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Abstract. In this study, we focus on demonstrating the stability of the three-step Z-iterative
scheme within the context of weak contraction mappings as defined by Berinde. Further, we
attain results concerning stability, data dependence, and error accumulation of the Z-iterative
scheme. This article also includes a comparison of the convergence rates among various established
iterative strategies. Several illustrative numerical examples are furnished to validate the accuracy
and reliability of our findings. In the same spirit, we present an application that utilises the
Z-iterative technique on Banach spaces to attain the solution of a delay Caputo fractional
differential equation, building upon our primary findings.

Keywords: weak contractions, stability, data dependency, error estimation, delay fractional differ-
ential equations.

1 Introduction and preliminaries

The successive approximation of fixed points or common fixed points plays an in-
strumental part in achieving solutions to many real-life problems arising in numerous
research domains. Fixed point iterative methods, which are key to such approximation,
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have a substantial amount of development in the literature, which got going with the
Picard iterative scheme. Owing to the fact that Picard iteration fails to converge to the
fixed points of nonexpansive mappings, Mann [17] proposed a novel iteration technique,
and thereafter, Ishikawa [15], Noor [18], Agarwal et al. [1], and many researchers have
studied different features of many such techniques in the setting of various structures;
see [2,10,12,26,28].

However, one can comprehensibly perceive that the efficacy of any iterative algo-
rithm relies on certain aspects, namely, the stability and the rate of convergence. Quite
obviously, the investigation of these attributes corresponding to an iterative scheme has
attracted a lot of researchers as evidenced by various literary sources; see [2,5,11,13, 14,
21]. In this paper, we look into the preceding features for Z-iterative scheme proposed by
Zaheer et al. [30] and defined as

xTo € gbr, Tn+l = gznv
Zn = (1 - an)yn + angyn-

Besides, we compare the rate of convergence of Z-iterative scheme (1) to that of other
well-known iterative schemes, namely, Noor and Thakur iteration.

On the other hand, in recent years, many researchers have made contributions to data
dependence results via any iteration method and also, approximated the error accumula-
tion concerning the iteration. Readers are referred to [3, 4,9, 14,23-27] and references
therein for a detailed study on the applicative viewpoint of various iterative techniques
and related notions. Following the direction, in this sequel, we come by a data depen-
dence result and an error estimation result pertaining to the newly introduced Z-iterative
scheme.

Berinde [6] introduced the notion of weak contractions, often known as almost-con-
traction maps, in 2003. In his paper, he demonstrated that the collection of weak contrac-
tion mappings is more general than the classes of contraction mappings and Zamfirescu
mappings, and he presented existence and uniqueness results concerning fixed points of
weak contraction mappings.

Definition 1. Let 2" be a Banach space and consider a self-mapping G on Z". Then G is
called a weak contraction if there exists a constant p € (0, 1) and a nonnegative constant
L so that the following hold for all z,y € 2:

Gz = Gyll < plle =yl + Ly — G|. (2)

Further, the author also established the following result in the context of aforemen-
tioned maps.

Theorem 1. (See [6].) Let 2" be a Banach space. Consider a self-mapping G on %
satisfying (2) together with the inequality

19z = Gyl < pllz =yl + Lz — G| 3)

forall x,y € Z. Then G owns a unique fixed point in Z.

https://www.journals.vu.lt/nonlinear-analysis
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The notion of stability related to a fixed point technique was originally brought for-
ward by Harder and Hicks [13], which is as follows.

Definition 2. (See [20].) Let 2" be a Banach space and 4 be a nonempty, closed, and
convex subset of 2. Define a self-map G : ¥ — % and let (x,,) be a sequence formulated
by an iterative scheme x,,11 = F(G, x,,) converging to a fixed point ¢ for any function F.
Suppose that (u,,) is any arbitrary sequence of (x.,,) and also define a sequence (e,,) given
by €, = ||unt+1 — F(G,uy)||- Then (x,,) will be called G-stable if

lime, =0 <— lim u, =¢&.
n—oo n— oo
In 1990, Rhoades [22] extended Harder’s [13] work and introduced the stability re-
sult for Picard and Mann iterative systems. Following that, Osilike [19] established the
concept of weak stability, often known as almost-stability of iterative schemes, which is
a weaker notion of stability than the one due to [20], and is discussed below.

Definition 3. (See [19].) Let .2 be a Banach space and 4" be a nonempty, closed, and
convex subset of 2. Define a self-map G : € — % and let (z,) be a sequence generated
by an iterative scheme x,,+1 = F(G, x,,) converging to a fixed point £ for any function F.
Suppose that (u,) is an approximate sequence of (x,,) and also define a sequence (e,,)
given by €, = ||un+1 — F(G,uy)|- Then (x,,) will be called almost G-stable if

o0

Zen<oo = lim u, =¢£.
0 n— oo

n—

Now we define an approximate operator corresponding to a nonexpansive mapping.

Definition 4. (See [6].) Let 2  be a Banach space and ¢’ be a nonempty, closed, and
convex subset of 2 and let G,G : ¥ — % be two mappings. Then G is said to be an
approximate operator for G if for some € > 0 and for each x € ¥, we have |Gz—Gz|| < e.

The succeeding lemma, originally conceived by Soltuz and Grosan [27], is playing
a vital role in this sequel.

Lemma 1. Lef (uy,), (vy,) be two nonnegative sequences of real numbers satisfying
Un+1 g qun + Un,
foralln €N, q € [0,1). Iflim,,— oo v, = 0, then lim,,_, oo u,, = 0.

Now we note down the following definition, which is related to the comparison of two
iterative process.

Definition 5. (See [21].) Let (7,,) and (6,,) be two sequences generated by two iterative
algorithms converging to the same fixed point . Then (7,,) converges faster than (6,,) if

.l =l
lim ——— = 0.
n—oo |6, — |

Nonlinear Anal. Model. Control, 29(5):833-857, 2024
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Our paper is divided into six distinct sections. Section 2 demonstrates convergence and
stability results. Then Section 3 provides comparison results of the Z-iterative scheme
with a few well-known iterative methods. The data dependence result is presented in
Section 4. However, Section 5 provides a numerical illustration of the applicability of the
results obtained in the previous sections. In Section 6, we bring out the error estimation of
the Z-iterative approach. Finally, in Section 7, we solve a particular type of delay Caputo
fractional differential equation employing the Z-iterative technique.

2 Z-iterative scheme and convergence analysis

The purpose of this section is to affirm a few convergence and stability results involv-
ing Berinde weak contractions using Z-iterative scheme (1). Also, we establish that the
aforementioned iteration has at least first order of convergence.

Theorem 2. Let 2 be a Banach space and € be a nonempty, closed, and convex subset of
the setting. Also, suppose that G : € — € be a Berinde weak contraction satisfying (3).
Let (x,,) be an iterative sequence generated by Z-iterative scheme (1), with two sequences
of real numbers (a,,) and (By) in (0, 1) satisfying one of the subsequent assumptions,
Yoo o0 =00, o By =00and Y, > &y, = oo. Then (x,,) converges strongly to
a unique fixed point £ of G.

Proof. Using Z-iterative scheme (1), we have
< (1= an)llyn — &l + onllGyn — G€||
< (1= an)llyn — &Il + anpllyn — €|l
< A= an+onp)llyn — &l = 1 = an(l = p))llyn — -

Now,
lyn — &I = 1G((1 = Bn)an + BuGan) — €|
< pl[(t = Ba)zn + BuGay — €|
S (L = Ba)llzn — €Nl + 12 Bnllzn — €]l
< (1= 1B+ 12Bn) 20 — €l = (1 = Ba(L = p)) 0 — €]I-
Then
lznt1 = &l = 1G2zn — &Il < pllzn — €l < (1 — an(1 = 1)) llyn — €
< (1= an (1= ) p(1 = (1 — ) lzn — &l
= 1* (1~ (an + Bn — anBa(l — 1)) (1 = p))llzn — |-
Therefore,

||$n+1 — ¢l < MQ(l - (an + Bn — anfn(l — N))(l - /‘))”xn =&

https://www.journals.vu.lt/nonlinear-analysis
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Repeating the above steps, we obtain

ln = €1l < 121 = (@t + Bt — anos B (1= 1)) (1 = 1)
X [|zp—1 — €|l
=
0oy — €1 < 121~ (Qnos + Bz — dnaBa(l — 1)(1 - 1))
X |zn—2 — &

21 — &) < p?(1 = (a0 + Bo — aoBo(l — p)) (1 — p)) [|lzo — €.

Therefore, inductively we obtain
|nt1 — & < p2 Y H (1= (i + Bi — aiffi(1 = ) (1 = p))lzo — €[l 4

We know that 1 — =z < e™7, then the above equation can be written as

[Zng1 — €| < p2HDe U= KiZol@itBimaiBil=m)|| 20 — £
Using one of the assumptions, Y oo,y = 00, Y oo B =00 and Y o0 anfBy = o0
and letting n — oo, we get

lim [, —¢[| = 0.

n—0o0

As p? < p < 1, therefore (,,) converges strongly to &. O

Theorem 3. Let 2 be a Banach space and € be a nonempty, closed, and convex subset
of the setting. Also, assume that G : € — % is a Berinde weak contraction mapping
satisfying (3) with a fixed point £ and (x.,,) be the iterative sequence generated by Z-it-
erative scheme (1), where () and (By,) are sequences of real numbers in (0,1). Let
(gn) C Z be any sequence and define a sequence (€,,) in R as €, = ||gn+1 — F (G, ¢n) ||,

= (1 — ap)vn + anGu,, v, = G((1 — Bn)an + BrnGqn). Then Z-iteration (1), is
almost G-stable.

Proof. Let (¢,) be any sequence, and we aim to affirm that (g,) is almost stable with
respect to G. Suppose that ch:o €, < 00. Then by using Z-iterative scheme (1) we have

lgns1 =&l < |gnir — F(Goaqn) || + || F (G, qn) — €|
= en + [|Gun — €|l < & + pllun — €. (5)
Again,
[un = €[ = ||(1 = an)vn + anGun — €|
< (1= an)llvn — &l + anllGvn —&]|
< (1= an)lvn = €[l + anpllon — €|l
(1= an( =) llvn = €| (6)

Nonlinear Anal. Model. Control, 29(5):833-857, 2024
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Now,
[von =&l = |G((1 = Bn)gn + BnGan) — &
< ul|((X = Ba)gn + BaGan) — €|
= ul|(1 = Bn)(gn =€) + Bn(Gan — €|
< pu(1 = Bn)llgn — &l + BrpllGan — &l
< p(1 = Bo)llgn — €l + Bui®llan — €|
= u(1=Ba(1 = 1)) llgn — €|I- (7)

Using (6), (7) in equation (5) we have
en 4+ (1 — an(l— p)|lvn — €]l

€ + ,u(l —ap(1-— M))#(l — Bn(1 - H))H% — £
=€+ 17 (1 — an(1— ) (1= Bl — 1)) llgn — |- (8)

Now, from (8) we know, 0 < (1 — o, (1 —p)) < 1and 0 < (1 — B, (1 — p)) < 1, and
using this fact, we have

lgn1 =€l <
<

lgnr1 = €l < 1?llgn — €l + €n-

Using Lemma 1, one can conclude that if lim,,—, o, €, = 0, then lim,, o ||g, —&|| =0,
which shows that (g,,) converges to &, that is, lim,,_,~ g, = &. Therefore, Z-iterative
scheme (1) is almost G-stable. O

Theorem 4. Let 2 be a Banach space and € be a nonempty, closed, and convex subset
of the setting. Assume that G : € — € is a self-mapping on Z with a fixed point £. Let
(z,) be defined by the Z-iterative scheme (1). Then the Z-iterative scheme has at least
first order of convergence.

Proof. For any sequence (x,,), we denote e, = x,, — £. By the Taylor series expansion
about &, we obtain

Gan = GE+ (G'E)(x, — &) + (9"5)M +0(e3,)

2!
(G"¢)

=&+ (G ey, + o ez +0(ed ).

Using this expansion, we have
€y, = Yn — = g((lfﬂn)xn + Bngxn) —&

=G+ (GO(((1=Bn)zn + BrGrn) — &) +
+ O(ein) —¢£

gllé—

https://www.journals.vu.lt/nonlinear-analysis
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= (glg) [(1 = Bn)(@n — &) + Bu(Grn — f)]

T g;g (1= Bu)(@n — ) + Bu(Gzn — 6)]” + O(e3)

= (GO = Bn)ea, +(G'€)Bn(Gan — §)

gf (1= Ba)?ex, + Br(Gan — €)* +2(1 = Bn)Bnea, (G — €)]
+ O(ef’cn)
= (GO = Bn)ew, +(G'€)Bn [(G'E)ex, +
g// g//
+ 2!5 [(1 - ﬁn>26i"] §
g//f
57 [2(

+

(G"¢)
2!

ez, +0(e;,)

52(9 Ty —€)?

N 1= Bn)Bnex, (Grn — €)] + O(el)

= (glg)(l - Bn)exn + (glg)ﬂn(glg)exn (g g)ﬁ” (g//f) wn + O(ein)

v T80 g, + 28
g//g
o (2

= (g f)(l - Bn)ewn + (glg)Qﬁnewn

rE @eae, + 9l

=[G = Bo) + Bu(G'€)]ea, +
g”f g//g

62 (gxn - f)

1 — Bn)Bnez, (Gn — 5)) + O( )
w L 9%
ol
L= Bn)Bnel, (G'9) +O(el,)

{(g 00" L g e

ﬂn gg (1 - Bn) ggn

Bn +
S0 (@78 +

21— B)B(G 5)] 2 40,

Let
= [(G'O)(1 — Ba) + Bu(G'€)?]

and

= [COG, T 5, T gepg . T

Then
ey, = Aeg, + Bein + O(ei"). )

Also, we have

—Ge+ (@) — &)+ (g0 P

(9"¢) ezﬂ + O(ezn).

=&+ (glg)eyn + 91 “un

Nonlinear Anal. Model. Control, 29(5):833-857, 2024
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Now,
€z, = Zn — 5 = ((1 - an)yn + angyn) - 5
=1 =an)(yn — &) + an(Gyn — &)
=1 —an)(yn —¢)
, B G"8), e 3y _
ton(GEH(GE)(Yn — &) + 7 (g —€)" +0(ey, ) =€
=(1—an)ey, +an ((glg)eyn + (92!5) 6@2/n, + O(ezn))
= (- an@)ey, + o0 T2 10l
and

ezn_H = Tn+1 — E - gzn - 5
=G+ (G (2n — &) +

@9,

—(G9](1- an + an@D)ey, + 0 G +0(,)

2!
(g2”'§) |:(1 —a, + an(glf))eyn +ay, (g//f) 2

51 eynJrO(ein)} +O(e‘;n)
=[G (1 — an+ an(G'€))]ey.,
-ﬂ%@@@@ @@a—%+%@mﬂ%+0@J

(9"¢)
2l

+0(e2,)

(zn =& +0(e2) - ¢
= (glf)ezn +

+

_|_

2! 2l
Let
C =[G (1~ an +an(@'9))]
and
D= {an(g’g)(g;g) + (g;! ) (1—an + an(g’g))Q].
Then

ewn+1 = Ceyn + De721n + O(ezn)'

Now using (9) we have

€ansr = C[Ae,, + Be2 +0(c? )] + D[Ae,, + Be2 +0(e2 )]* +0(e?))

n

= CAe,, + (BC + DA%)e2 +0(e2 )= Ale,, + B'eZ +0(e2 ).

x

Here A’ = CA and B’ = (BC + DA?). This implies that Z-iterative scheme (1) has at
least first order of convergence. O

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Reckoning applications of Z-iteration 841

3 Comparison with various iteration schemes

In this section, we compare the convergence rate of Z-iterative scheme (1) with that of
Noor iterative scheme [18] and Thakur iterative scheme [28]. Consider 2" be a Banach
space and G be a self-map on a nonempty, closed, and convex subset & of the setting and
(an), (Bn) and (v,,) in (0,1) be sequences satisfying certain conditions. For arbitrarily
chosen wqg € €, the Noor iterative scheme and Thakur iterative scheme are defined as

wog € X, Wpy1 = (1 - an)wn + anGup,
Un = (1 - Bn)wn + B?’LgUTH (10)

and
wy € X, Wpi1 = (1 - an)gwn + anGuy,
respectively.

Theorem 5. Let 2" be a Banach space and € be any nonempty, closed, and convex subset
of the setting. Also, suppose that G is a Berinde weak contraction on € satisfying (3). Let
€ be a fixed point of G and (xy,), (wy,), and (ry,) be the iterative sequences generated
by Z-iterative scheme (1), Noor iterative scheme (10), and Thakur iterative scheme (11),
respectively, and converge to a fixed point & with real sequences (o), (Br), and () in
an interval (0,1) satisfying lim,, o a, = 0, lim, 00 B = 0, and lim,,_, o v, = 0.
Then the Z-iterative method (1) converges faster than the Noor iteration (10) and Thakur
iterative scheme (11) given that the initial point is same for all the schemes.

Proof. From (4) we have

[n1 — &l < PO [ = (i + Bi — il — ) (1 = )] llzo — &Il (12)

=0

By some similar calculations as in Theorem 2, we obtain the following estimates for Noor
iterative scheme (10):

€]
= H = Y )Wn + Y Gw, — f” < (1 = yn)llwn — &l + Yl Gwn — &
< (1 =) llwn — &l + Yaplwn — €l = [1 = (1 = )] 1w — €I
1o, — €]l
(1 = Ba)ywn + BuGun — &|| < (1= Bu)wn — &l + BullGun — €|
(1= Bu)llwn — €] + Bapllun — €]
(1= Bu)llwn =&l + ﬂnﬂ[l — (1 - ,u)} lwn — €]
= [1=Ba(1 = p(1 = 7a(t = )] llwn = €]l

NN

Nonlinear Anal. Model. Control, 29(5):833-857, 2024
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and
[wnt1 =€l
= H(l — ap)wn, + 0, Guy, — 5” = H(l — ap)wn + ané — ané + anGu, — €H
= H(l — ap)(wn — &) + an(Gon — 5)“ Z ||(1 — ap)(wn — &) — an(Gop — f)”
> |(1 — ap)||w, — €| = anp|lvn, — §|H
> (1= an)llwn = €]l = anp(1 = B (1= (1 =7 (1 = w))) [l — €|
|

(1= an (14 (1= B (1= p(1 =3 (1 = w)))))) [l — &]|
1_1 1—ai (14 p(1 = 8;(1 = p(1 = %1 = w)))))] lwo — €]l-

Therefore, for Noor iterative scheme, we get the following estimate:
w1 — €]l = H [1— @il 4+ p(1 = Bi(1 = p(L = %(1 = w))))] lwo =€l (13)

Following similar steps to that of Z-iterative scheme (1) and Noor iterative scheme (10),
one can find out an estimate for Thakur iterative scheme (11) as below:

Irnsr —&ll = gD ][ = (1 +0i(1= Bi(1 = ) (1 = 31— )]

i=0
X |lro — &]|- 14

Now using (12), (13), (14), and the assumption g = wo = 7o, we have

0< |Zn+1 =&l < P2 1 = (i + Bi — aifi(1 — ) (1 — )]
S lwngr — €] sz [T — o (T4 p(1 = Bi(1 — (1 = 7(1 = w)))))]

and

0< lZnt1 — £l < p2rED T 1L = (i + Bi — cifi(1 — p)) (1 = p)]
Sl =€l T pOFO T — (1 + (1= Bi(1 — ) (1 = 7(1 = )]

Now, we define

b = [2ni1 — &Il pPHDTTE 1L — (g + Bi — iBi(1 — ) (1 — )]
" Hwn+1 - §|| H?:o[l - Oéi(l + M(l = Bi(1— p(1 =y (1 = N)))))]

and

g = NTner =€l _ PO (L — (o + Bi — ifBi(1 — ) (1 — )]
" e =l ("“) [Tzl — (1 + (1 = Bi(1 = ) (1 = 7i(1 = w)]

https://www.journals.vu.lt/nonlinear-analysis
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Then, using the ratio test, we have

Pni1 _ 21— (g1 + Bnt1 — g1 B (1 — p)) (1 — )]
bn (1 —ani1(1+ p(l = Bny1(1 — p(l = g1 (1 — 1))l

and
Ony1 _ pll = (g1 + Brsr — Qg1 Bnrr (1 — ) (1 — p)]

b 11— oyt (L + ansa (L= Brra(l— ) (L — g1 (L — @)
Employing the assumptions lim,, , o an =0, lim, o B =0, and lim,, . v, = 0, we
obtain I1 = lim,, yoo Gpr1/dn = p? < p < land ly = lim, o0 0pi1/0, = p < 1.
Since Iy, 1y < 1, the ratio test deduces that the series Y~ ¢, and >_ -, 6,, converge.
Then we conclude that lim,, .. ¢, = 0 and lim,, ., #,, = 0. Therefore,

|Zns1 =€l lznt1 =&l
lim —M——>— lim
n=00 lwny1 — &l n—oo rag1 — €|

=0.

Hence, from Definition 5 we infer that (x,,) converges faster than (w,,) and (r,,) to a fixed
point &. O

4 Data dependence result

This section consists of a data dependence result using the Z-iterative scheme (1).

Theorem 6. Let 2 be a Banach space and € be a nonempty, closed, and convex subset
of the setting. Also, suppose that G : € — € be a weak contraction satisfying (3) with
a fixed point £, G be an approximate operator of G with a fixed point Z, and (z,,) be
a sequence defined by Z-iteration (1) for G. Assume that (T,,) is the sequence for G
defined by

:Z'nJrl - g_éna

Zn = (]- - an)gn + anggna
where (o) and (B,,) are real sequences in (0,1) foralln € N. If G¢ = £ and G = &
as T, — * when n — oo, then we have

¢ -2l < (1+3“)
i

for a given fixed number € > 0.
Proof. Let us consider
|Tn1 — Zrgi|l = |G2n — Gin||
<|NGzn — GZnll + [|GZn — GZ4||
pllzn = Zoll + Lllzn — G2all + G20 — GZnll
tllzn = Znll + Lllzn — Gznll + €.

N

<
<

Nonlinear Anal. Model. Control, 29(5):833-857, 2024
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Now,
20 — Zull = H(l — n)Yn + nGYn — ((1 — an)Yn + ang_gn) H
= H(l = an)(Yn — Un) + an(Gyn — ggn)”
< (1= an)[yn = Gnll + o[ [(Gyn — Gon) + (Gn — Gm) ] |
< (1= an)llyn = Fnll + anllGyn — GOnll + 0 l|GFn — Gl
<A =an)llyn = Ynll + an [.U”yn = Unll + Lllyn — gyn”]
+ anl|GYn — g_?nH
< (= an)llyn = Fnll + canpllyn = Unll + anLllyn — Gynll + one
= (1= an(l = )llyn — all + anLllyn — Gynll + ane. (16)
Similarly,

Y0 = Gnll = |G((1 = Bu)an + BaGan) — ((1 n)Tn + /D’ngxn) |
+116((1 = Bn)an + Bngx‘n) _( (1- ﬁn)xn + BnG) ||
< [ (1= Br)zn + BaGan) — (1 = Bu)Tn + BnGZn) ||
+ L|[ (1= Ba)an + BuGn) — G((1 = Ba)am + BulGan)|| + €
= NH ((1 - 6n)$n + Bngxn) - ((1 - Bn)jn + ﬂngfn) H
+ LH ((1 — Bn)Tn + BnGTy — 5) - (g((l — Bn)Tn + 5ng$n) - §) H +e
< MH ((1 - ﬂ")m” + ﬁ”g‘rﬂ) - ((1 - ﬁn)jn + ﬁng_i’n) H
+ L(1 = B+ Bup+ p(1 = Bn) + 1B [l — €| + ¢
< (L = Ba)llzn — Znll + uBallG2n — Gl
+L[1 =Bl = )] X+ p)llzn — &l +€
< p(l = Bp)llzn — Znl|| + 1bn [N||zn — Zp|| + Lz — gan] + phne
+L[1= (1= ] (1 + p)lwn — €l + €
= M[l = Bu(l— ,u)} ”xn - jn” + NBnLH‘Tn - gan + ppBne
+L[1= (1 = w)] (1 + p)llzn — €l + e 17
Therefore, from (16) and (17) we have
|01 — Zrga ||
< pillzn = Zull + Lll2n — G2n| + €
< (1= n(@ =) yn = Full + @nLliyn — Gynll + ane] + Llzn — Genll + ¢
= N[l —an(l - N)} yn = Unll + pomLllyn — Gynll + pane + L[z, — Gzn|| + €
< M[l — o (1l - N)} [M[l = Bn(l - N)] 2n — Znll + pBnLllzn — G2yl
+ pBne + L1 = Bu(1 = )] (14 p)|n — €]l + €]
+ panL|yn — Gynll + pane + L||zn — Gzn|| + €
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— L= anlt = )] a[L = Bl = )] o — 7
+ pl = an(1 = )| pBnLl|wn — Gl + 1 — an(l — p) | pBne
)L[1 = Bl = w] (1 + )]z — £
}E + pon Ll yn — Gynll + pome + L2y — Gz + €.
Now, using the fact o, < 1, 3, < 1, also p? < pand [1 — a,(1 — p)] < 1,
[1 - Bn(1 —p)] < 1foralln € Nin above inequality, we obtain

+u[1—an (1—p)
+u[1—an (1—p)

Zn+1 — Tl < ,u[l —ap(l— N)] |Zn — Znl| + uBnL||vn — G|
+ uBne + 2uL|zn — &l + pe + pon Lilyn — Gyn||
+ pane+ Lz — Gznl| + €
< pllwn = Znll + pLllan — Gan|| + pe + 2uLllzn, — &l
+ pe+ pLllyn — Gynll + pe + Lllzn — Ganl| +€
= pllzn = Zoll + pLllzn — Grp| + 2uL||lz, — €|
+ L[y = Gynll + Lllzn — Gon | + (1 4 3p)e. (18)

Using Theorem 2, we know that x,, — £ as n — oo. Therefore, taking limit on both sides
of (18), we have

1+ 3p
1€ — 2| < pll§ — 2l + (14 3p)e = T
Therefore, we have 1 3
3
1€ —z[l < O
— i

Remark 1. If we consider an additional assumption that lim,, , o, a,, = 0 on the sequence
of real numbers («,,) in Theorem 6, then we have a finer estimate for the upper bound of
the error in approximating & by &, and we come by the following:

1+2u
1—

1€ — ]| <

The applicability of Theorem 6 can be realised from the following example given below.

5 Numerical illustration

In this section, we construct a few nontrivial numerical examples to ascertain the applica-
bility of our obtained findings.

Example 1. Let € = [—1, 1] be a nonempty subset of a Banach space 2~ = R equipped
with the usual norm and consider a self-map G : 4 — € as
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Table 1. Impact of different initial points on iteration

techniques.
Initial Noor Thakur
Values Iteration Iteration Z-Iteration
-1 17 10 7
—-0.7 17 10 6
—-0.4 17 10 6
—0.2 17 10 6
0.2 16 10 6
0.4 16 10 6
0.6 16 10 6
0.8 16 10 6
—k—z
—o— Thakur
—+— Noor
Q
3.
]
>
g
£-
10 15 20 25
No. of lterations
Figure 1. Convergence behaviour of iteration techniques for xg = —1.

One can easily observe that G is a weak contraction mapping satisfying (3) with p €
[121/900, 1). Using this mapping G, we verify that the Z-iteration (1) converges faster
than Noor and Thakur iterative schemes; see Table 1. For this, we choose the control
sequences (a,) = (n +2)/(n +3), (Ba) = (n +3)/(n +4), (3) = (n +4)/(n +5).
Further, for fixed initial value 2y = —1 and control sequences (a,,) = 0.5, (5,,) = 0.6,
(vn) = 0.7, we plot Fig. 1, which shows that the convergence rate of Z-iteration (1) is
faster than the Noor iteration (10) and Thakur iteration (11).

Example 2. Let € = [0, 5] be a nonempty subset of a Banach space 2" = R equipped
with the usual norm and consider a self-map G : € — € as

G(z) = @ —log(z +1), xz€]0,5].

Here we inspect that G is a weak contraction as it satisfies (3) for 4 = 1/3 for all

x,y € [0,5], and a fixed point of mapping G is £ = 0.31942396. We can define a self
map S : € — € such that

oz (z-04)P (2-07)° N (x4 0.9)7 (19)
4.87 112.98 7835.50  125430.92°

S(z)
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Using MATLAB 2023a software, we have

max [|Gx — Sz|| = 0.7398.
z€[0,5]

Hence, for all © € ¥, there is a fixed positive ¢ = 0.7398 satisfying |Gz — Sz| <

0.7398 = €. Thus, by Definition 4 we can conclude that S is an approximate operator of

G, and also, from (19) we infer that z = 0.00074057 is the unique fixed point of S in

% . The distance between the two fixed points £ and Z is || — Z|| = 0.31868339. Let us

consider (19) and choose control sequences o, = (n+2)/(n+3) = S, in (15). We have

Zn (2 —04)° (2, -0.7)° N (Zn +0.9)7
4.87 112.98 7835.50 125430.92
_ _ Tn T, —0.4)2 (z,—0.7)°
yn—8<(lﬂn)xn+ﬁn< *( ) *( )

4.87 112.98 7835.50
N (Z,, +0.9)7
125430.92 /)’

Zn = (]- - an)gn +an<

Tpt1 =

(20)

Yo (Gn—04)°  (§o —0.7)° (4 +0.9)7
4.87 112.98 7835.50 125430.92 /°

The sequence (Z,) is formulated using (20), which converges to a fixed point & =
0.00074057. Also, from Theorem 6 we compute the succeeding estimate given by

1+3
1€ — 7| < ( i’) -0.7398 = 2.2194.
(1-3)
Clearly, from above we have
_ 14 3p
le-all < (T22)e
—p

6 Error estimation of Z-iterative scheme

In this section, we derive an error estimation result concerning the Z-iterative scheme.
Assume that 2" is a Banach space and ¢ is any nonempty subset of the setting. Let
G : € — % be a contraction mapping. Define the errors of Gx,,, Gy,, and Gz, by
Pn = GZn — GTn, ¢n = GYn — GUn, and 1, = Gz, — GZp, Where GT,, GYp, and
Gz, are exact values, and Gx,,, Gy, and Gz, are approximated values. The theory of
errors implies that (py,), (¢,), and (r,,) are bounded. Let B = max{B,, By, B, }, where
B, = sup||ps||, By = sup||¢n]|, and B, = sup ||r,,|| are the absolute error boundaries
of Gz, Gy, and Gz, respectively, and accumulated the error in (1). Hence, we can set
(1) as (15). Let

lzoll = llZoll,  [lz1 — Z1ll = IGz0 — GZoll = [I7oll.

|22 — Zal| = [l 23 — Z3l| = [|r2||.
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Following as above, we obtain
[Znt1 = Znga |l = [[rall-
Now,
lyo — #oll = ||G((1 = Bo)wo + BoGzo) — G((1 — Bo)Zo + BoGo) ||
< |IG(1 = Bo)wo + BoGxo) — G(1 — Bo)Zo + BoGTo) ||
+[|G(1 = Bo)Zo + BoGTo) — G(1 — Bo)To + SuGTo) ||
1(L = Bo)llwo — Zol| + pollGro — GZo|| + €
= (1 = Bo)|lro — Zol| + pBollpoll + €.
Similarly, we have
ly1 — ol < (1 = B1)llzr — 21| + pballpa |l + e,
ly2 — Gall < (1 = Ba2)llz2 — Z2|| + pBallpall + e
Following as above, we obtain
yn = Ynll < (1 = Bo)llzn — Znll + puBnllpall + €
and
20 = Zol| = || ((1 = @w0)yo + @0Gyo) — ((1 — ao)io + G o) ||
< (1 —ao)llyo — Yol + aol|Gyo — Gol|
= (1 = o)llyo — oll + ollgol-
Similarly, we have

(1 —a)llyr — |l + asllaa I,

21 — 21]] <
|22 — Zof| < (1 — a2)lly2 — B2l + a2llga]|-

Following as above, we obtain
lzn = Znll < (1 = an)llyn — Tnll + anllgn|l-

Now,

(1 = an)llyn = Fnll + anllgnl]

(1—ay) [U(l = Bu)llzn — Znll + phnllpnll + 6] + anl| gl
= p(1 = an)(1 = Bn)llzn — Znll + p(1 = an)Bnllpnl|

+ (1= ap)e+ anllgnll-

llzn — Znll <
<

Now, we define

5511) = |znt1 — Zpa |l = lIrall,

e = llyn = ull < a1 = Bu)llzn — Zull + 1Bnllpull + €
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and
5513) = |lzn — Zall
< (1 = an)(1 = Bp)llzn — Znll + (1 — an)Bullpnl|
+ (1 — an)e + anlgnll-
Therefore, at the end of (n + 1) iterations, the error of Z-iteration (1) is accumulated to
5%1), 5%2) and 5%3).

Theorem 7. We consider G, ‘B, 5%1), 6%2), and 5%3) same as above, and let € be a fixed
value. If "2 o =00 or Yoo 3; = oo, then the error accumulation of Z-iteration
scheme (1) is bounded and does not exceed a number R.

Proof.  From above we have
[P = lrnll =B <B+e< & 1)
Also,
e = (1 = Bo)llzn — Zall + 1Bnllpall + €
1
1L = Bl 1|+ Bnllpnll + €
<p(l=B)B+ubyB+e<B+e< R (22)
and
HES))H = pu(1 = an)(1 = Bn)llzn — Tnll
+ 1(1 = an)Ballpall + (1 — an)e + anl|gn |
1
= (1 = an)(1 = Ba)lleg | + p(1 = ) Bulpn
+ (1 —an)e+ anllgnll
< p(l—an)(1 = Bn)B + pu(l — a,) 8,8
+ (1 —ap)e+ a,B
<(1-—a,)B+(1—ay)e+ a,B
=B+(1l-ay)e<B+e< R (23)
Therefore, from (21), (22), and (23) we have
max{ [V, |2, [[8 ]} < & O

7 Application to delay Caputo fractional differential equations

The key objective of this section is to exhibit the applicability of Z-iterative scheme (1)
to find out the solution of a certain kind of delay fractional differential equation. One can
note that, in 1967, mathematician Caputo invented a novel kind of fractional differentia-
tion known as Caputo fractional derivative and defined as

S

/]_-71,(7_)(8_7_)71,—04—1(17_7 (’I’L—1<Oé<’l7,).
b

1

DiF(s) = I'a—n)
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Many researchers enquired for the solution of various types of delay fractional-order
differential equations employing several different methodologies as documented in the
literature [8, 16,29]. In this sequel, we utilize the Z-iterative scheme (1) with « € (0, 1)
to estimate the solution of a certain kind of delay Caputo fractional differential equation.
Let 6 > 0 and ¢ € C([r — ¢, r];R™) be any continuous mapping. Here we consider the
ensuing delay Caputo fractional differential equation

‘D*v(s) = g(s, v(s), v(s = 9)), s€[rkl (24)

with initial condition
v(s) =Y(s), se€lr—r 7], (25)

where v € R", g : [r, k] X R” x R" — R"™ is continuous, where s > 0 and x > 0.
Assume that the subsequent assumptions are satisfied:

(P1) g satisfies the Lipschitz condition, then there is a constant .7, > 0 such that

lg(s.v.q) = g(s,w,m)|| < Zy (v —wll + llg — m])

forall s € R™ and v, w,q, m € R™.
(P2) There is a real number A ¢ > 0 depended on .7 satistying A ¢ > 2.%,, which
implies 2.7, /A < 1.

A map o € CO([r — 6, 5];R™) N C*([r, x]; R™) will be a solution of the initial value
problem if it satisfies (24) with condition (25). From [16] one can verify that finding the
solution of (24) with condition (25) is equivalent to obtaining the solution of the ensuing
integral equation

I'(a)

for all s € [r, k] with v(s) = #(s) for all s € [r — §, k]. Define a norm ||-||5, on
C([T - 57 r];Rn) by

_ SUPllw( )l
forall ¢ € C([r — ¢, r|;R™), where M,, : R — R is Mittag-Leffler function such that
Ma(s) = i st
ae I'(an +1)

n=0

for all s € R. It is clear that C([r — §, 7];R"™, ||-||»,) is a Banach space. In their
research article, Wang et al. [29] attested the existence and uniqueness of a solution of
delay differential equations (24) with condition (25) given that hypothesis (P1) holds.
The subsequent result brings forth an approximation of the solution using Z-iterative
algorithm (1).
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Theorem 8. Suppose that 1 and g are two functions as discussed above. If hypothe-
ses (P1) and (P2) hold, then the differential equation (24) with condition (25) possesses
a unique solution ¢ € C([r—34, k]; R")NCY([r, k]; R™), and the sequence (x,,) generated
by Z-iterative scheme (1) converges to o.

Proof. From [7] one can assert the existence of a unique solution g. Suppose that (z,,)
is a sequence generated by Z-iterative scheme (1) and define G on C'([r — 4, k]; R™) N
CL([r, k];R") as

W(r) + ﬁ [2(s = 1) g(r,0(7),v(r — 0))dr, s € [rk]

w(s)a s € [T - T, 7”}.

(Go)(s) = {

Here we prove that using Z-iterative scheme (1) together with conditions (P1) and (P2),
(z,,) converges to a unique solution, i.e., z,, — o as n — oo of problem (24) with
condition (25). For this, let us consider

Then we obtain
th — 0
= || ((1 - Bn)xn + ﬁngajn) - QH

< (1= Bu)llzn — oll + BullGrn — ol
= (1= Bu)llzn — ol + BullGzn — Gol|

= (1= Bu)llzn — ol
+ 80 |600) + gy [ 5= P g = ) dr
—(r) — ﬁ /(s — T)a_lg(r, o(1), o(r — 5)) dr

= (1= Bu)llzn — ol

1 a—1
_ m /(s —7) g(T, o(7), o(t — (5)) dr

= (1= Bu)llzn — ol
Fﬁ(Zz) /(5 — 1) Mg(r, 2n(7), 2n(r = 6)) = g(7, o(7), ol = 9))]| dr.

T

+
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Taking supremum over the interval [r — ¢, k] on both sides of the above inequality, we
derive
sup [[tn — o]

< (1= Bn)sup |lzn — of

S

wsup s [ (5= 0 gl (r). anlr =) = (s, or), ol =) o
< (1= Bn)sup|lzn — of
+sup 5 [ (5= 0)" 2, (fan(r) = o)+l = 6) = et = 0} o
< (1 - ﬁn) sup ||xn - QH
nZy / a—1
+ i‘(a) /(s —7) (supHxn(T) — Q(T)H + supHxn(T —4) —o(t — H)

T

Now, dividing both sides of the above inequality by M, (A »s®), we get

sup ||t — ol
M(X(Agsa)

_ (L= Bu)sup [z, — ol

= Ma()\gso‘)

ﬂn-i”g/s B a—l(supHxH(T)_Q(T)” sup ||z, (7 —0) —9(7—5)”)
T S MoaOrgs®) MaOrgs®) dr

Therefore,
[tn — ollxe

< (L= Bn)llzn = ollre

+ f“n(a) /(5 =) lza(m) = e, + llza(r = 8) = o(r = 9], ) dr

T

= (1= Bllen — el + 22 P8R [ ryetar

T

671(239) ||.Tn—‘Q||>\$ ; B o1 .
Ma(Ags®)  T(a) /(5 ) "M (Ags®) dr
Bn(
Mo

%Hxn —ollxe <CIQ <CDQ (W)))
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— (1= Bo)llen — ol + ~on2Z) M(Az))

W”xn —0llag < Ao

(27
= (1= Bu)llzn = ollxy + Bn /\; [2n = ellxe <llzn = ellreg-

Similarly, we have
sup [[yn — ol

= sup ||Gt,, — ol = sup [|Gt, — G0l

= sup

1 / a—1
1/)(1")+1_‘(a>/(57') g(T, tn(7), tn(Tf(S)) dr

—(r) — F(la) /(s — T)O‘_lg(T, o(1), o(T — 5)) dr

1 .
- / (s — 1) g (r, o(r), olr — 6)) dr

< ﬁ /(S — 1) sup||g(7, ta(7), ta(r = 0)) — g(7, o(7), o(r — 8))||dr
< g [ (5= 772 (supla(7) = ()] + suplea(7 = 8) = ol = )] )

r

Now, dividing both sides of the above inequality by M, (A s®),

sup [[yn — ol|
Ma(/\gso‘)

L T (s () o) . supllta(r—h) — o(r—5)]
<@/(s ™ "%( MaGrzs®) T Ma(rgs) )dT’

which leads to

S

1 1
lyn — ollrs < m/(s_ﬂa_ %(th(ﬂ—Q(ﬂHAJ Ht"(T_(S)_‘Q(T_(S)H/\z) dr

T
S

= (22t — gnmﬁ / (s — )~ ldr

T
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Lt ol 1 [, as )
My(Ags®)  T(a) /(S 7) Ma(AfS )dT

T

St o (20227)
_ 2%

e = ollae < lltn = elhe < llzn = ollre-
%

Similarly, we can show that ||z, — o[[x. < [|yn — 0[lx, < [l2n — 0[lx . Also, we have

sup [|zn41 — 0l

=sup||Gz, — o|| = sup |Gz, — Go|

S

1 a—1
v+ e / (5 — 1) Lg(r, 2u(r), 2n(r — 8)) dr

= sup

1 a—1
— m /(s — 1) g(r,0(7), o(T = §))dr

1 a—1
< F(a)/(ST) Z, (sup”zn(T)fg(T)H+sup’|zn(775)fg(775)||) dr.

Now, dividing both sides of the above inequality by M, (A s®),

Sup [|Zn+1 — o

Ma()\gso‘)
1 el sup ||zn(7)—o(7)|| . sup ||zn(7—8)—o(r—9)||
<r<a>/(s (e )@

which implies the following:

||9Cn+1 - QH/\g

S

1

< o) /(S—T)Ot—l.,zq(Hzn(T)_Q(T)H)\z+H2’n(7'—(5)—g(7'—(5)”)\2)dT

T
S

= (22| — gmgﬁ / (s— ) ldr

T
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_ (2$g)||zn - QH)‘Z 1 j e .
 Ma(Aes®)  T(a) (s —7)* " MyAgs™)dr

T

-t (242)

2.7,
=5, 17~ lhe <llzn = elbe < lyn = elbre < flon = ellxe
Hence,
[Znt1 = ellxe <llzn —elreg-
Let us consider a,, = ||z, — 0||x.,, then we have

Un41 <an7 n € N.

Clearly, (a,,) is a monotone decreasing sequence of positive reals, and further, is also
bounded. Therefore, we have

lim a, =inf(a,) =0 = lim ||z, —0llrn, =0,
n— 00 n—oo

and this shows that the sequence (z,,) converges to o. O
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