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Abstract. This paper investigates the synchronization of a complex network based on a class
of random impulsive differential equation systems. Based on the random impulsive strategy of
Poisson distribution, a random impulsive dynamical network model is constructed. Using the
Lyapunov principle, random process theory, linear matrix inequality method, and some basic
analysis methods, we realize the global mean-square index synchronization of the model. We then
get sufficient criteria for the synchronization. By presenting a numerical example, we verified the
validity of the theoretical results.
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1 Introduction

As a ubiquitous phenomenon in nature and human society, impulsivity is caused by instan-
taneous extreme changes. The system with impulsivity can be studied using mathematical
models with pulses. Differential equations are often used for mathematical modeling.
When pulses occur in these systems, correspondingly, we can introduce the pulses into
the model based on differential equations. Such systems are called impulsive differential
equation systems. Sometimes, the timing of the pulse cannot be determined in advance.
In other words, the timing of the pulse is random. Random impulsive differential equa-
tions can be used to study such systems. Stochastic differential equations have wide
applications in describing random or uncertain factors and, as such, have advantages
over ordinary differential equations in modeling real-world systems with uncertainty.
A variety of results on the theory of stochastic differential equations have been obtained;
see [11, 16, 18, 25] and the references therein. Stochastic impulsive differential equations
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Exponential synchronization of dynamical complex networks 817

also have important applications in science and engineering [9]. Many systems in nature
are affected by impulses and random factors. Impulsive differential equations can be used
in modeling such systems. In the literature, the impulsive differential equation has been
extensively studied [1, 4, 5, 7, 10, 20, 21, 29]. The behavior of a complex network under
interference and impulse can be described by a complex network model with random
impulsive differential equations.

In the last few decades, complex networks have attracted extensive attention [12, 13,
17, 19, 23, 28]. Many studies have been carried out and published in the literature. The
behavior of complex networks can be modeled and described by nonlinear dynamical
systems as each node in the network can be considered as a nonlinear system. Com-
plex networks are widely used in modeling real-world problems. For example, complex
networks can be used to model disease transmissions [24, 28], and so on. In view of
the fact that every node in the complex network follows the behaviors of nonlinear dy-
namics, the nonlinear dynamical system plays an important role in the study of complex
networks. Nonlinear dynamical systems have received extensive attention. Investigation
indicated that such systems exhibit complex dynamical behaviors [27]. Various control
strategies have been proposed to realize the synchronization of nonlinear dynamic sys-
tems. Synchronization of chaotic systems based on integer-order differential equations
and fractional-order differential equations have been studied in the literature. Synchro-
nization in complex networks has a variety of applications in neuroscience, biological
systems, business, and social sciences [22]. The synchronization of complex networks
has also been studied in the literature [2,6,8,12,13,15,17,26,30]. Recent studies showed
that the topology of a network is critical to the design of synchronization schemes [12,13].

Random pulses exist widely in nature and human society. Studying such pulses is
crucial to understanding and controlling corresponding risks. However, in the literature,
the synchronization of dynamical systems with random pulses are rarely studied. On the
other hand, it is challenging to realize the synchronization of such systems with random
pulses. In this article, we build a random impulse model of the network and study its
exponential synchronization strategy. In this paper, we discuss complex network systems
with random impulsive differential equations. Such systems have complex dynamical
behaviors. We use the Lyapunov principle, stochastic process theory, and linear matrix
inequality method to achieve the synchronization of the complex network model.

The paper is organized as follows. In Section 2, we present the definition of a class of
random impulsive dynamical network model and give some preliminaries. In Section 3,
we analyze the mean-square exponential synchronization of the network and give some
sufficient conditions to achieve the synchronization. In Section 4, a numerical simulation
is given to verify our theoretical results. The conclusion is drawn in Section 5.

2 Model description and preliminaries

Before presenting the model, we introduce some notations.

Notations. The following standard notations will be used throughout this paper. The no-
tation Rn denotes the n-dimensional Euclidean space; RN×N denotes the n-dimentional
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real square matrices; for a real symmetric matrix M , we use λmin(M) and λmax(M) to
denote its minimum and maximum eigenvalues; I is an identity matrix with compatible
dimensions; the superscript T represents transpose; diag(b1, b2, . . . , bn) stands for a diag-
onal matrix with diagonal elements b1, b2, . . . , bn; for real matrices A and B, the notation
A ⊗ B denotes the Kronecker product of the matrices; if not explicitly stated, ‖·‖ are
assumed as the Euclidean norm.

2.1 The model

Consider a dynamical network consisting of N nodes [17] described as

ẋk(t) = g
(
xk(t)

)
+

N∑
j=1

µkjBxj(t), (1)

where xk(t) = (xk1(t), xk2(t), . . . , xkn(t)) ∈ Rn is the state variable of the kth node at
time t for k = 1, 2, . . . , N , g(xk(t)) = (g(xk1(t)), g(xk2(t)), . . . , g(xkn(t))) :Rn → Rn
is a vector function, and B = diag(b1, b2, . . . , bn) is the inner coupling matrix, which
shows the connection in the node. U = (µkj) ∈ RN×N is the outer coupling matrix
denoting the connection between nodes and is defined as follows. If there is a connection
between node k and node j (k 6= j), then µkj = µjk 6= 0. Otherwise, µkj = µjk = 0.
The diagonal elements are defined as µkk = −

∑N
j=1, j 6=k µkj .

We use s(t) to denote the synchronization state variable, which satisfies ṡ(t) =
g(s(t)). Network (1) is said to achieve synchronization if limt→∞ ‖xk(t) − s(t)‖ = 0.
Especially, the network is said to achieve globally exponential synchronization if there
are constants C, ε > 0 such that for any initial values xk(0),∥∥xk(t)− s(t)∥∥2 6 Ce−ε(t−t0)
holds for any k = 1, 2, . . . , N [3].

Many researchers designed pinning impulsive controllers and applied them to com-
plex network models to achieve synchronization. For example, Feng et al. [8] designed an
impulsive controller ∆(xk(Tψ)) = bψxk(T

−
ψ ) to realize the synchronization of complex

networks. Leng and Wu [15] proposed an impulsive scheme to synchronize a time-delayed
complex network model. The controlled network model is described as follows:

ẋk(t) = g
(
xk(t)

)
+

N∑
j=1

µkjBxj(t), t 6= Tψ,

xk
(
T+
ψ

)
= xk

(
T−ψ
)
+ ϑψ

(
xk
(
T−ψ
)
− s
(
Tψ
))
, t = Tψ,

where k = 1, 2, . . . , N , ψ = 1, 2, . . . , the impulsive time series satisfies 0 = t0 <
t1 < · · · < tψ < · · · , and tψ → ∞ as ψ → ∞. Here ϑψ represents the impulsive
gain at time tψ , xk(T+

ψ ) = limt→T+
ψ
xk(t), and xk(T−ψ ) = limt→T−

ψ
xk(t). We always

assume that xk(t) is left-hand continuous at Tψ , i.e., xk(T−ψ ) = xk(Tψ). tψ = Tψ −
Tψ−1(ψ = 1, 2, . . . ) denotes the ψth impulse waiting time. We will apply the above
impulsive controller to the random impulsive network model.
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In real-world applications, the impulsive effect often occurs at random moments such
as the random forces on physical systems and noise caused by environmental uncertainty.
In this paper, we consider the scenario, where the impulses occur at random times. We no-
tice that Tψ−1 6 Tψ . Suppose the probability space (Ω,F ,P) is given. In the following,
we present definitions of random impulse.

A poisson impulse is defined as follows.

Definition 1. Let {τψ}∞ψ=1 be a sequence of independent and identically distributed
random variables, each of which has an exponential distribution with parameter λ, i.e.,
P(τψ = m) = λme−λ/m!, m = 0, 1, . . . . Let τψ define the time between the (ψ − 1)th
impulse and the ψth impulse. This kind of impulse is called Poisson impulse.

Remark 1. (See [14].) Denote N(t) as the number of impulse until time t. Then,
according to the stochastic process theory, N(t) is a Poisson process.

Define a sequence of random variables {ξψ}∞ψ=1 by ξ0 = T0, ξψ = T0+
∑ψ
i=1τi,

ψ = 1, 2, . . . , where T0 is the initial time. In this paper, we assume that T0 = 0. We note
that if τψ is waiting time of the ψth impulse, then ξψ represents the time the ψth impulse
occurring.

Assign an arbitrary value tψ to each random variable τψ . Then the increasing sequence
of points Tψ = T0 +

∑ψ
i=1 ti, ψ = 1, 2, . . . , are values of the random variables ξψ . We

thus get a pinning impulsive controlled model of network (1), given by

ẋk(t) = g
(
xk(t)

)
+

N∑
j=1

µkjBxj(t), t 6= Tψ,

xk
(
T+
ψ

)
= xk

(
T−ψ
)
+ ϑψ

(
xk
(
T−ψ
)
− s
(
Tψ
))
, t = Tψ,

xk(T0) = ρk,

(2)

where ρk are constants. Denote the solution of (2) by x(t;T0, {ρk}Nk=1, {tψ}∞ψ=1) =
(xT1 (t), x

T
2 (t), . . . , x

T
N (t))T. When the pulse time point is fixed, the solution of the differ-

ential equation obtained is definite. If all values of τψ are taken with probability, the set
of all solutions x(t;T0, {ρk}Nk=1, {tψ}∞ψ=1) of network model (2) generates a stochastic
process denoted by x(t;T0, {ρk}Nk=1, {τψ}∞ψ=1), which is called the solution of network
model (1) with random impulses at random times.

Definition 2. A stochastic process x(t;T0, {ρk}Nk=1, {τψ}∞ψ=1), where ρk is real, is said
to be the solution of random impulsive system

ẋk(t) = g
(
xk(t)

)
+

N∑
j=1

µkjBxj(t), t 6= ξψ,

xk
(
ξ+ψ
)
= xk

(
ξ−ψ
)
+ ϑψ

(
xk
(
ξ−ψ
)
− s
(
ξψ
))
, t = ξψ,

xk(T0) = ρk

(3)

if x(t;T0, {ρk}Nk=1, {tψ}∞ψ=1) is the solution of network model (2) for any given value tψ
of τψ , where random variables ξψ are defined above.
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Furthermore, x(t;T0, {ρk}Nk=1, {tψ}∞ψ=1) is called a sample orbit of the stochastic
process x(t;T0, {ρk}Nk=1, {τψ}∞ψ=1).

In this article, we consider the synchronization of network model (3). Here the most
important part is to estimate the probability of the occurrence of just ψ impulses until
time t.

For given t > T0, let Aψ(t) = {ω ∈ Ω: ξψ(ω) < t < ξψ+1(ω)} be the events, where
there are exactly ψ impulses occurring until time t. Consider the indicative function of
Aψ(t) given by

1Aψ(t)(ω) =

{
1, ω ∈ Aψ(t),
0, ω /∈ Aψ(t).

Remark 2. Denote P(Aψ(t)) = E(1Aψ(t)). We estimate the probability of Aψ(t) by
calculating the mean value of 1Aψ(t).

Lemma 1. For ξψ defined above, we then have

P
(
Aψ(t)

)
= E

(
1Aψ(t)

)
=
λψ(t− T0)ψ

ψ!
e−λ(t−T0).

Proof. By the probability theory we have

E(1Aψ(t)) =

∫ ∫
· · ·
∫

︸ ︷︷ ︸∑ψ
i=1 τi6t−T0<

∑ψ+1
i=1 τi

λψ+1e−λ
∑ψ+1
i=1 τi dτ1 · · · τψ+1

= λψe−λ(t−T0)

∫ ∫
· · ·
∫

︸ ︷︷ ︸∑ψ
i=1 τi6t−T0

dτ1 · · · τψ

=
λψ(t− T0)ψ

ψ!
e−λ(t−T0),

where the last equation follows from∫ ∫
· · ·
∫

︸ ︷︷ ︸∑ψ
i=1 τi6t−T0

dτ1 · · · τψ =
(t− T0)ψ

ψ!
.

This equation can be obtained by mathematical induction.

3 Main results

In this section, we present the main results of this work. Considering the random impul-
sive network model (3), let ek(t) = xk(t) − s(t) be the synchronization error variables.
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Due to the diagonal elements of U are defined as µkk = −
∑N
j=1, j 6=k µkj , we get

N∑
j=1

µkjBsj(t) = 0.

Then the error system is

ėk(t) = ĝ
(
ek(t)

)
+

N∑
j=1

µkjBej(t), t 6= ξψ,

ek
(
ξ+ψ
)
= ek

(
ξ−ψ
)
+ ϑψek

(
ξ−ψ
)
, t = ξψ,

where ĝ(ek(t)) = g(xk(t))−g(s(t)). We then let e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N (t))T and

δψ = (1 + ϑψ)
2.

Assumption 1 [Lipschitz condition]. (See [30].) Suppose that there is a positive con-
stant L such that (

y(t)− x(t)
)T(

g
(
y(t)

)
− g
(
x(t)

))
6 L

(
y(t)− x(t)

)T(
y(t)− x(t)

)
holds for any x(t), y(t) with range in Rn and t > T0.

Remark 3. (See [6].) A function f : Rn × R+ → Rn is QUAD(∆,ω) if and only if

(y − x)T
(
f(y, t)− f

(
x, t)

)
− (y − x)T∆(y − x)

6 −ω(y − x)T(y − x)

holds for any x, y ∈ Rn, t > 0, where ∆ is an n× n matrix, and ω is a positive constant.

Obviously, function g in Assumption 1 is QUAD((Lκ)I, κ), where κ is a positive
constant and I is an identity matrix with suitable dimension. The inner function of many
systems satisfies QUAD(∆,ω). It is often supposed that g(x) is QUAD.

Definition 3. (See [2].) The random impulsive network model (3) is said to achieve
global mean-square exponential synchronization if there exist positive constant C and ε
such that for any t > T0,

E
(∥∥e(t)∥∥2) 6 Ce−ε(t−T0)

holds for any initial value ρk.

Theorem 1. Suppose that Assumption 1 holds, and let λ1 = 2(L+λmax(U ⊗B)). If the
conditions

(i) δψ = (1 + ϑψ)
2 6 c, where c is an positive constant, ψ = 1, 2, . . . , and

(ii) λ1 − (1− c)λ < 0

hold for the system, then network model (3) can achieve global mean-square exponential
synchronization.

Proof. Construct a Lyapunov function V (t) = (1/2)
∑N
k=1 e

T
k (t)ek(t). For any given

τψ’s value tψ , we consider the corresponding pinning impulsive network.
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When t 6= Tψ , the derivative of V is

V̇ (t) =

N∑
k=1

eTk (t)ėk(t) =

N∑
k=1

eTk (t)

[
ĝ
(
ek(t)

)
+

N∑
j=1

µkjBej(t)

]

=

N∑
k=1

eTk (t)ĝ
(
ek(t)

)
+

N∑
k=1

eTk (t)

N∑
j=1

µkjBej(t)

6 2LV (t) + eT(t)(U ⊗B)e(t) 6 λ1V (t).

When t = Tψ ,
V
(
T+
ψ

)
= (1 + ϑψ)

2V
(
T−ψ
)
= δψV

(
T−ψ
)
.

Therefore, the stochastic process V (t) satisfies

V̇ (t) 6 λ1V (t), t 6= ξψ, V
(
ξ+ψ
)
= δψV

(
ξ−ψ
)
, V (T0) = V0.

Let stochastic process u(t) be a solution of the system

u̇(t) = λ1u(t), t 6= ξψ, u
(
ξ+ψ
)
= δψu

(
ξ−ψ
)
, u(T0) = u0 = V0. (4)

Obviously, we know that every sample track u(t;T0, u0, {tψ}∞ψ=1) of u(t) is above
V (t)’s corresponding sample track, and if we let y(t) = u(t) − V (t), the state space of
y(t) is [0,∞).

Definition 4. We say that the stochastic processes x(t), y(t) satisfy x(t) 6 y(t) if the
state space of z(t) = y(t)− x(t) is [0,+∞).

Next, we calculate the mean value of u(t) and design controllers to achieve its syn-
chronization.

Lemma 2. Consider the random impulsive linear differential equation system (4), where
τψ has exponential distribution. This equation is a first-order homogeneous linear or-
dinary differential equation with general solutions Ceλ1t in non-pulse time, where C is
a constant. The solution of this initial value problem is

u
(
t;T0, u0, {τψ}∞1

)
=

{
u0(
∏ψ
i=1 δi)e

λ1(t−T0), ξψ 6 t < ξψ+1,

u0e
λ1(t−T0), ξ0 6 t < ξ1,

where ψ = 1, 2, . . . . The mean value of the solution satisfies

E
(∣∣u(t;T0, u0, {tψ}∞ψ=1

)∣∣)
6 |u0|e(λ1−λ)(t−T0)

(
1 +

∞∑
ψ=1

ψ∏
i=1

|δi|
λψ(t− T0)ψ

ψ!

)
.
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Proof. Take some value tψ of τψ , and consider the corresponding pinning impulsive
differential problem

u̇(t) = λ1u(t), t 6= Tψ, u
(
T+
ψ

)
= δψu

(
T−ψ
)
, u(T0) = u0 = V0.

The solution of this system is obtained as

u
(
t;T0, u0, {tψ}∞1

)
=

{
u0(
∏ψ
i=1 δi)e

λ1(t−T0), Tψ 6 t < Tψ+1,

u0e
λ1(t−T0), T0 6 t < T1,

where ψ = 1, 2, . . . . Taking all values of τψ , the set of this term of solutions forms
a stochastic process u(t;T0, u0, {τψ}∞1 ), which is the solution of system (4).

According to the stochastic process theory, the expectation of this solution is esti-
mated as

E
(∣∣u(t;T0, u0, {τψ}∞ψ=1

)∣∣)
=

∞∑
ψ=0

E
(∣∣u(t;T0, u0, {τψ}∞ψ=1

)∣∣ ∣∣ Aψ(t))P(Aψ(t))
6 |u0|eλ1(t−T0)

(
P
(
A0(t)

)
+

∞∑
ψ=1

ψ∏
i=1

|δi
∣∣P(Aψ(t)

))

= |u0|eλ1(t−T0)e−λ(t−T0)

(
1 +

∞∑
ψ=1

ψ∏
i=1

|δi|
λψ(t− T0)ψ

ψ!

)

= |u0|e(λ1−λ)(t−T0)

(
1 +

∞∑
ψ=1

ψ∏
i=1

|δi|
λψ(t− T0)ψ

ψ!

)
. �

Remark 4. If δψ satisfies |δψ| 6 c, then we have

E
(∣∣u(t;T0, u0, {τψ}∞ψ=1

)∣∣) 6 |u0|e(λ1−(1−c)λ)(t−T0). (5)

Corollary 1. We consider the generalized model of impulsive linear differential equation

u̇(t) = a(t)u(t), t 6= ξψ, u
(
ξ+ψ
)
= δψu

(
ξ−ψ
)
, u(T0) = u0,

where a ∈ C(R+,R). The solution is obtained as

u
(
t;T0, u0, {τψ}∞1

)
=

u0(
∏ψ
i=1 δi)e

∫ t
T0
a(s) ds

, ξψ 6 t < ξψ+1,

u0e
∫ t
T0
a(s) ds

, ξ0 6 t < ξ1,

where ψ = 1, 2, . . . , and the estimation of its expectation is

E
(∣∣u(t;T0, u0, {tψ}∞ψ=1

)∣∣)
6 |u0|e

∫ t
T0
a(s)−λ ds

(
1 +

∞∑
ψ=1

ψ∏
i=1

|δi|
λψ(t− T0)ψ

ψ!

)
.
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Based on the above discussion, we complete the following proof.

Proof of Theorem 1. First, it follows from Definition 4 that E(V (t)) 6 E(u(t)). From (5)
we get the estimation

E
(
V (t)

)
6 E

(
u(t)

)
6 |V0|e(λ1−(1−c)λ)(t−T0).

By condition (ii) there exists a constant ε > 0 such that

E
(∥∥e(t)∥∥2) = 2E

(
V (t)

)
6 2|V0|e−ε(t−T0),

which implies that the synchronization is achieved.

Remark 5. Condition (ii) in Theorem 1 shows the relationship between system param-
eters and impulse parameters. If the system has a small Lipschitz coefficient L, which
implies good properties, the impulse parameter λ can be reduced accordingly. The average
impulse time interval (1/λ) could be amplified, which implies a very weak impulse
control, and the cost will be reduced. Otherwise, a strong impulse controller is needed
for synchronization, and the required cost will be high.

In some networks, the signal transmission between nodes is unidirectional, which
means that the outer coupling matrix U is not a symmetric matrix. Therefore, it is neces-
sary to improve the network model.

Corollary 2. Consider the dynamical network (3) in which U(t) = (µkj) is not a sym-
metric matrix. Let the following condition hold for the system:

(i) δψ = (1 + ϑψ)
2 6 c, where c is a positive constant, ψ = 1, 2, . . . ,

(ii) λ̃1 − (1− c)λ < 0, where λ̃1 = 2L+ λmax(U ⊗B + (U ⊗B)T).

Then network (3) can achieve globally mean-square exponential synchronization.

The proof of Corollary 2 is similar to that of Theorem 1. The only difference is the
derivative of V (t), which is given by

V̇ (t) =

N∑
k=1

eTk (t)ėk(t) =

N∑
k=1

eTk (t)

[
ĝ
(
ek(t)

)
+

N∑
j=1

µkjBej(t)

]

=

N∑
k=1

eTk (t)ĝ
(
ek(t)

)
+

N∑
k=1

eTk (t)

N∑
j=1

µkjBej(t)

6 2LV (t) +
1

2
eT(t)

[
(U ⊗B) + (U ⊗B)T

]
e(t) 6 λ̃1V (t).

4 Numerical simulation

In this section, we provide a numerical example to verify the effectiveness of the theorem
given in the previous section.
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Consider the following chaotic nonlinear system as a single node in the network:

ẋ(t) = −Cx(t) +Af
(
x(t)

)
= g
(
x(t)

)
, (6)

where f(x(t)) = (f1(x1(t)), f2(x2(t)), f3(x3(t)))
T, fs(φ) = (|φ + 1| − |φ − 1|)/2,

s = 1, 2, 3,

A =

1.16 −1.5 −1.5
−1.5 1.16 −2.0
−1.2 2.0 1.16

 , C =

1 0 0
0 1 0
0 0 1

 .
It is easy to verify that the system satisfies the Lipschitz condition with Lipschitz

constant 2.178. The trajectory of system (6) is shown in Fig. 1, and the time history of
system (6) is shown in Fig. 2

This system forms a 5-node network in which the inner coupling matrix and the outer
coupling matrix are

U =


−3 1 1 1 0
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
0 1 1 1 −3

 , B =

1 0 0
0 1 0
0 0 1

 ,

respectively. By simple calculation we find that λ1 = 2(L + λmax(U ⊗ B)) < 4.5.
Suppose that the system has impulse gain ϑψ = −0.5, and as such δψ = 0.25. Choose the
exponential distribution parameter λ = 6, i.e., P(τψ = k) = (6k/k!)e−6, k = 1, 2, . . . .
Thus, condition (ii) in Theorem 1 is satisfied. Initial values xk(0) are random numbers
in the interval [−1, 1]. Each experiment is randomly generated with exponentially dis-
tributed impulse waiting time series. We ran the experiment for 10000 times. As shown
in Figs. 3–5, with the proposed control, we realized the synchronization of the system.

We then calculate the mean value of the 10000 experiments and get the mean error of
the system with the proposed control. Simulation results of the mean values of ek(t) are
shown in Figs. 6–10. The line of each color represents the error of the component in the
node.

Consider a more sparse matrix

U ′ =


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
−1 −1 −1 −1 4

 .
Letting ϑψ = −1 and λ = 15 to meet the conditions of Theorem 1, we then have
simulation results shown in Figs. 11–18.

We can see that the results of the numerical simulation after replacing the sparser
matrix are still in line with the theory.
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Figure 1. Simulated phase portrait of system (6) in
the x, y, z-space.
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Figure 2. Time history of system (6).
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Figure 3. Time histories of xi1(t), i = 1, 2, 3, 4, 5,
with inner coupling matrix U .
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t
0 0.5 1 1.5 2

x i3
(t

)

-1.5

-1

-0.5

0

0.5

1

x
13

x
23

x
33

x
43

x
53

Figure 5. Time histories of xi3(t), i = 1, 2, 3, 4, 5,
with inner coupling matrix U .
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Figure 10. Time history of e5i(t), i = 1, 2, 3, with
inner coupling matrix U .
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Figure 11. Time histories of xi1(t), i = 1, 2, 3, 4, 5,
with inner coupling matrix U2.
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Figure 12. Time histories of xi2(t), i = 1, 2, 3, 4, 5,
with inner coupling matrix U2.
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Figure 13. Time histories of xi3(t), i = 1, 2, 3, 4, 5,
with inner coupling matrix U2.
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Figure 14. Time history of e1i(t), i = 1, 2, 3, with
inner coupling matrix U ′.
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Figure 15. Time history of e2i(t), i = 1, 2, 3, with
inner coupling matrix U ′.
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Figure 16. Time history of e3i(t), i = 1, 2, 3, with
inner coupling matrix U ′.
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Figure 17. Time history of e4i(t), i = 1, 2, 3, with
inner coupling matrix U ′.
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Figure 18. Time history of e5i(t), i = 1, 2, 3, with
inner coupling matrix U ′.

5 Conclusion

In this paper, we investigate the global mean-square exponential synchronization of the
random impulsive dynamical network. Using Lyapunov theory, linear matrix inequality,
and stochastic process theory, we have designed control mechanisms to achieve the syn-
chronization of the network. We obtain synchronization criteria and consider the rela-
tionship between network parameters and impulsive parameters. A numerical example is
provided to illustrate the validity of our analytical results.

In our future work, we will combine random impulse with stochastic differential
equations to study the synchronization control problem for a variety of systems. For
example, we will consider a mean-square exponential synchronization problem for the
stochastic dynamical network via random impulse occurring at random times.
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