LDP) deals with the deviations of greater order
than those considered in other theorems.

Formally put forward by Varadhan [16], this theory was developed over the years. Out
of the many available methods, we employ the weak convergence method given by Dupuis
and Ellis [7]. In [4], Budhiraja and Dupuis instituted a variational representation for pos-
itive functional of Brownian motion to the study of large deviations for varied differential
equations. Large deviations for equations perturbed by Wiener noise has an extensive
literature [5, 10, 13]. In [15], LDP is analysed for tidal dynamics equation. For equations
perturbed by Lévy noise, the available literature is not wide enough as in the previous case.
The theory of large deviations for stochastic partial differential equations with pure jump
noise is outlined in [3], and [9] establishes the principle for shell model of turbulence.
Stochastic partial differential equations with Neumann boundary conditions is rarely dealt
with. Few works on it include [2], which proves existence of unique solution for stochastic
Landau-Lifshitz—Bloch equation, and [11], which establishes LDP for the same.

The predator—prey model considered here is an extension from the model in [8]. The
deterministic model considered with Holling type III functional response is

ouq ,Bu%ug
— —mAu = — —

ot mAau ul(Oé ul) 1 +u%’
Ous ’yu%uz

—Z —noAuy = -4

or PR L 0"

with 1,9 and uo,o being the initial population equipped with homogeneous Neumann
boundary conditions. For detailed study of impact on functional responses on predator—
prey models, we refer to [12]. In [14], the LDP is established for the above equation
perturbed by Brownian motion. In this paper, we consider this model perturbed with Lévy
noise, prove the existence and uniqueness of the solution using Galerkin approximation
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technique and then establish LDP for the same. The study of LDP for population models
prevails as an essential element required to maintain ecological balance. LDP can be used
to handle the effects of random events in population dynamics like evolution of predators,
sudden damage of prey food due to flood or any event causing catastrophic effects. It aids
in these situations by providing the rate at which these events deviates. The analytical
proof for this principle is being done in this paper from which numerical results can be
generated in future.

The method of weak convergence is used in order to establish LDP in which we con-
sider a compact set of stochastic controls and prove that the stochastic control version of
our system converges to its deterministic one whenever the noise parameter tends to zero.

2 Mathematical formulation

Consider D C R? to be the bounded domain on which the model is defined, and let [0, 7]
for a finite 7" be the interval on which the populations are studied. The stochastic predator—
prey model (u; — prey, and uy — predator) with noise perturbed by a small parameter € > 0
is given by

Oui c_ ¢ oy Blui)us
3t1 —mAuf =ui(a—uf) — ﬁ + Veor (t,ul) dWi(t)
+6/gl(u§,z) Nl(dt,dz)7
z
ou§ o oy(us)Pug R .
at2 mAus = 1:_1(;%)3 — du§ + \eos (t, u2) dWh(t)

—|—5/g2 (ug,z) Ng(dt,dz)

with uf o and u3 ( being the initial populations equipped with Neumann boundary condi-
tions 8u1 /Ov = 0 and Ju§/0v = 0, where v is an outward normal to the boundary 9D.
Here 7, and 1), are diffusion coefficients of prey and predator, respectively. Also, « is the
carrying capacity of prey, J is the death rate of predator, /3 and -y are ratios depending upon
factors like the intrinsic growth rate, number of newly born predators for each captured
prey and death rate of predators. For u® = (u§, u§), the abstract formulation of stochastic
predator—prey model driven by Lévy noise is given by

du® + Au®dt = f(u®) dt + Veo (¢, u”) AW (t) + E/g(ug, z) N(dt,dz), (1)
z
ou®

u®(0) = (ui(0),u5(0)) = uo, 5 0

W (t)=(W1(t), Wa(t)) — independent Wiener process;
N = (N1, Na) — compensated Poisson random measure;

https://www.journals.vu.lt/nonlinear-analysis
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e The linear operator A and nonlinear functional f is given by

2 Buiuz
—mA —a 0 —uy — )
4= ( " 0 _772A + 5)’ f(u) = ’yufulz+ ! y U= (u17u2)§
1+u?

e The functions o (¢, u®) = (o1 (¢, u5), o2(t,u3)) and g(u®, 2) = (g1(u5, 2), g1 (uj, 2))
are noise coefficients subject to conditions stated later.

The deterministic equation corresponding to (1) is
du® + Au®dt = f(uo) dt

with u(0) = wug. In this paper, let us denote the Lebesgue space H = LL?(D) and the
Sobolev space V' = H! (D) with the norms defined, respectively, as follows. For u € H
andv eV,

ul3y = Ju]? = / lu@)|dz,  Jol2 = [of? + Vol
D

Similarly, the Sobolev space H?(D) is equipped with |u|3, = |u|> + [Vu|? +|Au|?. Let
(2, F, F:, P) be the complete filtered probability space on which the independent Wiener
process W is defined. Here W is an L?(D)-valued process. Let Q be its covariance
operator, which is a linear, symmetric, positive operator in H such that Hy = Q'/2H is
a Hilbert space with inner product

(6, 0)0 = (Q726,Q7 ) for ¢,¢ € Hp.

Let L be the space of linear operators S such that .S Q'/? is a Hilbert-Schmidt operator
from H to H with the norm [S|.,, = tr(SQS*). For alocally compact Polish space Z, let
N;, i = 1,2, be Poisson random measures defined on [0, 7] x Z, independent of W;. Then

let N; be the compensated Poisson measure with the compensator \; fori = 1, 2. Let

H3([0,T] x Z;H) = {g :[0,T) x Z — H: gis measurable and

T
//E(fg(t,z,w)ﬁ{) A(dz) dt < oo}.
0z

The space D([0, T]; H') denotes the space of cadlag functions from [0, 7] to H'. The
assumptions on the noise coefficients o and g are as follows.
The functions o € C([0,T] x V; Lo(Ho; H)) and g € H2([0,T] x Z; H) satisfy:

(A1) Forall ¢t € [0,T], there exists a constant &; > 0 such that forall u € V,

ot w2, + / g, 2)[* A(dz) < Ky (14 [Vul?).
zZ
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(A2) Forall t € [0,T], there exists a constant K5 > 0 such that for all u,v € V,

|o(t,u) — o(t,v)‘i@ + / lg(u,z) — g(v,z)f)\(dz) < K (|V(u-— v)‘Q).
z

3 Ecxistence results

We now establish the existence results for the solution of (1). A weak solution of (1) is
a process

us(t,w) € LP(£2; D([0,T); H') NL2((0,T); H?)) forp > 2,

which satisfies the initial condition ug, and for ¢ € D(A),

(1)) = (w0, )+ [ [(40(9).9) = (£ (u(5) )]

- ﬁ/t(a(&ug(s))dml/))—i—s/t/ (9(u(s),2),¢) N(ds,dz).

The properties of the linear operator A and the nonlinear functional f required for further
estimations are given below. For detailed proof, one can refer to [14].

Lemma 1. The operator A satisfies for u € H',

(Au,u) > n|Vul* — ofus |, 2)
where 11 = 11 A na.
Lemma 2. Foru,v € H!,
(i) Boundedness:
(f(u),u) < §|u1|2 + (§ + 7) Jual?; 3
(i1) Lipschitz continuity:
4 23202
2(f(u) = f(v), 2) <n|V2|* + ;(1 +8%) (Juf? + [v?) |21 + =——]2?
2 8v2C,
(el 0P+ ==, (4)

where z = u — v and C, = (area(D))1/2.

We now prove the existence of weak solution of (1) with pathwise uniqueness in
X = D([0, T]; H') N L2((0, T); H2).

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 1. Let (A1)—(A2) and E|ug|? < oo hold. Then there exists €g > 0 such that for
€ € [0, &q), there exists a pathwise unique weak solution u® for the stochastic equation (1)

in X = D([0, T); H') N L2((0, T); H?) with u®(0) = ug € H such that

T
E sup ’us(t)‘z+77E</‘Vus(s)|2ds> < C(1+ Eluol?),
0

0<t<T

T
E sup ‘Vus(t)IQ—&—nE(/’Aus(s)‘2d5> < C(1+ Efuol?),
0

0<t<T

where C' is an appropriate constant.

We use Galerkin approximation to prove the existence. Let a complete orthonormal
basis of the space H be {¢,}n>1 such that ¢, € D(A). Forany n > 1, let H,, =
span(¢i,...,pn) € D(A) and P, : H — H, be an orthogonal projection onto H,,
which contracts H and V norms. Let W,, = P, W, ¢, = P,,0 and g,, = P, g. Then for
1 € H,, consider the equation in H,,

(dus, ¥) = (=Aug, + f(ug), ¥) dt + Ve(on(t,ur,) dWn, ¥)
+ 5/ (gn (usy, 2), ) N(dt,dz) (5)
z

with uZ (0) = P,ug. The Lipschitz property satisfied by the coefficients assures well-
posedness, and hence, there exists a maximal solution to (5), that is, a stopping time
7¢ < T such that for ¢ < 75, (5) holds, and for t 1 75 < T, |u (t)| — co. We now prove
75 = T and estimate u5, for all n and € € [0, £¢] for some g9 > 0. For N > 0, take

m~ = inf {t: |u5,(t)] + |Vu;,(t)] = N} AT.

Then on {7y = T}, u, € D([0,T], Hy,) a.s. We require the following lemma proved
in [6] for further proofs.

Lemma 3. Let X, Y and I be nondecreasing and nonnegative processes, @ be a non-
m;gative process and Z be nonnegative integrable random variable. Assume that
Jo ¢(t)dt < C a.s., and that there exist positive constants a,b < 1/(2(1 4+ Ce®)),

m < a/(2(1 4 Ce©)) and C such that for 0 < t < T,

X)) +aY(t) < Z(t) + /go(S)X(s) ds+I(t) a.s.,
0

E(I(t)) <VE(X(t)) + mE(Y(t) + C.
Then if X € L°°([0,T] x {2), we have for t € [0,T),

E[X(t)+aY (t)] <2(1+ Ce%)(E(Z) + O).
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Proposition 1. For an integer p > 1 and E|ug|*? < oo, there exists €, such that for
0 < e < ey 7, =T, and there exists a unique solution u5, € D([0,T)], Hy,) satisfying

T P
E sup |u2(t)‘2p+nE</|Vufl(s)|2ds> <C’(1—&—E|u0|2p)7

0<t<T /

otLT

T p
E sup ‘Vu ‘ +77E</|VU,§L(5)|2P—2|Aui(3)’2d3> < C(1+ Eluo|?),
0

where C'is an appropriate constant.

Proof. Fort € [0,T] and Ty, applying Itd’s formula for |uS|?,

(e A )P = [Pl +2 [ (=Aug(5) + (a5 (5) w3 (s)) s
0
+2\/g/ (0 (525 (5)) AW, 5 (5))
0
+5/|an(s us, (s)) 2L ds+€//| |Nds dz)
0

+2¢ // gn (U5, (8), 2), 15 (s)) N(ds,dz).

Applying It6’s formula for |ug (¢)|P,

|ug, (A TN)‘QP = |Pyuo|® + I + I + I3 + Ji,

where
tATN
IL=2 / (—Aui(s) + f(ui(s)), u;(s)) ’ui(s)’ﬂp_l) ds,
0
tATN
I, =¢p / |an(s,ui(s))’i@‘ui(s)f(p—l) ds
0
tIANTN
b2 Ve [ 10 (5,05 6)) s 6) | [ ()7 s,
0
tATN

(ds,dz)

&
|
o
N—
?
_|_
™
)
3
/\
,.\
|
b
I\
SN—
T
]
S
I
:
2 :

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

LD for stochastic predator—prey model with Lévy noise 727

+ //HUZ(S*)Jregn(un(S*)’Z)|2”—| ¢ (s—)|""] A(dz) ds
0 z
— 2pe //(Qn(ui(s )72)7%(8 )| 3 )|2(p 1))\(d )d
0 Z
Ji = 2py/e / (00 (5,15, (5)) AW, w5, (5)) | () 77V
0

Considering each term separately, using (2) and (3),
tATN

hi<2p / [V (5)]” + exfus () g ()7 s,

n

0
where ¢; = a + 8 + . Using (A1),

tATN

I =¢p / [|an(5,ui(8))|i +2(p—1) |H Jn(sv“i(s))ﬁQ]|ufl(s)|2(p’1)ds
0 tATN
<epp-DE [ (@ Vai o)) u () s
0

Using Taylor’s formula and Cauchy—Schwarz inequality,
Iy = // [ (5=) + egn (uS, (s=), 2) [ = [, (s—)| ] N(ds, dz)

+ 2pe //(gn(us (sf),z),ui(sf))|ui(sf)|2(p71) N(ds,dz)

— 2pe // gn (u ),2), n(s))|ui(s—)|2(p_1)N(ds,dz)
0z

tATN
p(2p — 1)e //|u 2(p 2 |gn(ui(s—),z)|2N(ds,dz)
tATN
€ 2(p—1)
+ 2pe // gn (u ), 2), u (5=)) |ug, (s—))| N(ds,dz).
0z
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Combining all the estimates, taking supremum and then taking expectation, we get

tANTN
E sup |ufl(s)|2p + 2pnE / |Vu2(s)|2|ui(s)|2(p_l) ds
0<s<EATN o
tATN
< E|Pug|? + 2pc,E / ‘ufl(s)fp ds+E sup {J1+ J2}
0 0 s<EATN
tATN
+3p(2p — De K1 E / [|u;(s)|2(p_1)(1 + ’Vufb(s)|2)] ds,
0
where
tATN
Jo = 2pe / /(gn(ui(s),z)7ufl(5))|ufl(s)|2(p71)N(d&dz).
0z

Using Burkholder-Davis—Gundy inequality, Young’s inequality and (A1), for C7 > 0,

E sup {]1}

0 s<EATN
tIANTN

< 210\/501]3{ /

1/2
o (5,05, (9)) |2, qu<s>y4“ds}
0

2 9 tATN
<6E  sup ’“2(8)]% + ME/ (1 + |Vui(s)\2)|ui(s)|2(p_1) ds.
0<s<EATN 1) )

Similarly using Burkholder-Davis—Gundy inequality, Young’s inequality and (A1),

E sup {J}<JdE sup ‘ufl(s)fp

0<s<EATN 0 s<SEATN
9 202K tATN
€ _
+ p761 'E / (1 + |Vufb(s)|2)|ufl(s)|2(p 2 ds.
0
Comparing with Lemma 3, assign
tATN
X(t)= sup s (s Ara) [, Y () = / (Vs (s) s, ()27 ds,
<s<t
0

TN
Z(t) = |uo|? + 3p(2p — 1)eK; / Jus ()Y ds,
0

https://www.journals.vu.lt/nonlinear-analysis
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T
I(t) = sup {J1 + J2}, o(t) = 2per, /80(?5) dt = C =2pai T,
0<s<t 5
1 P P*CIK, 2
= 21+ Ce)” ST 911 Ce0) 5 +e)
t
~ 202K _
C = pig L (e+¢%) / ‘ui(s)f(p Y 4s.

Using induction argument and Lemma 3 for ¢ = T, it is easy to prove that for

n n

=1A A
0 3K, (2p— 1) 8pC2K, (1 + CeC)?

and for 0 < € < g9, we have

supE( sup ‘u +pn/‘Vu | ‘ e ( ‘2(11 1)d> Cp, T, K1)
n

0<s<TN
Applying 1td’s formula for |Vug [P,

|V, (8 A TN)|2p = |P,Vuo? + Iy + I5 + I + J,

where
tATN
B=2p [ (~Aui(s)+ 1u5(s), Tus(s)[Vup (9] s,
0
tATN
Iy =ep / |an(s,ui(s))|iQ]Vufi(s)|2(pf1) ds
0
tINTN
+2p(p —1)e / ‘H an(s,ui(s))ui(s)’iQ‘Vui(s)’2(p—2)ds’
0
tATN
f= [ [ Vi) + egatun(s-) 2 = [Vus (62 7] N(ds,d2)
0 Z
tATN

+ // [|Vus, (s=) + egn (u5, (s—), z)’2p - ‘Vui(s—)’Qp] A(dz)ds

tATN

— 2pe // gn (65, (5-), 2), Vs, (s=)) [V, () P A(dz) ds,

Nonlinear Anal. Model. Control, 29(4):720-745, 2024
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tATN
Js = 2py/e / (O'n (s,ufl(s)) dW,,, Vui(s))|Vqu(s)|2(p71).
0
By reducing as before we get

tATN
VN e 1210 e/ \(2(p—1
E sup |Vun(s)’ p+2an/ |Aun(s)| |Vun(s)| (p )ds
0<s<tATN
0
tATN
< E|PnVu0|2p + 2pcE / ’Vufl(s)fp ds+E sup {Js+ Js}
0 s<EATN
0
tINTN
€ 2(p—1) € 2
+3p(2p — 1)e KHE / [|Vun(s)| (1 + |Vun(s)| )} ds,
0
where
tINTN
Jy = 2pe // gn (U5 (5),2), Vus, ))|Vufl(s)|2(p_1) N(ds,dz).
0
Using a similar computation, we can get
tINTN
} € 2p € 2 5 2(p—-1)
E sup |Vu(s)|” +2mE [ |Au(s)]"|Vug,(s)| ds < C.
0<s<EATN
0
Here 7v — 7, as N — oo, and for {7, < T}, supgcsc,y Uy ()] — oo. Hence
P(7; < T) = 0, and so for large N, 7v = T and u§, € D([0,T], H,,). Hence the
proof. O

The following lemma is an essential version of It6’s formula.

Lemma 4. Let (Al) and ug € L*(2, H) hold and p' : [0,T] x £2 — [0, +oo) be adapted
such that for every w, the map t — p'(t,w) € LY([0,T)]) and p = fo s)ds. For
i=1,2 let ¢; € D([0,T],H') N1L2([0, T],H?) with ¢;(0) = ug be such that

doi(t) = [—Agi(t) + f(di(t))] At + Vo (t, ¢i(t)) AW
+e [ n(oi0.2) Mt e)

z
Then for every t € [0,T] and ® = ¢1 — po, we have for c1,ca > 0,

e P() ‘@(t) ‘2
t

<I(t)+ / e {efor (s, 61(5)) — 02(s. d2(s)) [, —n|VB(s)|} ds

0

https://www.journals.vu.lt/nonlinear-analysis
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t
[l sl - deels

t
+ e "e|g1(d1(s), 2) — g2(¢2(s) } N(ds,dz),
/!

where

I(t) =2z / e ") ([o1 (s, ¢1(5)) — o2 (s, p2(s))] AW, D(s))
0

w2z [ [ g1(61(5).2) - ga(02(5),2),8(6)) N, d).
0 Z

Proof. 1t6’s formula gives

t

—p<t>|¢s(t>,?:/e—ms){_p’(s)yqﬁ(sﬂz+s\o—1(s,¢1(s))—02( 02(s)) [, } ds

0
t

+2 / e (—Ad(s) + [f(91(5)) — [ (62(s))], B(s)) ds
0

+O/Z/e_p(5)5|gl(¢1(s ) gg(qbg )| N(ds,dz) + I(t).

Using Lemma 2, (4) and Young’s inequality,
t

2/6—/)(8) (—AD(s) + [f(d1(5) — f(o2(5))], B(s)) ds

0
t

g/e*p(S( n|Vo(s | + c1]@(s | +02(|¢1(5)}2+|¢2(5)|2)|¢(5)|2)d57
0

where ¢; = 2a+ (28%2C? /n) + (8v2C,/n) and co = (4/1)(1+ B2) + (v?/n). Using this
in the above estimate, we get the required result. O
Proof of Theorem 1. Let 27 = [0,T] X £2,e = g92 A (n/K2) and F(u) = —Au+ f(u).

Step 1. From Proposition 1 we can conclude that there exist a subsequence

{u } >0 and processes u® € L2(Qp,H?) N L4(2,D([0,T],H')), F¢ € L*(27, V'),
S¢ € L2027, Lg) and G° € H3([0,T) x Z; H) such that

Nonlinear Anal. Model. Control, 29(4):720-745, 2024
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(P1) u, — u® weakly in L2 (Q2p, H?);

(P2) ug is weak star converging to u¢ in L*(£2, D([0, T], H));
(P3) F(us) — F* in L2(2p, V'):

(P4) o, (us) — ST inL2(02r,Lg);

(P5) gn(uS, ) — G=in H2([0,T] x Z; H).

(P1)—(P2) hold as a direct consequence of Proposition 1. To prove (P3), consider ¢ €
L2(27,H?). Then

E

O\’ﬂ
—
S !
—
S
I™
Vo)
N—
SN—
Q.
V)

T
/ V() + (a+ 6+ M ()] [6()]] .
0

Using (P1), we can prove (P3). From (A1)
T
E/|an(s,ufl(s i ds+E/ |gn (us, | A(dz)ds
0

< KlE/ (1+ |Vufl(5)’2) ds < oo.
0

This implies (P4) and (P5). Since as n — oo, P,ug = u$(0) — ug in H, we have that
u® satisfies the equation

t

u(t) = ug + / ds—l—\f/SE dW—I—E/ G%(s) N(ds,dz).  (6)

0

Step 2. Ttremains to prove that F<(s) = F(u®(s)), S¢(s) = o(s,u(s)) and G°(s) =
g(uf(s),2). For ¢ € D(Qp, H'), take

r(t) = / 1 +02(’u8(8)|2 + |w(s)|2)] ds < oo forallt e [0,7].
0

By Fatou’s lemma

B{e @ [u(T)*} < liminf E{e"@|us (T)|’}. @
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Applying It6’s formula to (5),

e D |ug (1)
= [P ? + / &7 [ (3) (w5 (5), () + 2(F (i (5)). 5 (5)) } ds

T T

+ / e el (5. 05(9) |2, d”/ / e el gy (uf(5), ) |” N(ds, d2)
0 0272
I(t

+

Here since I(t) is a local martingale with zero average,

T
E{I(t)} = 2\@E/ ) (0 (5,u5 (5)) AW, i (5))
0T
+ 2¢E / m(s) (gn (u5(5), 2),us(s)) N(ds,dz)
072

Therefore, we get

E(e™ M |us (1)[%)

= BPuuof + B [ o {1/ (5)(u (5) 5 (5) + 2(F (1 (). w5 (5) } ds

T T
+ EE/e_T(s)|an(s,ui(s))‘iQ ds + EE// e_’"(“‘)|gn(ufl(s)7z)’2 A(dz) ds.
02

0

Similarly applying 1t6’s formula for (6),

E(e_T(T) |uE(T)’2)

T
— Bluol + E / e/ (5) (uF (5), u% (5)) + 2(F=(s),u () } ds
0

T T
+6E/e’r(s)|55(s)|i(g ds+5E//efr(8)|G€(s)|2)\(dZ) ds.
0 07z
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From (7)

T

/e_r(s) {=r"(s)(u(s),u"(s)) + 2(F=(s),u°(s)) } ds

0
T T
+ a/e_r(s)|5’5(s)‘i(g ds + 5// e_r(‘(")’GE(s)’2 )\(dz)ds]
02z

0

E

<liminf E

T
/e—r<s>{_7a/(s) (5, (), 15, (5)) + 2(F (ug, (), u () } ds

0

T T
b [ (sui o)}, ds = [ el (ui).2) P A@) ds]. ®)
0 0z

Using properties of A and f, we derive that

T

/e"”(s){—T’(S)|UZ(S)—¢(8)!2 +2(F (ug) = F(¥), us(s)—2(s)) } ds

0
T
+€/e—r(5){|0n( ‘[,Q /|gn —gn(¥, 2 | A(dz) }d ]
0

<0.

E

Subtracting the above estimate from RHS in (8) and applying limit, we get

T

/ e " () (uf(s),ut(s)) + 2(F(s),u(s)) } ds
0
T T
+6/efr(s)|55(s)|2 ds—ﬁ—s//efr(s)‘Ga(s)‘z)\(dz) ds
0 e 0Z

T
/efr(S){Q(FE(s), P(s)) +2(F(¢(s)), u(s) —(s)) } ds
0

E

<E

T
- [T 2e () - vs), v() ds
0
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+ E/e_r(s) (25°(s) — o (s,9(s)), o(s,(s))) ds

+ 6// e (s (2G€(s) — g(1/)(s),z), g(q//(s), z)) A(dz) ds
02z

Then rearranging the terms, we get
T

E /ew@qﬂF%@—PhM@%u%@—w@D}w
0 T
~ / ™" (5)]uf () — (5[ ds
0

T
b [0S ()~ alsu(s)) [}, ds
0

T
+ E// e_r(s)‘GE(s) —g(¥(s),2) |2 A(dz) ds}
0z

< 0.

Taking 1 = u° in the above inequality, we get S°(t) = o(t,u°(t)) and G*(t) =
g(us(t), z). For some p > 0 and ¢p € L>°(2r, H), taking ) = u® — uap, we get

T

/e_r(s){%(Fa(S) — F(Y(s)), 9(s)) — 127’ (s)|0(s)]*} dS] <0. (9

0

E

From (4) we have
(F(w(s)) — F(u(s)), ¥(s))
12 [=n|V(s)|” + e [is)]” + e ([s)]” + [u ()| [9(s)[°]

Then dividmg (9) by 1 and letting p — 0,
T

E /e_r(s){2(F5(s) — F(u®(s)), @(s))}ds} < 0.
0
Since 1) is arbitrary, F=(t) = F(u(t)). Hence, u® satisfies
u(t) =uo+ [ F(u®(s))ds + Ve [ o(s,u’(s)) dW + & z) N(ds, dz).
et afonarcfoe

Hence the existence of solution is proved.
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Step 3. To prove uniqueness, consider ¢* € X. Let 7y = T ATny — T as N — o0,
where 7y = inf{¢: |u®(¢)|+|Vus(t)| > N} and 7y = inf{t: [¢°(¢)|+|VYe(t)| = N}.
Then ¢ = u® — ° satisfies

dd(t) = [F(u®(t)) — F(¢5(t))] dt + Ve[o (t, u(t)) — o (t, ¢ (t)) dW]
ve [ o (0).2) - 970 2)] N(at,do)

z
For a = ¢y, let p'(t) = a(|1°(s)|? + |u®(s)|?). [td’s formula in Lemma 4 for ¢y = u®
and ¢ = 1° and (A2) gives

PN |9t A 7y) |
tATN
<I{tATN)+ / e*p(s){sKg - n}|V19(5)|2 ds

0
tATN

+ / PO er + oo ([uf ()| + [05(5)[*) = o/ ()] [9(5)] dis,

where
tATN

I nm) =2VE [ e ([o(s,u5(5)) - o(s,0%(5))] V. 0(s)

0
tATN

+ 2¢e //e*p(s)(g(ue(s),z) fg(wg(s),z),ﬁ(s)) ~(ds,dz).
0 z
Here

E sup I(s)<JdE sup [e_”(s)W(s)’z]

0<s<tEATN 0<s<tATN
C 9 K tATN
+71(57;5) 2B / e )|V (s)|? ds.

0

Therefore by using Lemma 3 with Z(t) = 0 and C' = 0 we get

E sup {e*p(t/\m)w(t A TN)‘Z} =0.
0<t<T

Hence |9(¢)|? = 0 for all t € [0, 7] since Ty — T as N — oo. O
4 Large deviation principle

Let O be a locally compact Polish space and Or = [0,T] x O corresponding to O for
finite T > 0. Define

M(O) = {pon (0,B(0)): u(K) < oo for compact K C O}.
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Let M = M(O7) and P be the probability measure on (M, B(M)). Then B(M) is
a Polish space. Let
V=0C([0,T); H) x M,
Gi=0{N(s,2): 0<s<t, Ze€B(Or)} fort>0.
Let P be the probability measure on the space (V,B(V)), {F;} be completion of {G,}

and P be predictable o-field with respect to it. Define the class A and [ : [0, 00) — [0, 00)
such that

A= {¢: O x V= [0,00): ¢ is (P x B(O))/B[0, c0)-measurable },
l(a) =aloga —a+1.

Let X be a locally compact Polish space with X7 = [0, T| x X. For ¢ € A, define N¥
as

Nd)(t,Z) = / /1[0,w(87z)] (’I‘) N(ds,dz) d?", te [O,T], Z e B(X)

[0,T]xZ 0

For ¢ € A, define

L}(d))://l(i/}(t,z,w)) A(dz) dt.
0 Z

Define Py = {¢: ¢ is P/B(R)-measurable, fOT |p(s)|2ds < oo} andU(H) = Py x A.

For ¢ € P, consider
T

- 1
Le@) =5 [ loGs)]; ds.
0
For N € N, define

Sn(®) = {1 : Or — [0,00): Lr()) < N},
S (Ho) = {¢ € L*([0,T]; Ho): Lr(¢) < N}.

Define a compact set {\%: g € Sy} in M, where
T
A = //g(s,z))\(dz) ds, Z e B(Or).
0z

Let i = Pa(Hp) X Aand S = UN>1 Sn, where Sy = Sn(Hp) x Sy Here take
UN = {¢ = (¢,9) €U, £(w) € Sy}. The following theorem states the postulates to be
proved in order to establish large deviation principle. Let X be a Polish space.
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Theorem 2. Suppose there exists G° : Xo x V — X, a measurable map such that

() For M < oo and {5 = (¢°,%°) € U: £ (w) € Sy forae w} C UM, if
(¢°,4°) = (¢, ) in distribution in Sy; as € — 0, then

G (ﬁwo + [ o ds7€N517’”5> - g°< [ ot s w).
0 0

(ii) For every finite M, Ky = {G%([; ¢(s)ds, )\#): (¢,10) € UM} is a compact
subset in X.
Then the family of solutions {u®, e > 0} satisfies the Laplace principle with the rate
function I given by
T T

. 1 2 1 2
I(g) :(¢7ipr)1259{20/2/’l(¢(s7z))’ )\(dz)ds+20/|¢(s)‘0ds},

where Sg = {(¢,¢) € Upsoq Sz g = G°(J; &(s) ds, \2)}, where infimum over the
empty set is taken as oo.

The stochastic control equation with respect to (1) is

dug. = [—Aug. + f(ug.) + o (t,ug. )¢ dt + Veo (t,ug. ) AW

+/g(uge,z)l(w5) A(dz)dt—ke/g(uga,z) N(dt,dz). (10)

z z
Lemma 5. Assume that (A1)—-(A2) hold. There exists a unique strong solution for stochas-
tic control equation (10) with ug.(0) = ug for & € UM, M € (0,00), and ¢ > 0

satisfying the estimate
t

E sup }u§s(t)’2+17E/’Vu55(8)|2d5 <K,
0<t<T J

t

E sup |Vu§5(t)|2 + nE/ |Au55(s)’2 ds < K
0<t<T
0
in X, where K is an appropriate constant.
The solution of (10) can be expressed as G*(v/eW () + [; ¢°ds, eNE '¥%). The
estimates for the solution is evaluated as done earlier.

Theorem 3. Assume that (A1)—-(A2) hold. For & € A, the deterministic controlled
equation

dug = [—Aug + f(ug) + o(t, ug)p] dt + /g(%Z)l(w) A(dz)dt (1)
Z

with the initial condition u¢(0) = ug has a unique strong solution in X.
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The solution of above system can be expressed as G%( [; ¢(s) ds, )\% The proof of
Theorem 2 consists essentially to prove the weak convergence of the solution of (10) to
the solution of (11) as ¢ — 0.

4.1 Compactness. Proof of postulate (ii) of Theorem 2
Theorem 4. For fixed finite M > 0 and £ € A, consider the set

Ky = {ue e X=D([0,T};H') NL*((0,7); H?)},
where ug is the solution of (11). Then the set Ky is compact in X.

Proof. Let {ue,} € K to be the solution of (11), where the control §& = (¢,%) is
replaced by &, = (én,¥n) € Sar for n € N. There exists a subsequence of &, € Sy,
also denoted by &,,, converging weakly to £ since Sy, is weakly compact. In order to prove
ug, — ue weakly, it is enough to prove that w,, = (u¢, — u¢) tends to 0 as n — co. The
difference w,, satisfies the equation

dw, = [~Awy, + f(ug,) — flug) + o(t,ug,)dn — ot ue)p] dt
+/ [g(u%,z)l(i/}n(t,z)) - g(uf,z)l(w(t,z))] A(dz) dt.

z
Taking inner product with w,, and integrating,

¢
’wn(t)|2 + 277/ ‘an(s)|2 ds
0
¢

- / (Flue, ()) — f (ue(s)), wn) ds
0

Using the property of the nonlinear operator f, we get
t

2/ (f (ug, () = f(ue(s)), wn(s)) ds

0
282C?

4
</ [mwnl%n(uﬂ%(wgn2+|ug|2)|w1,n|2+ [
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8v2C

2
# C u 2 L P(un,  + funl?)]

t
2
< [ v+ (S0 54 ) e P + gl
0

2,12 2
+(ﬁc +870>| ,ﬂds
I I

Using Young’s inequality and (A2),

t

2/ s, ug, ( — o (s,ue(s))o(s), wy,) ds

0
t

=2 [ (05,6, ()0n(6) — 015, ue(5)) 9
0

+G(S7u€( ))¢n( ) — (5 ug(s ))¢(5)7wvb) ds

</‘O’(S,U§7L(S))—O’(S ue(s )|£Q|q’)n ‘ |wy,| ds

+2 [ o (5,6(5)) (9n(5) - 9(5) ]
0
g Q|V7.Un|2 4K2|¢n |2+1 |wn|2d8
et + (Sl
+ [ oo uels)) (9n(6) ~ 6(5) .
0

Similarly,

20]/ W [ (e, (5), 2)1 (a5, 2)) — gue(s), 2)1 (5, 2))]) A(d=) ds
/t”|v nl? + <4K2\l(wn )| +1)|wn| ds

//|g ue(s (5)) = 1(t(s))]|* Adz) ds.
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By substitution we get

t

fwa(t)? + 2 /\an (s)[*ds
0
</D1}wn(s)|2ds+/D2(}u§n(s)|2+|u§(5)|2)’wn(5)|2d5
0 0
+/\0’(8,us(s))[¢n(s) — o(s)]|° ds

// |g ug (s wn( )) _l(w(s))]|2)\(d2) ds.

Here

22 22
D1<4K2[|l(wn NI+ [én(s)o) +2>+max{2a, 87770 +25nc },
2
Dy = <4(1+/52)+7>.
U U

Applying Gronwall’s inequality as n — oo,

t

|wn ’ + - /|an )|2ds—>0.
0

This implies that K5, is a compact set in X. O

4.2 Weak convergence. Proof of postulate (i) of Theorem 2

Theorem 5. If {¢°, ¢ > 0} € A converges to £ in distribution with respect to the weak
topology in A, then as € — 0,

(\[W /¢Eds eN*® W) —>g0(/¢(5)d3> A?)
0

in distribution in X.

Proof. It is enough to prove that w® = ug. — ug tends to zero as ¢ — 0, where ug. and
ug are the solutions (10) and (11), respectively. The equation satisfied by w*® is

dw® = [—AwE + f(ugg) — flue) + J(t,uza)qﬁs — J(t,u5)qﬂ dt + \/go(t,ugg) dw
+/ [9(uge, 2) (%) — glue, 2)1(1)] A(dz) dt +5/g(ugg,z) N(dt,dz).

Z Z
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1td’s formula gives

|we ()]

= 2/ ([—Awa—i— f(uzg (s)) —f(ug(s)) + 0(37uzg(s))qﬁa(s)—a(s,ug)qﬂ,w‘g) ds
0
+ 2// ([g(ugs(s),z)l(df(s)) — g(uE(s),z)l(d)(s))], ws) A(dz) ds
07z

—I—Qf/ s, ug- (s)) dW, w®) +25/ (9(ug-(s),2),w )N(ds dz)
0z

t

+5/| 5, uge ( ]L ds—ks//‘gu£ )|Ndsdz)

Employing the same method as in previous estimates, the inequality reduces as

|w€(t)|2 + g / ’sz(s)‘zds

0
+ [ Dal(u(o) P+ el o [+ o () (9 5) = 6(5) s

0

/ 47](2 € 2 £ 2 £12 25202 8’}/20{% e|2
+!(nHWMm|H¢®M+%m|+(n+n)w¢@
+2\f/ ) dW, w®) +2€// w?) N(ds,dz)
+5K1/(1+|Vu55 )‘Q)ds

+/ |9 (ue(s), 2) [1(¢(5)) = 1(w(s))]|* A(dz) ds.
0z
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Taking supremum over 0 to 7', then taking expectation and using Burkholder—Davis—
Gundy inequality, we get

0<t<T

2E sup {ﬁ/(o(s,ugg(s)) dW, we(s)) +5//(g(u25(3),z),w5(s)) N(ds,dz)}
0 02z
T

< EE{ sup |w5(t)|2} + (e? +¢)CK? E/(l + |Vu§a(5)|2) ds.
2 logiT )

For appropriate constant D,

t

1E sup ’we(t)‘Q—l—ﬂE/‘ng(s)Pds
0<t<T 2 )

t t
< E/D4\we<s>\2ds (K + (& +5)CK12)E/ (1+ Vs (s)*) ds
0

+ E/ |a(s,u§(s)) ((;56(8) — (;S(s))‘st

+E // ’g(ug(s), z) [l (’(/JE(S)) — l(w(s))] ‘2 A(dz) ds.

Applying Gronwall’s inequality,

t

E sup |ws(t)|2 +77E/|Vw5(s)’2ds
0<tLT )

t

< exp(D4T) {E/|a(s,u5(s)) (¢°(s)—(s)) f2 ds + C(e) E/(1+|Vuzs (8)|2) ds
0

0

B lo(ue(s) ) 167(5) ~ (0] A8 ds},

where C(g) = (K + (€2 + £)CK?). Since C(e) — 0 when letting ¢ — 0, we get
w® — 0. Hence the convergence is proved. O

Theorems 4 and 5 now guarantee that the solution of (1) satisfies the Laplace principle
thereby satisfying the large deviation principle with the same rate function as well.
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5 Conclusion

A stochastic version of predator—prey model with Holling type III functional response
perturbed with Lévy noise is considered for which the principle of large deviations is
studied. Foremost, the existence and uniqueness for this problem is analyzed using the
technique of Galerkin approximations. Due to the equivalence with Laplace principle,
LDP is proved rigorously using the weak convergence method by establishing the con-
vergence between stochastic controlled problem to its deterministic counterpart in weaker
sense. In order to do this, two postulates, namely, compactness and weak convergence are
proved.
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