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Abstract. Complimenting our earlier work on generalizations of popular concordance measures
in the sense of Scarsini for a pair of continuous random variables (X,Y ) (such measures can be
understood as functions of the bivariate copula C associated with (X,Y )), we focus on general-
izations of Kendall’s τ . In Part I, we give two forms of such measures and also provide general
bounds for their values, which are sharp in certain cases and depend on the values of Spearman’s ρ
and the original Kendall’s τ . Part II is devoted to the intrinsic meaning of presented Kendall’s τ
generalizations, their degree as polynomial-type concordance measures, and computational aspects.

Keywords: Kendall’s tau, Scarsini axioms, bivariate copula, transformation, concordance measure,
supermodular.

1 Introduction

Given a family of random variables, which often model important quantities in real life
like risky positions in finance, contingent claims in insurance, losses due to natural disas-
ters, etc., measuring and modeling various forms of dependence between pairs, triples, or
larger subsets of random variables becomes important. The scientific literature contains
many notions of dependence (e.g., positive/negative quadrant or orthant dependence,
right/left tail increasingness or decreasingness, association, tail dependence, to name just
a few; see, e.g., [18, Chap. 2]), as well as many measures (functionals) to quantify it (e.g.,
Pearson’s correlation coefficient, Spearman’s ρ, Kendall’s τ , Gini’s γ, tail dependence
index, Schweizer and Wolff’s σ, Hoeffding’s dependence index, etc.; see [28, Chap. 5])
and to describe what and on which scale is measured. To put the theory and its appli-
cations on a solid ground, several axiom systems have been suggested to formalize the
natural and useful properties of various measures of dependence. There are the axioms
of Rényi [29] for measures of dependence of a pair of random variables, which in the
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copula setting (when the considered variables have continuous distributions) are provided,
e.g., in [28, Definition 5.3.1].

For measures of concordance, which is the object of interest in this paper, there are the
axioms of Scarsini [30] in the bivariate case and their generalizations to the multivariate
setting, which are discussed in the works and references of Taylor et al. [10, 33], Joe
[17], Nelsen [27], Dolati and Úbeda-Flores [8], Fuchs and Schmidt [11–13], Mesiar et
al. [25, 26], Borroni [3], just to name a few. Slightly different sets of axioms can be
found in [18] and [4], so one has to be careful about the set of axioms being used (as
well as various statements that follow) and the precise meaning of the term “concordance
measure”. In this paper, we base our findings on the axioms of Scarsini (see Definition 3
below).

Theoretical studies on concordance measures, both bivariate and multivariate, have
focused on their construction and properties (see, e.g., [3, 10, 12, 15, 16, 23, 33]), on
the precise bounds for the values of such measures, in particular when some additional
information is known, or for other objects given the value of some concordance measure
(see, e.g., [1, 7, 20, 21, 36]).

In parallel, many of the above-mentioned theoretical notions and results have found
applications in statistics and data science, where they are often used to test statistical
hypotheses, e.g., independence vs. dependence, or are helpful in the estimation of quan-
tities of interest. Rank correlation coefficients (Spearman’s ρ, Kendall’s τ , etc.) and their
generalizations are often preferred in this context. Here we cite just a few recent papers
in this direction; see [2, 6, 14] and the references therein.

Our contribution to the literature on concordance measures is several-fold: in this
first part of a series of papers, we present new generalizations of Kendall’s τ (see The-
orems 2 and 3), employing a convex and properly normalized distortion function ϕ as
well as a symmetrization procedure, which compliments our earlier paper [23] about
similar generalizations of other popular concordance measures. We also provide bounds
for the suggested concordance measures (see Proposition 1), which are sharp if a linear
(trivial case) or a quadratic distortion function ϕ is used, and illustrate our findings using
several examples. The second part of the series is devoted to a comparison of the classical
Kendall’s τ with the new measures, emphasizing the shift from a probability measure
to weigh a random partition of the unit square to a convex (supermodular) capacity,
opening up possibilities for applications in, e.g., the economic decision theory where
such capacities have been successfully employed. Furthermore, there we also elaborate on
the degree of such generalizations as polynomial-type concordance measures, providing
additional examples to advance the line of research by Taylor et al. mentioned above.

The rest of this paper is structured as follows. In Section 2, we provide basic concepts
and needed facts about copulas and concordance measures (in the sense of Scarsini)
needed to state and prove our main results. Section 3 presents a few auxiliary results,
which are useful when integrating with respect to the copula-induced measure and when
proving monotonicity of functionals with respect to concordance order. Section 4 gives
our main results (Theorems 2 and 3) with generalizations of Kendall’s τ and their different
forms. We also provide several examples and general bounds for the new measures, which
depend on Spearman’s ρ and classical Kendall’s τ . Section 5 concludes.
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2 Basic facts from copula theory

We begin by recalling the notion of a bivariate copula. Let I := [0, 1].

Definition 1. A bivariate copula1 (a copula for short) C is a function defined on I2 with
values in I such that

• C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for any x ∈ I,
• (2-increasingness) for all x, x′, y, y′ ∈ I with x 6 x′ and y 6 y′,

VC
(
[x, x′]× [y, y′]

)
= C(x′, y′)− C(x, y′)− C(x′, y) + C(x, y) > 0.

The first two conditions for C are also called the boundary conditions.

The set of bivariate copulas will be denoted by C (or, more precisely, C2 if we need
explicit dependence on the dimension).

Many examples of copulas are known in the literature (see [9, 18, 28] and the refer-
ences therein), among them, the most important are the comonotonicity copulaM(x, y) =
min{x, y} = x∧y, independence copulaΠ(x, y) = xy, and countermonotonicity copula
W (x, y) = max{x+ y − 1, 0} = (x+ y − 1)+ for (x, y) ∈ I2.

To each (bivariate) copula C ∈ C, one can associate a Borel measure µC , which is
doubly stochastic, i.e., µC(A × I) = µ(I × A) = λ(A) for any Borel set A ⊂ B(I2),
where λ denotes the Lebesgue measure, and such that µC((0, x] × (0, y]) = C(x, y) for
any x, y ∈ I, and vice versa (see, e.g., [9, Thm. 3.1.2], where the result is stated for
a general dimension d > 2). In what follows, integrals with respect to a copula C ∈ C,
e.g.,

∫
I2 f dC, will mean

∫
I2 f dµC .

On the set of bivariate copulas, one can consider a pointwise partial-order relation
defined as follows:

Definition 2. (See [28, Def. 2.8.1].) For any C1, C2 ∈ C, we say that C1 is smaller
(resp. larger) than C2 and denote it by C1 ≺ C2 (resp. C1 � C2) if C1(x, y) 6 C2(x, y)
(resp. C1(x, y) > C2(x, y)) for any (x, y) ∈ I2.

Concordance order, in the general d-dimensional setting (when d > 2), is defined as

C1 ≺ C2 ⇐⇒ C1(x1, . . . , xd) 6 C2(x1, . . . , xd) and

C1(x1, . . . , xd) 6 C2(x1, . . . , xd) ∀(x1, . . . , xd) ∈ Id,

where C(x1, . . . , xd) = P(U1 > x1, . . . , Ud > xd), U1, . . . , Ud ∼ U(I) are uniformly
on I distributed random variables whose copula is C ∈ Cd. In other words, C is the
survival function associated with copula C. For d = 2, C(x, y) = 1 − x − y + C(x, y),
so concordance order for bivariate copulas is equivalent to pointwise order.

Then the famous Fréchet–Hoeffding bounds can be written succinctly as W≺ C≺M
for any C ∈ C. For any reasonable concordance measure κX,Y in the sense of Scarsini

1One can also consider n-variate copulas for any n > 2 (see, e.g., [9,18,28]), but we will only be concerned
with bivariate copulas in this paper.
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(Kendall’s τ , Spearman’s ρ, Gini’s γ, etc. are examples; see [28, Def. 5.1.7]), measuring
the dependence between continuous random variables X and Y whose copula is C, an
increase of C in concordance order means an increase in κX,Y , which justifies the name
of the order.

2.1 Transformations of copulas generated by symmetries of their domain

In relation to the axioms of concordance measures, of particular importance are the trans-
formations of bivariate (or, more generally, multivariate) copulas that are induced by the
symmetries of their domain I2 (or Id for d > 2 in higher dimensions). The group of sym-
metries of the unit square I2 can be generated by involutions π : I2 → I2 (permutation,
i.e., reflection with respect to the main diagonal) and σ1 : I2 → I2 (partial reflection with
respect to the axis x = 1/2) given by

π(x, y) = (y, x) and σ1(x, y) = (1− x, y).

Involution means that π2 = σ2
1 = e, the identity transformation. Also, one can get the

partial reflection σ2(x, y) = (x, 1 − y) with respect to the axis y = 1/2 as σ2(x, y) =
(π ◦ σ1 ◦ π)(x, y). Combining the two reflections, we get the so-called total reflection

ς(x, y) = (σ1 ◦ σ2)(x, y) = (σ2 ◦ σ1)(x, y) = (1− x, 1− y).

Altogether the group of symmetries of the unit square, also called the dihedral group D4,
has 8 = 2! 22 elements:

D4 = {e, π, σ1, σ2, ς, π ◦ σ1, π ◦ σ2, π ◦ ς}.

It is important to note that D4 is not commutative since

π ◦ σ1 = σ2 ◦ π. (1)

Given a symmetry ξ ∈ D4, there is a corresponding transformation ξ∗ : C → C given by

ξ∗(C)(x, y) := µC
(
ξ
(
[0, x]× [0, y]

))
, (x, y) ∈ I2. (2)

For the partial reflections σ1, σ2 and total reflection ς , one easily gets

σ∗1(C)(u, v) = µC
(
[1− u, 1]× [0, v]

)
= µC

(
[0, 1]× [0, v]

)
− µC

(
[0, 1− u]× [0, v]

)
= C(1, v)− C(1− u, v) = v − C(1− u, v),

σ∗2(C)(u, v) = C(u, 1)− C(u, 1− v) = u− C(u, 1− v),
ς∗(C)(u, v) = u+ v − 1 + C(1− u, 1− v), u, v ∈ I,

while the transpose of C is given by CT(u, v) := π∗(C)(u, v) = C(v, u). Note that
ς∗(C)(u, v) = Ĉ(u, v), the survival copula corresponding to C.
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2.2 Scarsini’s axioms of concordance measures

In this paper, we will be concerned with the family of functionals on the set of copulas C,
which measure the “degree of association” of continuous random variables having a given
copula and preserve concordance order. This family was axiomatized by Scarsini in 1984
(see [30, 31]); for extensions to the multidimensional case, see [8, 32]).

Definition 3. (See [9, Def. 2.4.7].) A measure of concordance is a mapping κ : C → R
such that

(κ1) κ is defined for every copula C ∈ C,
(κ2) for every C ∈ C, κ(C) = κ(CT),
(κ3) κ(C1) 6 κ(C2) whenever C1 ≺ C2,
(κ4) κ(C) ∈ [−1, 1],
(κ5) κ(Π) = 0,
(κ6) κ(σ∗1(C)) = κ(σ∗2(C)) = −κ(C) for the partial reflections σ1 and σ2 and any

C ∈ C,
(κ7) (continuity) if Cn → C uniformly2 as n→∞, then limn→∞ κ(Cn) = κ(C).

One can observe that some authors, e.g., Nelsen [28, Def. 5.1.17, property 2] and
Fuchs [12, Sect. 3], also require

(κ′5) κ(M) = 1,

which can be achieved by a simple normalization if the original concordance measure
does not satisfy this condition.

The most commonly used concordance measures are Spearman’s ρ, Kendall’s τ ,
Gini’s γ, Blomqvist’s β; see [28, Chap. 5], [9, Sect. 2.4]. On the other hand, Spearman’s
foot-rule is not a concordance measure; see [28, Exercise 5.21].

These measures are succinctly defined in terms of the so-called biconvex form3 given
by

[C,D] :=

∫
I2

C dD, C,D ∈ C, (3)

which is linear in each argument with respect to convex combinations of copulas, hence
the terminology. In fact (see [28]), for a copula C ∈ C,

• Spearman’s ρ is given by ρS(C) = 12[C,Π]− 3 = 12[C −Π, Π],
• Kendall’s τ is defined as τ(C) = 4[C,C]− 1 = 4([C,C]− [Π,Π]),
• Gini’s γ is γ(C) = 4([C,M ] + [C,W ])− 2.

In our earlier work [23], we have constructed several generalizations of Spearman’s ρ,
Gini’s γ, etc., but Kendall’s τ was not essentially considered in that paper due to a techni-
cal issue at that time. So below we mostly focus on this measure of concordance and its
possible generalizations.

2For copulas, pointwise convergence is enough.
3A more precise name, in our opinion, would be convex-combinations-restricted bilinear form, which is

much longer, albeit clearer.
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3 Auxiliary results

We begin with a straightforward extension of a theorem due to Li et al. [22], also presented
in [9, Thm. 4.1.13]. The result is very useful when dealing with various integrals involving
copulas.

Theorem 1. Let C be a bivariate copula, and f : I2 → R be an absolutely continuous
function with respect to each argument and with essentially bounded partial derivatives.
Then∫

I2

f dC =

1∫
0

f(x, 1) dx−
∫
I2

∂2f ∂1C dΠ =

1∫
0

f(1, y) dy −
∫
I2

∂1f ∂2C dΠ, (4)

where ∂ig denotes the partial derivative of g with respect to the ith variable.

Proof. We follow the argument of the proof of [9, Thm. 4.1.13] with f in place of a trans-
formed copula, φ(A): first, we prove the result for absolutely continuous copulas C, and
second, we take advantage of the approximation of arbitrary copulas by sequences of
absolutely continuous ones.

So to fix the ingredients, for any integer n > 1, consider Bernstein copulas B(n) that
∂-converge4 to C; this is possible by [9, Thm. 4.5.8]. In other words, for any v ∈ I,

lim
n→∞

∫
I

∣∣∂1B(n)(x, v)− ∂1C(x, v)
∣∣dx = 0.

Then the bounded convergence theorem yields

lim
n→∞

∫
I2

∣∣∂1B(n)(u, v)− ∂1C(u, v)
∣∣dudv = 0.

As Bernstein copulas are absolutely continuous with continuous second-order partial
derivatives, we can prove the first equality of (4) for them like is done in the proof of [9,
Eq. (4.1.11)], that is, we have

∫
I2

f dB(n) =

1∫
0

f(x, 1) dx−
∫
I2

∂2f∂1B
(n) dΠ. (5)

Then we only need to justify the passage to the limit as n→∞.
Since the partial derivative ∂2f is assumed essentially bounded, we get∣∣∣∣ ∫

I2

∂2f
(
∂1B

(n) − ∂1C
)
dΠ

∣∣∣∣ 6 ‖∂2f‖∞ ∫
I2

∣∣∂1B(n) − ∂1C
∣∣ dΠ → 0 (6)

4Note that ∂-convergence was not mentioned in the proof of [9, Thm. 4.1.13], but was implicitly used when
passing to the limit.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A few generalizations of Kendall’s tau. Part I: Construction 789

as n → ∞. Thus, taking the limit as n → ∞ in (5) and using (6), we obtain the first
equality in (4).

To get the second claimed equality in (4), one simply has to change the order of
integration and repeat the same steps.

Example 1. To illustrate Theorem 1, consider several important choices for C, namely,
for any f satisfying the conditions of the theorem:

(i) If C =M , then ∂1M(u, v) = 1{u<v}, ∂2M(u, v) = 1{v<u}, and so

∫
I2

f dM =

1∫
0

f(x, 1) dx−
1∫

0

1∫
u

∂2f(u, v) dudv

=

1∫
0

f(x, 1) dx−
1∫

0

(
f(u, 1)− f(u, u)

)
du

=

1∫
0

f(u, u) du.

(ii) If C =W , then ∂1W (u, v) = ∂2W (u, v) = 1{u+v>1}, and so

∫
I2

f dW =

1∫
0

f(x, 1) dx−
1∫

0

1∫
1−u

∂2f(u, v) dudv

=

1∫
0

f(x, 1) dx−
1∫

0

(
f(u, 1)− f(u, 1− u)

)
du

=

1∫
0

f(u, 1− u) du.

Lemma 1. Let ϕ : [0, 1]→ R be a nondecreasing convex function. Then the mapping

C2 3 (C,D) 7→
∫
I2

ϕ(C) dD

is increasing in each place with respect to concordance order.

Proof. If C1 ≺ C2, then ϕ(C1) 6 ϕ(C2) on I2 as ϕ is assumed nondecreasing, and so∫
I2

φ(C1) dD 6
∫
I2

φ(C2) dD.

Nonlinear Anal. Model. Control, 29(4):783–801, 2024
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On the other hand, if D1 ≺ D2, then the result follows by combining the results of
Topkis [35], Day [5] (see, e.g., [24, p. 219, 6.D.2.]), and Tchen [34, Thm. 2]. Indeed,
since ϕ is nondecreasing and convex and any copula C is monotone and supermodular
(monotone and L-superadditive in the terminology of [24]), by [24, 6.D.2.], ϕ(C) is
monotone supermodular. Now by [34, Thm. 2],∫

I2

φ(C) dD2 −
∫
I2

φ(C) dD1 >
∫
I2

(D2 −D1) dK > 0,

where K is the positive measure induced by the supermodular function ϕ(C).

Remark 1. A similar statement is provided in Theorem 3 [4], where the nondecreasing-
ness only with respect to D is considered.

4 Generalization of Kendall’s τ

For the intended generalization of Kendall’s τ and notational convenience, given a non-
constant, nondecreasing, and convex function ϕ : [0, 1]→ R, let

[C,D]ϕ :=

∫
I2

ϕ(C) dD =
[
ϕ(C), D

]
, C,D ∈ C.

When ϕ(x) = x, x ∈ I, [C,D]ϕ = [C,D], the usual biconvex form in (3) (for more
details about its properties, see [11]), used to define various concordance measures for
bivariate copulas. In fact, for Kendall’s τ , we have

τ(C) = 4[C,C]− 1 =
∑
ξ∈R

(−1)|ξ|
[
ξ∗(C), ξ∗(C)

]
, C ∈ C, (7)

where R denotes the commutative subgroup of D4 generated by partial reflections of I2,
that is, R = {e, σ1, σ2, ς = σ1 ◦ σ2 = σ2 ◦ σ1 | σ2

1 = σ2
2 = e}, and ξ∗(C) is defined

in (2). It is also important to understand the meaning of these transformations at the level
of random variables. Indeed, if U and V are random variables distributed uniformly on
the interval I and joined by copula C ∈ C, i.e., (U, V ) ∼ C, then

(1− U, V ) ∼ σ∗1(C), (U, 1− V ) ∼ σ∗2(C), and (1− U, 1− V ) ∼ ς∗(C).

We now generalize Kendall’s τ , replacing [C,D] in (7) by [C,D]ϕ and normalizing
appropriately:

τϕ(C) := aϕ
∑
ξ∈R

(−1)|ξ|
[
ξ∗(C), ξ∗(C)

]
ϕ
, C ∈ C, (8)

where

aϕ :=

(
2

1∫
0

(
ϕ(x)− ϕ(0)

)
dx

)−1
,

https://www.journals.vu.lt/nonlinear-analysis
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which is positive as ϕ is assumed nonconstant, nondecreasing, and convex. In the case,
ϕ(x) = x on I, aϕ = 1, and thus we recover in (8) the usual Kendall’s τ in (7).

Remark 2.

(i) Without loss of generality, we can assume ϕ(0) = 0. If this were not the case,
defining ϕ0(x) = ϕ(x)−ϕ(0), we would still retain a nonconstant, nondecreasing,
and convex function. Moreover, then we would also have aϕ0 = aϕ and

[C,D]ϕ0
=
[
ϕ0(C), D

]
=
[
ϕ(C), D

]
− ϕ(0),

which yields τϕ0
(C) = τϕ(C) for all C ∈ C.

(ii) Furthermore, one can also normalize ϕ so that ϕ(1) = 1. Indeed, for a noncon-
stant, nondecreasing function ϕ with ϕ(0) = 0, we have ϕ(1) > 0, and so the
function ϕ1(x) := ϕ(x)/ϕ(1) remains nonconstant, nondecreasing, and convex,
giving τϕ1

(C) = τϕ(C) for any C ∈ C.
(iii) Finally, we can assume that ϕ is left-continuous at 1. Indeed, if ϕ2(x) := ϕ(x−),

x ∈ I, then, due to assumed convexity, ϕ is continuous on (0, 1). Nondecreasing-
ness and convexity imply that ϕ(0) = ϕ(0+), so ϕ2(x) and ϕ(x) can only differ
at x = 1. But then due to continuity of any copula D ∈ C, [C,D]ϕ2

= [C,D]ϕ
since ∫

I2

(
ϕ(C)− ϕ2(C)

)
dD =

(
ϕ(1)− ϕ2(1)

)
µD
({

(1, 1)
})

= 0.

Theorem 2. If ϕ : [0, 1]→ R is a nonconstant, nondecreasing, and convex function such
that ϕ(1) = ϕ(1−) = 1, ϕ(0) = 0, then τϕ : C → [−1, 1] is a measure of concordance,
generalizing Kendall’s τ .

Proof. We need to check the axioms of Scarsini:

• Axiom (κ1) clearly holds as τϕ(C) is well defined for all C ∈ C.
• Axiom (κ2) holds since, on the one hand, [·, ·]ϕ is symmetric with respect to the

interchange of integration variables, that is, [ϕ(CT), CT] = [ϕ(C), C] for any
C ∈ C. On the other hand, using (1), we have

σ∗2−i
(
CT
)
=
(
σ∗i (C)

)T
, i = 1, 2;

ς∗
(
CT
)
= σ∗1

(
σ∗2
(
CT
))

= σ∗1
((
σ∗1(C)

)T)
=
(
σ∗2(σ

∗
1(C)

)T
=
(
ς∗(C)

)T
,

so that the positive terms in (8) remain unchanged, while the negative terms get
interchanged when C is replaced by CT, altogether keeping the value of τϕ(C)
unchanged.

• Axiom (κ3) follows by Lemma 1.
• Axiom (κ4) follows from Axioms (κ3) and (κ6) (still to be proved) and the fact

that, due to normalization, τϕ(M) = 1.
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• Axiom (κ5) follows from the fact that ξ∗(Π) = Π for any ξ ∈ R, and so, clearly,
τϕ(Π) = 0.

• Axiom (κ6) follows by observing that, e.g.,

(−1)|e|
[
σ∗1(C), σ

∗
1(C)

]
ϕ
= −(−1)|σ1|

[
σ∗1(C), σ

∗
1(C)

]
ϕ
;

(−1)|σ1|
[
σ∗1
(
σ∗1(C)

)
, σ∗1
(
σ∗1(C)

)]
ϕ
= −(−1)|e|[C,C]ϕ;

(−1)|σ2|
[
σ∗2
(
σ∗1(C)

)
, σ∗2
(
σ∗1(C)

)]
ϕ
= −(−1)|ς|

[
ς∗(C), ς∗C

]
ϕ
;

(−1)|ς|
[
ς∗
(
σ∗1(C)

)
, ς∗
(
σ∗1(C)

)]
ϕ
= −(−1)|σ2|

[
σ∗2(C), σ

∗
2(C)

]
ϕ
,

which produces τϕ(σ∗1(C)) = −τϕ(C). Similarly for ξ ∈ {σ2, ς}.
• Axiom (κ7) follows by an application of [9, Lemma 2.4.8]. Indeed, let Cn → C

uniformly as n → ∞. As ϕ is assumed nondecreasing, convex, left-continuous
at 1, and ϕ(0) = 0, it is nonnegative and continuous on [0, 1]. Thus fn := ϕ(Cn)
is a nonnegative, uniformly continuous, and bounded function on I2. Taking νn :=
µCn

as probability measures induced by copulas Cn, we see that condition (b) of
Lemma 2.4.8 [9] is trivially satisfied for {fn}, so that

lim
n→∞

[Cn, Cn]ϕ = lim
n→∞

∫
fn dνn =

∫
f dν = [C,C]ϕ,

where f := ϕ(C) and ν = µC . We have also used the fact that uniform con-
vergence of copulas Cn to C induces the weak (hence also vague) convergence
of the corresponding doubly stochastic probability measures νn to ν (see, e.g., [9,
Thm. 4.2.1]).

Remark 3. Theorem 2 looks similar but differs essentially from [4, Cor. 1] in that, on the
one hand, a different set of axioms is used to define a concordance measure, in particular,
Cardin and Ferretti do not require the antisymmetry with respect to partial reflections σ1
and σ2 (Axiom (κ6)). On the other hand, the symmetry with respect to π (Axiom (κ2))
there follows from the assumptions on the integrand (function f , which in our notation is
f = ϕ ◦ C), while we get it from the form of τϕ in (8). Also, the measure of Cardin and
Ferretti extends beyond Kendall’s τ because f need not depend on copula C.

The following result provides an alternative expression for τϕ given in (8) whenever
ϕ is a little smoother.

Theorem 3. Let ϕ : [0, 1]→R be a nondecreasing function such that ϕ(1)=ϕ(1−)=1,
ϕ(0) = 0. Assume, furthermore, that ϕ is nonconstant, differentiable, and convex on
(0, 1). Then the measure of concordance τϕ given in (8) can be equivalently expressed as
follows:

τϕ(C) = aϕ

{∫
I2

ϕ′(C) dΠ −
∫
I2

Gϕ(C) ∂1C ∂2C dΠ

}
, (9)
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where for any C ∈ C and u, v ∈ (0, 1),

Gϕ(C)(u, v) := ϕ′
(
C(u, v)

)
+ ϕ′

(
σ̃∗1(C)(u, v)

)
+ ϕ′

(
σ̃∗2(C)(u, v)

)
+ ϕ′

(
C(u, v)

)
;

σ̃∗1(C)(u, v) = σ∗1(C)(1− u, v) = v − C(u, v);
σ̃∗2(C)(u, v) = σ∗2(C)(u, 1− v) = u− C(u, v);

C(u, v) = 1− u− v + C(u, v) (survival function corresponding to C).

Remark 4. Note that as ϕ is assumed convex, it is continuous on (0, 1) and hence
absolutely continuous, so ϕ′(x) exists for Lebesgue almost all x ∈ (0, 1) and is integrable
on (0, 1), yet, due to level sets of copulas, which could have positive Lebesgue measure,
Gϕ(C)(u, v) could become undefined on sets of positive Lebesgue measure on I2 without
the requirement that ϕ is differentiable on (0, 1). Whether this poses a real problem,
especially for the first integral in (9), is to be investigated.

Proof. First, observe that for any reflection ξ ∈ R and any C ∈ C, using Theorem 1 and
the fact that ξ∗(C) ∈ C, one has[

ξ∗(C), ξ∗(C)
]
ϕ
=

∫
I2

ϕ
(
ξ∗(C)

)
dξ∗(C)

=

1∫
0

ϕ
(
ξ∗(C)(1, y)

)
dy −

∫
I2

∂1ϕ
(
ξ∗(C)

)
∂2ξ
∗(C) dΠ

=

1∫
0

ϕ(y) dy −
∫
I2

ϕ′
(
ξ∗(C)

)
∂1ξ
∗(C) ∂2ξ

∗(C) dΠ

=:

1∫
0

ϕ(y) dy −Kϕ(ξ, C).

Since ∑
ξ∈R

(−1)|ξ|
1∫

0

ϕ(x) dx = 0,

for the measure τϕ in (8), one has

τϕ(C) = −aϕ
∑
ξ∈R

(−1)|ξ|Kϕ(ξ, C). (10)

It remains to investigate each term in (10).
• For ξ = e, we obviously have

(−1)|e|Kϕ(e, C) =

∫
I2

ϕ′(C) ∂1C ∂2C dΠ. (11)
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• For ξ = σ1, we get (using ϕ(0) = 0 and substitution u = 1− s)

(−1)|σ1|Kϕ(σ1, C)

= −
1∫

0

1∫
0

ϕ′
(
v − C(1− u, v)

)
(∂1C)(1− u, v)

(
1− (∂2C)(1− u, v)

)
dudv

= −
1∫

0

( 1∫
0

ϕ′
(
v − C(s, v)

)
∂1C(s, v)

(
1− ∂2C(s, v)

)
ds

)
dv

=

1∫
0

( 1∫
0

d

ds

(
ϕ
(
v − C(s, v)

))
ds+

1∫
0

ϕ′
(
v − C(s, v)

)
∂1C(s, v)∂2C(s, v) ds

)
dv

= −
1∫

0

ϕ(v) dv +

∫
I2

ϕ′
(
σ̃∗1(C)

)
∂1C ∂2C dΠ. (12)

• For ξ = σ2, we similarly obtain (using ϕ(0) = 0 and substitution v = 1− s)

(−1)|σ2|Kϕ(σ2, C)

= −
1∫

0

1∫
0

ϕ′
(
u− C(u, 1− v)

)(
1− (∂1C)(u, 1− v)

)
(∂2C)(u, 1− v) dudv

= −
1∫

0

( 1∫
0

ϕ′
(
u− C(u, s)

)(
1− ∂1C(u, s)

)
∂2C(u, s) ds

)
du

=

1∫
0

( 1∫
0

d

ds

(
ϕ
(
u− C(u, s)

))
ds+

1∫
0

ϕ′
(
u− C(u, s)

)
∂1C(u, s)∂1C(u, s) ds

)
du

= −
1∫

0

ϕ(v) dv +

∫
I2

ϕ′
(
σ̃∗2(C)

)
∂1C ∂2C dΠ. (13)

• For ξ = ς = σ1 ◦ σ2, taking advantage of (12), we finally have

(−1)|ς|Kϕ(ς, C)

= Kϕ

(
σ1, σ

∗
2(C)

)
=

1∫
0

ϕ(v) dv −
∫
I2

ϕ′(σ̃∗1
(
σ∗2(C)

)
∂1(σ

∗
2(C)) ∂2

(
σ∗2(C)

)
dΠ

=

1∫
0

ϕ(v) dv−
1∫

0

1∫
0

ϕ′
(
v−u+ C(u, 1−v)

)(
1−(∂1C)(u, 1−v)

)
(∂2C)(u, 1−v) dΠ
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=

1∫
0

ϕ(v) dv −
1∫

0

1∫
0

ϕ′
(
C(u, s)

)(
1− ∂1C(u, s)

)
∂2C(u, s) duds

=

1∫
0

ϕ(v) dv −
1∫

0

( 1∫
0

d

ds

(
ϕ
(
C(u, s)

))
+ ϕ′

(
C(u, s)

)
ds

)
du

+

1∫
0

1∫
0

ϕ′
(
C(u, s)

)
∂1C(u, s) ∂2C(u, s) duds

= 2

1∫
0

ϕ(v) dv −
∫
I2

ϕ′
(
C
)
dΠ +

∫
I2

ϕ′
(
C
)
∂1C ∂2C dΠ. (14)

Substituting Eqs. (11)–(14) into (10) gives (9), finishing the proof.

Remark 5. Whenever ϕ′ is convex, letting

x1 = C(u, v), x3 = v − C(u, v),
x2 = u− C(u, v), x4 = 1− u− v + C(u, v),

we have xi ∈ I, i = 1, . . . , 4,
∑4
i=1 xi = 1 for any u, v ∈ I and C ∈ C. Also, if

x = (x1, x2, x3, x4) and g(x) =
∑4
i=1 ϕ

′(xi), then it follows that g : I4 → R is Schur-
convex (cf. [24, p. 92, Prop. C.1]), and so

4ϕ′
(
1

4

)
6 g(x) 6 ϕ′(1) + 3ϕ′(0) (15)

since (
1

4
,
1

4
,
1

4
,
1

4

)
≺ (x1, x2, x3, x4) ≺ (1, 0, 0, 0),

where “≺” denotes majorization relation for vectors (as defined by Hardy, Littlewood and
Pólya; see, e.g., [24, p. 80, Def. A.1,]), i.e., for x,y ∈ Rn,

x ≺ y ⇐⇒
k∑
i=1

x[i] 6
k∑
i=1

y[i] ∀k = 1, 2, . . . , n− 1,

n∑
i=1

x[i] =

n∑
i=1

y[i]

with x[i], y[i] denoting the ith largest entries of x, y, respectively. For more information
about majorization and its applications, see the book [24]. Furthermore, the bounds in (15)
are sharp since for ϕ(t) = t2, we get equalities. Also, if ϕ′ is concave, then g is Schur-
concave, and the inequalities in (15) are reversed.

Example 2. As a sanity check, choose ϕ(x) = x, x ∈ I. Then, clearly, aϕ = 1,∫
I2 ϕ
′(C) dΠ = 1, Gϕ(C) = 4, and as expected,

τϕ(C) = 1− 4

∫
I2

∂1C ∂2C dΠ = τ(C).
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As a nontrivial example, we have

Example 3. Consider ϕ(x) = x2, x ∈ I. Then aϕ = 3/2,∫
I2

ϕ′
(
C
)
dΠ = 2

∫
I2

C dΠ = 2

∫
I2

C dΠ =
ρS(C) + 3

6
,

where ρS denotes Spearman’s rho. Also,

Gϕ(C)(u, v) = 2
{
C(u, v) +

[
v − C(u, v)

]
+ [u− C(u, v)

]
+
[
1− u− v + C(u, v)

]}
= 2,

and so

τϕ(C) =
3

2

(
ρS(C) + 3

6
− 2

∫
I2

∂1C ∂2C dΠ

)
=

1

4
ρS(C) +

3

4
τ(C),

a much simpler expression compared to (8) or (9). We also note a curious similarity with
a concordance measure considered by Borroni [3, Eq. (27)], where the author obtained
γϕ∆(C) = (1/4)ρS(C) + (3/4)γ(C) with γ(C) being the Gini’s gamma of copula C.

For more general power functions, we have

Proposition 1. Consider ϕ(x) = xp, x ∈ I, p > 1. Then

(i) for p > 2,

p(p+ 1)

2

[(
ρS(C) + 3

12

)p−1
+
τ(C)− 1

4

]
6 τϕ(C) 6

p(p+ 1)

2

[
ρS(C) + 3

12
+
τ(C)− 1

4p−1

]
; (16)

(ii) for p ∈ [1, 2), the inequalities in (16) are reversed.

Proof. First notice that, for ϕ(x) = xp, we have aϕ = (p+ 1)/2, and for all x ∈ I,

ϕ′(x) = pxp−1

{
6 px if p > 2,

> px if p ∈ [1, 2).

Thus, using Jensen’s inequality, for p > 2, we obtain

ϕ′
(
ρS(C) + 3

12

)
= ϕ′

(∫
I2

C dΠ

)
6
∫
I2

ϕ′
(
C
)
dΠ

6 p

∫
I2

C dΠ = p
ρS(C) + 3

12
.

If p ∈ [1, 2), the inequalities above are reversed.
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Secondly, if p > 2, then using (15), we have

p42−p 6 Gϕ(C)(u, v) 6 p ∀(u, v) ∈ I2, C ∈ C. (17)

Thus

p

4

(
τ(C)− 1

)
= −p

∫
I2

∂1C ∂2C dΠ 6 −
∫
I2

Gϕ(C)∂1C ∂2C dΠ

6 −p42−p
∫
I2

∂1C ∂2C dΠ = p42−p
(
τ(C)− 1

)
.

Plugging in the obtained estimates into (9) completes the proof in the case p > 2.
If p ∈ [1, 2), ϕ′ is concave, and the bounds in (17) are reversed, so that again we

obtain the needed claim.

Example 4. To illustrate Theorem 3, we consider Farlie–Gumbel–Morgenstern (FGM)
family of copulas

Cθ(u, v) = uv
(
1 + θ(1− u)(1− v)

)
, θ ∈ [−1, 1].

It is well known that for this family, ρS(Cθ) = θ/3 and τ(Cθ) = 2θ/9 (see, e.g., [19,
p. 213]). Using Maple 2018.1 software, we have computed the expressions of τϕ(Cθ) for
ϕ(t) = tp with p = 1, 2, 3, 4, 5, 10:

τϕ(Cθ) =



τ(Cθ) =
θ
3 for p = 1,

1
4ρS(Cθ) +

3
4τ(Cθ) =

θ
4 for p = 2,

6θ
25 + 2θ3

3675 for p = 3,

2θ
9 + θ3

1176 for p = 4,

10θ
49 + 5θ3

5292 + θ5

533610 for p = 5,

5θ
36 + 5θ3

8281 + θ5

189280 + 5θ7

147695184 + θ9

12694752720 for p = 10.

One can observe (see Fig. 1) that the range of τϕ(Cθ) first widens (p = 2) and then
narrows as p changes from 3 to 10 when θ ranges in the interval [−1, 1]. Notice the dom-
inating influence of linear terms in all graphs. Also, computations become considerably
longer for larger p.

As another graphical illustration, we provide Figs. 2 and 3, where we plot the function
Gϕ(C) for ϕ(x) = xp, p ∈ {1.1, 1.5, 2.1} and p ∈ {5, 10, 20}, respectively, and several
copulas C ∈ {W,CFGM, CClayton,W} with CFGM(u, v) = uv(1 + α(1 − u)(1 − v)),
α = −0.6, being one of Farlie–Gumbel–Morgenstern copulas, and CClayton(u, v) =
(max(u−θ + v−θ − 1, 0))−1/θ, θ = 0.8, being a particular Clayton copula; (u, v) ∈ I2.
Notice the change from concavity (for 1 6 p < 2) to convexity (for p > 2) and the
respective lower and upper bounds (both being p). Also, observe that the higher the p,
the more the corners of the unit square become relevant, putting a larger weight on the
extreme dependence in the expression of τϕ(C) (see Eq. (9)).
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Figure 1. Generalized Kendall’s τϕ for FGM copula Cθ , θ ∈ [−1, 1], and ϕ(t) = tp with p = 1 (red,
solid), p = 2 (green, dotted), p = 3 (blue, dashed), p = 4 (yellow, dashed-dotted), and p = 10 (magenta,
long-dashed).

Figure 2. Plots of Gϕ(C) with ϕ(x) = xp for p ∈ {1.1, 1.5, 2.1} and C ∈ {W,CFGM, CClayton,M}.
Plots produced using Maple 2018.1 software.
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Figure 3. Plots of Gϕ(C) with ϕ(x) = xp for p ∈ {5, 10, 20} and C ∈ {W,CFGM, CClayton,M}. Plots
produced using Maple 2018.1 software.

5 Conclusions and future directions

In this Part I, we have investigated generalizations of the popular Kendall’s τ . We have
showed two forms for such generalizations and have illustrated how to compute them for
particular cases of the distortion function ϕ. In the general case, we have provided two-
sided bounds for the values of generalized Kendall’s τ , τϕ, which are sharp if either linear
(trivial case) or quadratic distortion function ϕ is used. In Part II, we will look into the
intrinsic meaning of our generalizations and establish that they are achieved by replacing
a probability measure µC (induced by a given copula C) with a nonadditive measure (in
our case, convex (supermodular) capacity, ν = ϕ ◦ µC). Such measures have found their
place in the economic decision theory, so we hope that our generalizations could be of
use there, too.
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