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Abstract. A fractional-order generalized SIRS model considering incubation period is established
in this paper for the transmission of emerging pathogens. The corresponding Hopf bifurcation is
discussed by selecting time delay as the bifurcation parameter. In order to control the occurrence
of Hopf bifurcation and achieve better dynamic behaviors, a delayed feedback control is adopted
to the model. Further, the delayed fractional-order optimal control problem (DFOCP) is proposed
and discussed. The parameters of the proposed model are identified through the measurement data
of coronavirus disease 2019 (COVID-19). Based on the results of parameter identification, the
corresponding DFOCP with delayed control is numerically solved.

Keywords: optimal control, bifurcation analysis, fractional-order epidemic model, time delay,
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1 Introduction

Since ancient times, diseases caused by various pathogens have had a serious impact
on human life security and global economic development, such as plague, smallpox,
SARS, and the COVID-19 that broke out in the world in 2020. Therefore, analyzing the
pathology, transmission trends, and behavioral characteristics of infectious diseases plays
an important role in disease control. Specifically, the epidemic model is an important
mathematical tool used to discuss the dynamic behaviors of infectious diseases. In 1927,
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Kermack and McKendrick proposed the SIR infectious disease model, which divided
the population into three compartments: susceptible individuals, infected individuals, and
recovered individuals [15]. Subsequently, research on epidemic models has been widely
developed [5, 22, 27]. In recent years, public health emergencies caused by the COVID-
19 have had a serious impact on the world. In order to effectively describe the spread of
such sudden infectious diseases and provide theoretical guidance for epidemic control,
a generalized epidemic model is proposed and analyzed in this paper.

The incidence rate is an important function used to characterize the transmission
ability of diseases in epidemic models, including bilinear incidence rate [15], saturation
incidence rate [5], and various forms of nonlinear incidence rate [26, 30]. In order to
enhance the universality of the model established in this paper, a generalized incidence
rate is used to describe the spread of infectious diseases. Most existing incidence rates
are a special form of this generalized incidence rate. In addition, the incubation period
is one of the important reasons for the widespread spread of diseases. Infectious diseases
that have caused great harm in history have incubation periods, such as pestis, small-
pox, SARS, and COVID-19. Virus carriers are prone to contact and infect susceptible
individuals before onset of the disease. In order to effectively characterize the spread of
infectious diseases with latent periods, time delay is used to describe the incubation period
of diseases.

During the transmission of pathogens, the infectious diseases follow biological ge-
netic characteristics. Infectious diseases that cause major health events often have the
characteristic of strong infectivity. The stronger the infectivity, the stronger the correlation
between the trend of infectious diseases and historical information. Compared to integer-
order epidemic model, the fractional-order epidemic model can effectively characterize
the heritability and memory of historical information. In addition, the fractional-order
differential equation can make up for the shortcoming that integer-order differential equa-
tion cannot fit the experimental data completely. In order to effectively fit the historical
data of infectious diseases, fractional-order differential equation are adopted to establish
the corresponding epidemic model. Furthermore, the Caputo fractional-order differential
equation have properties similar to integer-order differential equation, which can better
characterize certain nonlinear relationships and biological phenomena. Analyzing the
spread of infectious diseases through the Caputo fractional-order differential equation
can more accurately reflect the dynamic behavior of infectious disease. In addition, the
integer-order epidemic model can be regarded as a special case of the Caputo fractional-
order epidemic model. In [19, 25], the authors found that the Caputo fractional-order
epidemic model can better fit and predict the trend of COVID-19 than the corresponding
integer-order epidemic model.

Furthermore, a fractional-order epidemic model with general incidence and latency
delay is established in this paper. The corresponding dynamic behaviors are analyzed. Bi-
furcation is an important theory in the dynamic analysis of nonlinear systems, especially,
in the qualitative analysis of epidemic models [4,12,13,28,29]. Selecting time delay as the
bifurcation parameter, the Hopf bifurcation of the equilibrium point is discussed. In order
to capture the occurrence of Hopf bifurcation, a delayed feedback control is introduced
into the model, and the corresponding Hopf bifurcation is analyzed. The delayed feedback
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control can improve the stability of the equilibrium point, which is numerically verified
in this paper.

In addition, many researches of epidemic model are not combined with real data,
which lacks explanations for the effectiveness of model construction. In this paper, the
COVID-19 pandemic is taken as an example, and the corresponding measurement data
are selected to identify the parameters of the model. Based on the results of parameter
identification, the accuracy of the theoretical conclusions is verified numerically.

Reasonable control measures are conducive to controlling the spread of diseases. The
optimal control theory is to achieve the best control effect of the pandemic within limited
resources. In recent decades, fractional-order optimal control problems (FOCP) have been
discussed [2, 3, 9]. Compared to the research on delayed optimal control problems in the
sense of ordinary differential equations, there is relatively less research on DFOCP [10,
21]. In addition, few studies have applied DFOCP with delayed control to the emerging
epidemic model. Therefore, based on the fractional-order epidemic model proposed in
this paper, the DFOCP with delayed control is proposed and discussed. The FBSM is
applied to solve the DFOCP with delayed control.

The main contributions of this paper are as follows: (i) Based on the basic SIRS
model, a fractional-order epidemic model with latency delay and general incidence rate
is established. The effectiveness of the proposed model in describing the trend of sudden
outbreaks is verified through the measurement data of COVID-19 pandemic. (ii) A de-
layed feedback control is adopted to the proposed model, and the corresponding Hopf
bifurcation is analyzed. Theoretical analysis and numerical simulation demonstrate that
the controlled model exhibits better dynamic behavior. (iii) The DFOCP with delayed
control is proposed, and the FBSM method is introduced to numerically solve the corre-
sponding DFOCP. (iv) The parameters of the model are identified based on measurement
data of COVID-19 pandemic. Further, the accuracy of the theoretical results is verified,
and the corresponding DFOCP is numerically solved.

The structure of this paper is organized as follows. In Section 2, a delayed Caputo
fractional-order epidemic model with general incidence rate is established. Some dynamic
behaviors of the model established in this paper are analyzed in Section 3. In Section 4, the
Hopf bifurcation of the proposed model is discussed. The DFOCP with delayed control
is proposed and analyzed in Section 5. In Section 6, the parameters of the model are
identified based on measurement data of COVID-19 pandemic. Further, the corresponding
DFOCP is numerically solved. In Section 7, the conclusion of this paper is drawn.

2 Preliminaries and model derivation

2.1 Preliminaries

Definition 1. (See [20].) The Caputo fractional-order derivative is given below:

C
aD

α
t f(t) =

1

Γ(n− α)

t∫
a

(t− ξ)n−α−1f (n)(ξ) dξ, n− 1 6 α < n.
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Definition 2. (See [20].) The Riemann–Liouville fractional-order derivative is given
below:

R
tD

α
b f(t) =

(−1)n

Γ(n− α)

dn

dxn

b∫
t

f(ξ)(ξ − t)n−1−α dξ,

and the Riemann–Liouville fractional-order integral is

R
t I
α
b f(t) =

1

Γ(α)

b∫
t

f(t)(ξ − t)α−1 dξ, n− 1 6 α < n,

where Γ(α) is gamma function.

2.2 Model derivation

There are many forms of incidence rate due to differences in the types of infectious
diseases. Inspired by the work of Li [18], a similar general incidence rate Sf(I) is
adopted, which satisfies the following conditions:

(i) f(I) is a locally Lipschitz function on [0,∞),
(ii) f(0) = 0, f(I) > 0 for I > 0,

(iii) limI→0 f(I)/I = β > 0, f(I)/I is a continuous and monotone nonincreasing
function for I > 0.

In addition, the incubation period of infectious diseases is characterized by time delay.
Diethelm pointed out that the left-hand sides and right-hand sides of the fractional-order
biological models should have the same dimensions [7]. The left-hand side of the Caputo
fractional-order model have the dimension of (time)−α, and it is necessary to ensure
that the parameters of the right-hand side of the model also have the same dimension.
Therefore, a delayed Caputo fractional-order epidemic model with general incidence is
established as follows:

C
0D

α
t S(t) = ΛαS(t)

(
1− S(t)

K

)
− S(t)f(I) + bα1 I(t) + bα2R(t),

C
0D

α
t I(t) = S(t− τ)f

(
I(t− τ)

)
−
(
rα + bα1 + dα1 + dα2

)
I(t),

C
0D

α
t R(t) = rαI(t)−

(
dα1 + bα2

)
R(t),

(1)

where S(t) = φ1(t) > 0 for t ∈ [−τ, 0], I(t) = φ2(t) > 0 for t ∈ [−τ, 0], R(0) = R0,
S(t), I(t), and R(t) represent the population size of susceptible individuals, infected
individuals, and recovered individuals at time t, respectively, Λ is the recruitment rate of
susceptible individuals, K represents the environmental capacity, b1 and b2 denote the
self-healing rate of infected individuals and immune loss rate, respectively, d1 and d2 are
the natural death rate and the death rate caused by diseases, respectively.

In order to achieve better dynamical behaviors, a class of bifurcation controller is
adopted to model (1). Inspired by the works of Huang [12, 13], a delayed feedback
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controller is applied to model (1), which can be expressed as

p(t) = σ
(
S(t)− S(t− τ)

)
,

where σ is feedback gain, τ denotes the time delay of feedback control. Further, the
corresponding model (1) with delayed feedback controller can be expressed as

C
0D

α
t S(t) = ΛαS(t)

(
1− S(t)

K

)
− S(t)f(I) + bα1 I(t) + bα2R(t)

+ σ
(
S(t)− S(t− τ)

)
,

C
0D

α
t I(t) = S(t− τ)f

(
I(t− τ)

)
−
(
rα + bα1 + dα1 + dα2

)
I(t),

C
0D

α
t R(t) = rαI(t)−

(
dα1 + bα2

)
R(t),

(2)

where the initial condition is the same as model (1).

Remark 1. If σ = 0, then the feedback controller p(t) = σ(S(t) − S(t − τ)) is
invalid in model (2). In epidemiology, feedback controller p(t) can be represented as
the self-protection measures for susceptible individuals, including wearing masks and
home isolation. When the number of susceptible individuals exposed to the environment
is higher than the previous moment, the number of susceptible individuals exposed to the
environment can be appropriately reduced by adjusting the self-feedback coefficient σ to
avoid the further spread of infectious diseases.

3 Qualitative analysis

Some dynamic behaviors of model (1) are analyzed in this section. Obviously, for initial
value (S0, I0, R0) ∈ R3

+, there exists a unique solution of model (1) [14, 20].

3.1 Nonnegativity

Theorem 1. For any initial value (S0, I0, R0) ∈ R3
+, the solutions of model (1) are

nonnegative.

Proof. Let t1, t2, and t3 be the critical times when S(t), I(t), and R(t) first reach zero
and become negative at the next moment, respectively. Let t2 = t3 =min{t1, t2, t3} 6=∞,
then there exists a sufficiently small 0 < ε < τ with S(t− τ) > 0 and I(t), R(t) < 0 in
the interval (t2, t2 + ε). According to model (1), it can be obtained that

C
0D

α
t (I +R) > −dα1 (I +R), t ∈ (t2, t2 + ε).

According to the fractional-order comparison theorem [24], one has

I +R > (I0 +R0)Eα
(
−dα1 tα

)
> 0, t ∈ (t2, t2 + ε).

The above formula contradicts the assumption, which means that I(t) and R(t) cannot
simultaneously reach the zero axis before S(t) and become negative at the next moment.
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Assuming that t3 = min{t1, t2, t3} 6=∞, there exists a sufficiently small ε > 0 with
I(t) > 0 and R(t) < 0 in the interval (t3, t3 + ε). According to model (1), it can be seen
that

C
0D

α
t R > −

(
dα1 + bα2

)
R, t ∈ (t3, t3 + ε).

Similarly, it can be obtained that R(t) > 0 for t ∈ (t3, t3 + ε), which contradicts the
assumption. Therefore, R(t) cannot first reach the zero axis and become negative at the
next moment.

Further, assuming that t2 = min{t1, t2, t3} 6= ∞, there exists a sufficiently small
0< ε < τ with S(t − τ) > 0, I(t − τ) > 0, and I(t) < 0 in the interval (t2, t2 + ε).
Similarly, it can be obtained that I(t) cannot first reach the zero axis and become negative
at the next moment.

Assume that t1 = min{t1, t2, t3} 6= ∞. The above analysis has shown that I(t)
and R(t) cannot reach and cross the zero axis in finite time. Therefore, the assumption
t1 = min{t1, t2, t3} 6= ∞ means that t1 6= t2 and t1 6= t3. Similarly, it can be obtained
that S(t) cannot reach zero for the first time and become negative at the next moment.

Therefore, S(t), I(t), andR(t) cannot reach zero in a finite time and become negative
at the next moment. For any initial values (S0, I0, R0) ∈ R3

+, the solutions of model (1)
are nonnegative.

3.2 Existence of equilibria

The basic reproduction number R0 is established to analyze the existence of equilibria
[11, 23]. Obviously, there exists a zero equilibrium E0 = (0, 0, 0) and a disease-free
equilibrium E1 = (K, 0, 0) in model (1). Therefore, the basic reproduction number can
be calculated as

R0 =
Kf ′(0)

rα + bα1 + dα1 + dα2
.

Theorem 2. Model (1) clearly has a zero equilibrium E0 = (0, 0, 0) and a disease-free
equilibriumE1 = (K, 0, 0). There exists a unique endemic equilibriumE∗ = (S∗, I∗, R∗)
for model (1) if the condition 1 < R0 6 2 holds.

Proof. Assuming that E∗ = (S∗, I∗, R∗) is the endemic equilibrium of model (1), it can
be obtained that

R∗ =
rαI∗

bα2 + dα1
, S∗ =

(
rα + bα1 + dα1 + dα2

) I∗

f(I∗)
. (3)

Further, one has

ΛαI∗

f(I∗)

(
rα + bα1 + dα1 + dα2

)(
1− S∗

K

)
−
(
dα1 + dα2 +

rαdα1
bα2 + dα1

)
I∗ = 0.

Thus, it can be found that I∗ is the positive root of the following equation:

G(I) = α1g(I)
[
1− α2g(I)

]
−
(
dα1 + dα2 +

rαdα1
bα2 + dα1

)
I = 0,
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where α1 = Λα(rα+bα1 +dα1 +dα2 ), α2 = (rα+bα1 +dα1 +dα2 )/K, and g(I) = I/f(I).
The conditionR0 > 1 is established, which can ensure that G(0) > 0. Further, one has

G′(I) = α1g
′(I)
[
1− 2α2g(I)

]
−
(
dα1 + dα2 +

rαdα1
bα2 + dα1

)
.

Obviously, one has g′(I) > 0 and g(I) > g(0). If R0 6 2, it can be obtained that
G′(I) < 0. Therefore, if 1 < R0 6 2, G(I) has a unique positive root on I ∈ [0,∞)
denoted by I∗. Further, according to formula (3), it can be found that model (1) has
a unique endemic equilibrium.

3.3 Stability analysis of equilibria

The local asymptotic stability of the disease-free equilibrium E1 and endemic equilib-
rium E∗ of model (1) is analyzed in this section.

Theorem 3. With respect to the stability of the disease-free equilibrium E1 of model (1),
the following conclusions are drawn.

(i) The disease-free equilibriumE1 is asymptotically stable for τ = 0 if the condition
R0 < 1 holds.

(ii) The disease-free equilibriumE1 is asymptotically stable for τ > 0 if the condition
R0 < 1 holds.

Proof. According to [17], the corresponding characteristic equation of model (1) at E1 is

D(λ) = λ3α +m1λ
2α +m2λ

α +m3λ
2αe−λτ

+m4λ
αe−λτ +m5e−λτ +m6 = 0, (4)

where

m1 = Λα + rα + bα1 + bα2 + 2dα1 + dα2 ,

m2 =
(
bα2 + dα1

)(
Λα + rα + bα1 + dα1 + dα2

)
+ Λα

(
rα + bα1 + dα1 + dα2

)
,

m3 = −Kf ′(0), m4 = −Kf ′(0)
(
Λα + dα1 + bα2

)
,

m5 = −ΛαKf ′(0)
(
bα2 + dα1

)
, m6 = Λα

(
bα2 + dα1

)(
rα + bα1 + dα1 + dα2

)
.

For τ = 0, substituting s = λα into characteristic equation (4) yields

L(s) = s3 + l1s
2 + l2s+ l3 = 0,

where l1 = m1 +m3, l2 = m2 +m4, and l3 = m5 +m6. Assume that s1, s2, and s3 are
the roots of characteristic equation L(s) = 0. Furthermore, it can be seen that all roots of
the characteristic equation L(s) = 0 satisfy |arg(si)| > π/2 > απ/2 (i = 1, 2, 3) if con-
ditions l1 > 0, l3 > 0, and l1l2 > l3 hold. Through calculation, it can be concluded that

l1l2 − l3 = l1
(
Λα + bα2 + dα1

)(
rα + bα1 + dα1 + dα2

)
(1−R0)

+ Λα
(
Λα + bα2 + dα1

)(
bα2 + dα1

)
.

According to the above equations, if R0 < 1, there are l1 > 0, l3 > 0, and l1l2 > l3.
Therefore, based on the results in [17], the disease-free equilibrium E1 of model (1) is
locally asymptotically stable for τ = 0 under the conditionR0 < 1.
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For τ > 0, we assume thatD(λ) = 0 has a pure imaginary root, which can be denoted
by λ = ωi. Substitute λ = ωi into the characteristic equation (4), and then separate the
real and imaginary parts to obtain

a1 cos(ωτ) + a2 sin(ωτ) = −a3, a2 cos(ωτ)− a1 sin(ωτ) = −a4,

where
a1 = m3ω

2α cos(απ) +m4ω
α cos

απ

2
+m5,

a2 = m3ω
2α sin(απ) +m4ω

α sin
απ

2
,

a3 = m6 + ω3α cos
3απ

2
+m1ω

2α cos(απ) +m2ω
α cos

απ

2
,

a4 = ω3α sin
3απ

2
+m1ω

2α sin(απ) +m2ω
α sin

απ

2
.

Further calculations allow us to obtain that

F (ω) = ω6α + f1ω
5α + f2ω

4α + f3ω
3α + f4ω

2α + f5ω
α + f6 = 0,

where
f1 = 2m1 cos

απ

2
, f2 = 2m2 cos(απ) +m2

1 −m2
3,

f3 = 2m6 cos
3απ

2
+ 2(m1m2 −m3m4) cos

απ

2
,

f4 = m2
2 −m2

4 + 2(m1m6 −m3m5) cos(απ),

f5 = 2(m2m6 −m4m5) cos
απ

2
, f6 = m2

6 −m2
5.

Note that f1 > 0, F (ω) = 0 has no positive root if the condition fi > 0 (i = 2, 3, 4, 5, 6)
hold, which contradicts the assumption. Then one has

f2 > Λ2α +
(
bα2 + dα1

)2
+
(
rα + bα1 + dα1 + dα2

)2(
1−R2

0

)
.

Therefore, if the condition R0 < 1 holds, it means that f2 > 0. For convenience, let
θ1 = bα2 +dα1 and θ2 = rα+ bα1 +dα1 +dα2 . Through calculation, it can be concluded that

f3 = 2 cos
απ

2

[
θ2
(
Λ2α + θ21

)
+ θ22

(
Λα + θ1

)(
1−R2

0

)
+ 3Λαθ1

(
Λα + θ1

)]
+ 8Λαθ1θ2 cos3

απ

2
.

Since α ∈ (0, 1), if R0 < 1 holds, one has f3 > 0. Through calculation, it can be found
that

m1m6 −m3m5 = Λαθ1θ
2
2

(
1−R2

0

)
+ Λαθ1θ2

(
Λα + θ1

)
.

According to the above equation, it can be obtained that m1m6 − m3m5 > 0 if the
conditionR0 < 1 holds. Therefore, it can be calculated that

f4 > Λ2αθ21 +
(
Λ2α + θ21

)
θ22
(
1−R2

0

)
.
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Hence, if the conditionR0 < 1 holds, one has f4 > 0. By calculation, it can be concluded
that

m2m6 −m4m5 = Λ2αθ21θ2 + Λαθ1θ
2
2

(
Λα + θ1

)(
1−R2

0

)
.

Therefore, if the conditionR0 < 1 holds, one has f5 > 0. Then it can be calculated that

f6 = Λ2αθ21θ
2
2

(
1−R2

0

)
.

Therefore, it can be obtained that f6 > 0 if the conditionR0 < 1 holds.
In summary, we can obtain that fi > 0 (i = 2, 3, 4, 5, 6) if condition R0 < 1 holds.

Therefore, based on the results in [6], D(λ) = 0 has no pure imaginary roots for all τ > 0
if conditionR0 < 1 holds. The proof of Theorem 3 is completed.

Theorem 4. With respect to the stability of the endemic equilibrium E∗ of model (1), the
following conclusions are drawn:

(i) The endemic equilibrium E∗ is asymptotically stable for τ = 0 if the condition
1 < R0 6 2 holds.

(ii) The endemic equilibrium point E∗ is asymptotically stable for τ > 0 if the
condition 1 < R0 6 2 holds.

Proof. The characteristic equation of model (1) at point E∗ is

H(λ) = λ3α + h1λ
2α + h2λ

α + h3λ
2αe−λτ + h4λ

αe−λτ + h5e−λτ + h6 = 0, (5)

where
h1 = −(n11 + n22 + n33), h2 = n11n22 + n22n33 + n11n33,

h3 = −p22, h4 = (n11 + n33)p22 − n12p21,
h5 = n12n33p21 − n11n33p22 − n13n32p21, h6 = −n11n22n33

with

n11 = Λα − 2ΛαS∗

K
− f(I∗), n12 = bα1 − S∗f ′(I∗), n13 = bα2 ,

n22 = −
(
rα + bα1 + dα1 + dα2

)
, n32 = rα n33 = −

(
bα2 + dα1

)
,

p21 = f(I∗), p22 = S∗f ′(I∗).

For τ = 0, substituting s = λα into (5) yields K(s) = s3 + k1s
2 + k2s + k3 = 0.

where k1 = h1 + h3, k2 = h2 + h4, and k3 = h5 + h6. Since f(I)/I is a monotone
nonincreasing function, it holds that f(I) > f ′(I)I . Then we have S∗/K > 1/R0

and 1 − f ′(I∗)I∗/f(I∗) > 0. Further simplifying the conditions k1 > 0, k3 > 0, and
k1k2 > k3, it can be obtained that

k1 > Λα
(

2

R0
− 1

)
+ f(I∗) + bα2 + dα1 .

If the conditionR0 6 2 holds, then one has k1 > 0. For convenience, let

θ1 = bα2 + dα1 , θ2 = rα + bα1 + dα1 + dα2 , θ3 = rα + bα2 + 2dα1 + dα2 ,

ϕ1 =
2

R0
− 1, ϕ2 = 1− f ′(I∗)I∗

f(I∗)
, ϕ3 = 1−

(
f ′(I∗)I∗

f(I∗)

)2

.
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Further, it can be obtained through calculation that

k2 > Λαϕ1(θ2ϕ2 + θ1) + θ1θ2ϕ2 + θ3f(I∗).

Therefore, ifR0 6 2 holds, one has k2 > 0. Further, one can calculate that

k3 > Λαθ1θ2ϕ1ϕ2 + (θ1(θ2 − bα1 )− rαbα2 )f(I∗).

If the conditionR0 6 2 holds, one has k3 > 0. Further, it can be calculated that

k1k2 − k3 = φ1

(
φ2
θ1

+ φ3 + θ3f(I∗)

)
+ θ1φ3 +

(
θ21 + rαbα2

)
f(I∗),

where φ1 = Λα(2S∗/K − 1) + f(I∗) + θ2ϕ2, φ2 = Λαθ1θ2(2S∗/K − 1)ϕ2, φ3 =
Λαθ1(2S∗/K−1)+θ1θ2ϕ2. Therefore, it can be obtained that k1k2 > k3, if the condition
R0 6 2 holds.

For τ > 0, assuming that λ = ωi = ω(cos(π/2) + i sin(π/2) is a pure imaginary
root of H(λ) = 0, then substituting λ = ωi into H(λ) = 0 and separating the real and
imaginary parts, one has

c1 cos(ωτ) + c2 sin(ωτ) = −c3, c2 cos(ωτ)− c1 sin(ωτ) = −c4, (6)

where

c1 = h3ω
2α cos(απ) + h4ω

α cos
απ

2
+ h5,

c2 = h3ω
2α sin(απ) + h4ω

α sin
απ

2
,

c3 = h6 + ω3α cos
3απ

2
+ h1ω

2α cos(απ) + h2ω
α cos

απ

2
,

c4 = ω3α sin
3απ

2
+ h2ω

α sin
απ

2
+ h1ω

2α sin(απ).

Therefore, it can be observed that ω is the positive root of the following equation:

W (ω) = ω6α + g1ω
5α + g2ω

4α + g3ω
3α + g4ω

2α + g5ω
α + g6 = 0, (7)

where

g1 = 2h1 cos
απ

2
, g2 = 2h2 cos(απ) + h21 − h23,

g3 = 2(h1h2 − h3h4) cos
απ

2
+ 2h6 cos

3απ

2
,

g4 = h22 − h24 + 2(h1h6 − h3h5) cos(απ),

g5 = 2(h2h6 − h4h5) cos
απ

2
, g6 = h26 − h25.

Since g1 > 0 is satisfied, W (ω) = 0 has no positive root under conditions gi > 0
(i = 2, 3, 4, 5, 6), which contradicts the assumption. Further, one has

g2 >
(
f(I∗) + Λαϕ1

)2
+ θ22ϕ3 + (θ1 + θ2)

(
f(I∗) + θ1 + Λαϕ1

)
.
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It can be found from the above equation that ifR0 6 2 holds, one has g2 > 0. Therefore,
the condition g2 > 0 can be replaced by the conditionR0 6 2. Similarly, one can deduce
that

g3 > 2 cos
απ

2

[
ϕ3θ

2
2

(
Λαϕ1 + θ1

)
+ θ2

((
f(I∗) + Λαϕ1

)2
+ θ21

)
+
(
θ2 − bα1

)
θ2

+ θ1
(
f(I∗) + Λαϕ1

)(
f(I∗) + Λαϕ1 + θ1

)]
+ 8θ1θ2

(
f(I∗) + Λαϕ1

)
cos3

απ

2
.

Therefore, if the condition R0 6 2 holds, we have g3 > 0. Further, it can be calculated
that

h1h6 − h3h5 >
(
f(I∗) + Λαϕ1

)(
f(I∗) + Λαϕ1 + θ1

)
θ1θ2 + Λαϕ1ϕ3θ1θ

2
2

+ θ2(θ1
(
dα1 + dα2

)
+ rαdα1 )f(I∗) + θ2

(
bα1 θ1 + rαbα2

)
ϕ2.

If condition R0 6 2 holds, it can be obtained that h1h6 − h3h5 > 0. Therefore, under
the conditionR0 6 2, it can be further calculated that

g4 > ϕ3θ
2
2

(
Λ2αϕ2

1 + θ21
)

+ 2θ2ϕ1Λ
αf(I∗)

(
θ2 − bα1

)
+ Λαθ21

(
Λαϕ2

1 + 2f(I∗)ϕ1

)
+ 2bα1Λ

αθ2ϕ1ϕ2 + f(I∗)
[((

θ2 − bα1
)(
θ2 + bα1

)
+ θ21

)
f(I∗) + 2rαbα2S

∗f ′(I∗)
]
.

Since f(I∗) > 0 and f(I∗) > S∗f ′(I∗), it can be obtained that

2rαbα2S
∗f ′(I∗) 6

((
θ2 − bα1

)(
θ2 + bα1

)
+ θ21

)
f(I∗).

Therefore, ifR0 6 2 holds, one has g4 > 0. Through calculation, it can be found that

h2h6 − h4h5 >
(
θ1θ2(θ1 + θ2)− b2α1 θ1 − rαbα1 bα2

)
f ′2(I∗) + Λ2αθ21θ2ϕ

2
1

+ Λαf(I∗)(2θ1θ3 − rb22)θ2ϕ1ϕ2 + Λ2αθ1θ
2
2ϕ

2
1ϕ3

+ f(I∗)θ1
(
θ1
(
θ2 − bα1

)
− rαbα2

)
θ2ϕ2 + Λαθ21θ

2
2ϕ1ϕ3.

Further, one has g5 > 0 ifR0 6 2 holds. Similarly, through calculation, it can be obtained
that

g6 >
[
θ21θ

2
2 −

(
bα1 θ1 + rαbα2

)2]
f2(I∗) + 2Λαf(I∗)θ21θ2

(
θ2 − bα1

)
ϕ1

+ Λαθ21θ2ϕ1

(
2bα1ϕ2 + Λαθ2ϕ1ϕ3

)
.

Obviously, if the conditionR0 6 2 holds, one has g6 > 0.
In summary, if R0 6 2 holds, it can be concluded that gi > 0 (i = 2, 3, 4, 5, 6).

Therefore, the proof of Theorem 4 is completed.

4 Bifurcation analysis

Selecting time delay τ as the bifurcation parameter, the Hopf bifurcation of model (1) is
analyzed. In addition, the Hopf bifurcation of model (2) with delayed feedback control is
also discussed.
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4.1 Bifurcation analysis of uncontrolled model

For convenience, the following assumptions are given:

(P1) g6 < 0, gi > 0 (i = 2, 3, 4, 5).
(P2) k1 > 0, k3 > 0, k1k2 > k3.

Notice that g1 = 2h1 cos(απ/2) > 0 for α ∈ (0, 1). It can be obviously obtained
from (7) that W ′(ω) > 0 and limω→∞W (ω) = ∞ under assumption (P1). Further, for
the equation W (ω) = 0, there exists a unique positive root denoted by ω0. It can be
deduced from (6) that

τ j =
1

ω0

[
arccos

(
−c1c3 − c2c4
c21 + c22

)
+ 2jπ

]
, j = 0, 1, 2, . . . .

Therefore, if assumption (P1) holds, for the characteristic equationH(λ) = 0, there exists
a pair of pure imaginary roots ±ω0 at τ = τ j . Define τ0 = min{τ j} (j = 0, 1, 2, . . . ).
Differentiating both sides of the characteristic equation H(λ) = 0 with respect to τ , one
has

dλ

dτ
=
Q1(λ)

Q2(λ)
,

where

Q1(λ) =
(
h3λ

2α+1 + h4λ
α+1 + h5λ

)
e−λτ ,

Q2(λ) = 3αλ3α−1 + 2αh1λ
2α−1 + αh2λ

α−1 + 2αh3λ
2α−1e−λτ

− τh3λ2αe−λτ + αh4λ
α−1e−λτ − τh4λαe−λτ − τh5e−λτ .

Let %1 = ω0τ0 − απ and %2 = ω0τ0 − απ/2. Define

q1 = Re
(
Q1(λ)

)∣∣
τ=τ0, ω=ω0

, q2 = Im
(
Q1(λ)

)∣∣
τ=τ0, ω=ω0

,

q3 = Re
(
Q2(λ)

)∣∣
τ=τ0, ω=ω0

, q4 = Im
(
Q2(λ)

)∣∣
τ=τ0, ω=ω0

.

By calculation, it can be deduced that

Re

(
dλ

dτ

)∣∣∣∣
τ=τ0, ω=ω0

= Re

(
Q1(λ)

Q2(λ)

)∣∣∣∣
τ=τ0, ω=ω0

=
q1q3 + q2q4
q23 + q24

,

where

q1 = h3ω
2α+1
0 sin %1 + h4ω

α+1
0 sin %2 + h5ω0 sin(ω0τ0),

q2 = h3ω
2α+1
0 cos %1 + h4ω

α+1
0 cos %2 + h5ω0 cos(ω0τ0),

q3 = 3αω3α−1
0 sin

3απ

2
+ 2αh1ω

2α−1
0 sin(απ) + αh2ω

α−1
0 sin

απ

2
− 2αh3ω

2α−1
0 sin %1

− τ0h3ω2α
0 cos %1 − αh4ωα−10 sin %2 − τ0h4ωα0 cos %2 − τ0h5 cos(ω0τ0),

q4 = −3αω3α−1
0 cos

3απ

2
− 2αh1ω

2α−1
0 cos(απ)− αh2ωα−10 cos

απ

2

− 2αh3ω
2α−1
0 cos %1 + τ0h3ω

2α
0 sin %1 − αh4ωα−10 cos %2 + τ0h4ω

α
0 sin %2

+ τ0h5 sin(ω0τ0).
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For convenience, the following assumption is given:

(P3) q1q3 + q2q4 6= 0.

Theorem 5. Assuming that condition (P1) holds, it can be concluded the following:

(i) For the characteristic equation H(λ) = 0, there exists a pair of pure imaginary
roots ±ω0 at τ = τ j .

(ii) Suppose that λ(τ)=ξ(τ)+iω(τ) is a root of the characteristic equationH(λ)=0
near τ = τ j satisfying ξ(τ j) = 0 and ω(τ j) = ω0. If condition (P3) holds, then
we have Re(dλ/dτ)|τ = τ0, ω = ω0 6= 0.

Theorem 6. If assumptions (P1), (P2), and (P3) hold, the following results can be ob-
tained:

(i) The endemic equilibrium point E∗ of model (1) is asymptotically stable for τ ∈
[0, τ0).

(ii) Model (1) undergoes a Hopf bifurcation at τ = τ0, and it has a branch of periodic
solutions bifurcation from the endemic equilibrium point E∗ near τ = τ0.

Remark 2. According to the previous analysis, assumption (P1) in Theorem 6 can guar-
antee that formula (7) has a unique positive root. In fact, it only need to ensure that for (7),
there exists a positive root rather than that the root is unique. If condition (P1) is reduced
to g6 < 0, Theorem 6 still holds.

4.2 Bifurcation analysis of controlled model

In this section, the delayed feedback controller is designed and applied to the uncon-
trolled model (1), which can be expressed as model (2). Adopting similar discussion, the
corresponding characteristic equation corresponding to model (2) at E∗ is

U(λ) =
(
λ3α + u1λ

2α + u2λ
α + u8

)
eλτ +

(
u4λ

α + u6
)
e−λτ

+ u3λ
2α + u5λ

α + u7 = 0,
where

u1 = −(n11 + n22 + n33 + σ),

u2 = (n11 + σ)n22 + n22n33 + (n11 + σ)n33,

u3 = σ − p22, u4 = −σp22,
u5 = (n11 + σ)p22 − σn22 + p22n33 − σn33 − n12p21,
u6 = σp22n33,

u7 = σn22n33 + n12p21n33 − n13n32p21 − (n11 + σ)p22n33,

u8 = −(n11 + σ)n22n33.

For τ = 0, the endemic equilibriumE∗ of model (2) is locally asymptotically stable if
assumption (P2) holds. It is assumed that λ = ωi is a purely imaginary root of U(λ) = 0,
which yields

(v1 + v2) cos(ωτ) + (v3 + v4) sin(ωτ) = v5,

(v1 − v2) sin(ωτ) + (v4 − v3) cos(ωτ) = v6,
(8)
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where

v1 = ω3α cos
3απ

2
+ u1ω

2α cos(απ) + u2ω
α cos

απ

2
+ u8,

v2 = u4ω
α cos

απ

2
+ u6,

v3 = −ω3α sin
3απ

2
− u1ω2α sin(απ)− u2ωα sin

απ

2
,

v4 = u4ω
α sin

απ

2
, v5 = −u3ω2α cos(απ)− u5ωα cos

απ

2
− u7,

v6 = −u3ω2α sin(απ)− u5ωα sin
απ

2
.

It can be calculated from formula (8) that

Φ(ω) = ω12α + Φ1(ω) + ρ = 0,

where Φ1(ω) is a polynomial containing ωjα (j = 1, 2, . . . , 11), and

ρ = u46 + 2u6u8u
2
7 − 2u26u

2
8 − u27u28 − u26u27

is a constant. Supposing ρ < 0, the equation Φ(ω) = 0 admits at least one positive real
root, which is defined by ω0. Then we can obtain

τ j =
1

ω0

{
arccos

[
(v1 − v2)v5 − (v3 + v4)v6

v21 + v23 − v22 − v24

]
+ 2jπ

}
, j = 0, 1, 2, . . . .

Define the bifurcation point τ0 = min{τ j}, (j = 0, 1, 2, . . . ). Differentiating both
sides of the characteristic equation U(λ) = 0 with respect to τ , one has

dλ

dτ
=
Q1(λ)

Q2(λ)
,

where

Q1(λ) = ζ1(λ) + ζ2(λ)e−2λτ , Q2(λ) = ζ3(λ) + ζ4(λ)e−λτ + ζ5(λ)e−2λτ

with

ζ1(λ) = −λ3α+1 − u1λ2α+1 − u2λα+1 − u8λ, ζ2(λ) = u4λ
α+1 + u6λ,

ζ3(λ) = 3αλ3α−1 + τλ3α + 2αu1λ
2α−1 + τu1λ

2α + αu2λ
α−1 + τu2λ

α + τu8,

ζ4(λ) = αu5λ
α−1 + 2αu3λ

2α−1, ζ5(λ) = αu4λ
α−1 − τu4λα − τu6.

Let %1 = απ/2− 2ω0τ0, %2 = απ − ω0τ0, and %3 = απ/2− ω0τ0. Define

q1 = Re
(
Q1(λ)

)∣∣
τ=τ0, ω=ω0

, q2 = Im
(
Q1(λ)

)∣∣
τ=τ0, ω=ω0

,

q3 = Re
(
Q2(λ)

)∣∣
τ=τ0, ω=ω0

, q4 = Im
(
Q2(λ)

)∣∣
τ=τ0, ω=ω0

.

By calculation, it can be obtained that

Re

(
dλ

dτ

)∣∣∣∣
τ=τ0, ω=ω0

=
q1q3 + q2q4
q23 + q24

,
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where

q1 = ω3α+1
0 sin

3απ

2
+ u1ω

2α+1
0 sinαπ + u2ω

α+1
0 sin

απ

2
− u4ωα+1

0 sin %1

+ u4ω0 sin(2ω0τ0),

q2 = −ω3α+1
0 cos

3απ

2
− u1ω2α+1

0 cosαπ − u2ωα+1
0 cos

απ

2
+ u4ω

α+1
0 cos %1

+ u4ω0 cos(2ω0τ0)− u8ω0,

q3 = 3αω3α−1
0 sin

3απ

2
+ τ0ω

3α
0 cos

3απ

2
+ 2αu1ω

2α−1
0 sinαπ + u1τ0ω

2α
0 cos(απ)

+ αu2ω
α−1
0 sin

απ

2
+ u2τ0ω

α
0 cos

απ

2
+ 2αu3ω

2α−1
0 sin %2 + αu4ω

α−1
0 sin %1

− u4τ0ωα0 cos %1 + αu5τ0ω
α−1
0 sin %3 − u6τ0 cos(2ω0τ0) + u8τ0,

q4 = −3αω3α−1
0 cos

3απ

2
+ τ0ω

3α
0 sin

3απ

2
− 2αu1ω

2α−1
0 cosαπ + u1τ0ω

2α
0 sin(απ)

− αu2ωα−10 cos
απ

2
+ u2τ0ω

α
0 sin

απ

2
− 2αu3ω

2α−1
0 cos %2 − αu4ωα−10 cos %1

− u4τ0ωα0 sin %1 − αu5τ0ωα−10 cos %3 + u6τ0 sin(2ω0τ0).

For convenience, the following assumptions are given:

(P4) ρ = u46 + 2u6u8u
2
7 − 2u26u

2
8 − u27u28 − u26u27 < 0.

(P5) q1q3 + q2q4 6= 0.

Theorem 7. Assuming that condition (P4) holds, the following results are drawn:

(i) For the characteristic equation U(λ) = 0, there exists a pair of pure imaginary
roots ±ω0 at τ = τ j .

(ii) Suppose that λ(τ) = ξ(τ)+iω(τ) is a root of the characteristic equation U(λ) =
0 near τ = τ j satisfying ξ(τ j) = 0 and ω(τ j) = ω0. If condition (P5) holds,
then we have Re(dλ/dτ)|τ = τ0, ω = ω0 6= 0.

Theorem 8. If assumptions (P2), (P4), and (P5) hold, the following results can be ob-
tained:

(i) The endemic equilibrium E∗ of model (2) is asymptotically stable for τ ∈ [0, τ0).
(ii) Model (2) undergoes a Hopf bifurcation at τ = τ0, and it has a branch of periodic

solutions bifurcation from the endemic equilibrium point E∗ near τ = τ0.

5 Optimal control

During the prevention and control of the pandemic, there is a time interval from the formu-
lation of control strategies to the specific implementation. Therefore, the optimal control
problem of fractional-order epidemic model (1) with delayed control is discussed in this
section. The common control measures are mainly to reduce the infection rate by limiting
the effective contact between virus carriers and susceptible individuals. Therefore, (1−u)
is selected to represent the reduction in infection rate under relevant control measures. The
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corresponding DFOCP with delayed control can be described as

minJ (u) =

tf∫
0

ω1I(t) + ω2u
2(t) dt (9)

with the following state constraints:

DαS(t) = ΛαS(t)

(
1− S(t)

K

)
− (1− u)Sf(I) + bα1 I(t) + bα2R(t),

DαI(t) =
(
1− u(t− τ)

)
S(t− τ)f

(
I(t− τ)

)
−
(
rα + bα1 + dα1 + dα2

)
I(t),

DαR(t) = rαI(t)−
(
dα1 + bα2

)
R(t),

(10)

where the initial condition is the same as in model (1), formula (9) represents the perfor-
mance index, ω1 and ω2 are weight coefficients, and the corresponding feasible control
domain isM = {u(t)|u(t) ∈ [0, umax], t ∈ [0, tf ]}, umax represents the maximum value
of the optimal control u in the feasible control domainM. The Hamiltonian function is
defined as

H = ω1I + ω2u
2 + λ1

[
ΛαS

(
1− S

K

)
− (1− u)Sf(I) + bα1 I + bα2R

]
+ λ2

[(
1− u(t− τ)

)
S(t− τ)f

(
I(t− τ)

)
−
(
rα + bα1 + dα1 + dα2

)
I
]

+ λ3
[
rαI −

(
dα1 + bα2

)
R
]
.

Define the following function:

χ[0, tf−τ ] =

{
1, t ∈ [0, tf − τ ],

0, t /∈ [0, tf − τ ].

According to [9], the adjoint system corresponding to the Caputo fractional-order
state system should be an Riemann–Liouville fractional-order system [1]. According to
the optimal control principles for delayed fractional-order systems [2, 3, 9, 10, 21], the
Euler–Lagrange equation for DFOCP (9)–(10) can be obtained. Therefore, the following
results can be drawn.

Theorem 9. Let u∗ be the optimal control corresponding to the optimal state variables
S∗, I∗, R∗ in DFOCP (9)–(10). Then the corresponding adjoint system is

R
tD

α
tf
λ1(t) =

[
Λα− 2ΛαS

K
−(1−u)f(I)

]
λ1(t) + χ[0, tf−τ ](1−u)f(I)λ2(t+ τ),

R
tD

α
tf
λ2(t) = ω1+

[
bα1−(1−u)S

∂f(I)

∂I

]
λ1(t)−

(
rα+bα1 +dα1 +dα2

)
λ2(t)

+ rαλ3(t) + χ[0, tf−τ ](1−u)S
∂f(I)

∂I(t− τ)
λ2(t+ τ),

R
tD

α
tf
λ3(t) = bα2λ1 −

(
dα1 + bα2

)
λ3

(11)
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with transversality condition R
tD

α−1
tf

λi(tf ) = 0, i = 1, 2, 3. The corresponding optimal
control is

u∗ = min

{
max

{
0,
S∗f(I∗)(χ[0, tf−τ ]λ2(t+ τ)− λ1)

2ω2

}
, umax

}
. (12)

Proof. According to the Pontryagin’s maximum principle and the results in [10, 21], the
adjoint system corresponding to DFOCP (9)–(10) can be obtained as

R
tD

α
tf
λ1(t) =

∂H
∂S

+ χ[0, tf−τ ]
∂H(t+ τ)

∂S(t− τ)
,

R
tD

α
tf
λ2(t) =

∂H
∂I

+ χ[0, tf−τ ]
∂H(t+ τ)

∂I(t− τ)
, R

tD
α
tf
λ3(t) =

∂H
∂R

with transversality condition R
tD

α−1
tf

λi(tf ) = 0, i = 1, 2, 3. The optimal control for-
mula (12) can be calculated based on the feasible control domainM and the following
optimality condition: ∂H/∂u + χ[0, tf−τ ]∂H(t+ τ)/∂u(t− τ) = 0. Furthermore, ac-
cording to the above equation, it can be calculated that

u∗ =
S∗f(I∗)(χ[0, tf−τ ]λ2(t+ τ)− λ1)

2ω2
.

Since the optimal control u∗ remain in the feasible control domainM, the optimal control
is

u∗ = min

{
max

{
0,
S∗f(I∗)(χ[0, tf−τ ]λ2(t+ τ)− λ1)

2ω2

}
, umax

}
.

Therefore, the corresponding adjoint system and optimality condition can be derived.

The forward-backward sweep method (FBSM) is adopted to numerically solve
DFOCP (9)–(10) with delayed control based on Theorem 9 and [9, 16]. The Riemann–
Liouville fractional-order adjoint system (11) with transversality conditions can be nu-
merically solved by the fractional predictor-corrector method [8] and the method men-
tioned in [9].

6 Numerical simulations

The theoretical results are verified in this section. In addition, parameters of the model
are identified based on the measurement data of COVID-19 pandemic. According to the
results of parameter identification, the model established in this paper is verified to be
effective in depicting COVID-19 pandemic. Further, the DFOCP with delayed control is
numerically analyzed.

6.1 Verification of relevant theoretical results

Assume that the state variables in model (1) represent the density of population. Then the
saturated incidence rate Sf(I) = γ2SI/(1 + γ1I) is selected, where γ1 is the saturation
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coefficient, γ2 is the average number of susceptible individuals infected by per infected
individual per day. Therefore, the epidemic model with saturated incidence rate based on
model (2) can be expressed as

C
0D

α
t S(t) = ΛαS(t)

(
1− S(t)

K

)
− γα2 S(t)I(t)

1 + γ1I(t)
+ bα1 I(t) + bα2R(t)

+ σ
(
S(t)− S(t− τ)

)
,

C
0D

α
t I(t) =

γα2 S(t− τ)I(t− τ)

1 + γ1I(t− τ)
−
(
rα + bα1 + dα1 + dα2

)
I(t),

C
0D

α
t R(t) = rαI(t)−

(
dα1 + bα2

)
R(t),

(13)

where the initial condition is the same as in model (1). When σ = 0, model (13) is a
special case of model (1). According to the description of parameter γ2, I(t) no longer
simply represents the number of infected individuals, but the number of infected indi-
viduals who have been diagnosed. For convenience, I(t) is described as the number of
currently infected individuals.

Considering no self-feedback control, that is, σ = 0, the accuracy of the relevant
theoretical results is verified. The initial value is (S(0), I(0), R(0)) = (0.63, 0.76, 0.28),
and the following parameters are selected: Λ = 0.2, K = 50, γ1 = 0.002, γ2 = 0.07,
b1 = 0.006, b2 = 0.05, r = 0.035, d1 = 0.0375, d2 = 0.045, b2 = 0.05. Under
this set of parameters and σ = 0, it can be calculated that model (13) has an endemic
equilibrium point E∗ = (1.8003, 3.4461, 1.3849). This set of parameters clearly satisfies
the condition of conclusion (i) in Theorem 4. Therefore, the endemic equilibrium E∗ is
locally asymptotically stable for τ = 0 as shown in Figs. 1(a) and 1(e). According to
Theorem 5, it can be calculated that the bifurcation point τ0 = 6.7576 and the critical
frequency ω0 = 0.1151. Through calculation, it can be found that the set of parameters
selected above meet the conditions of Theorem 5. When τ = 2.5815 ∈ (0, τ0), the
solution of model (13) with σ = 0 is still locally asymptotically stable as shown in
Figs. 1(c) and 1(d). When the time delay τ = 7.8225 > τ0, model (13) with σ = 0 loses
its local asymptotic stability at the endemic equilibrium point E∗ as shown in Figs. 1(b)
and 1(f). This is consistent with the conclusion of Theorem 6.

When σ = 0, the corresponding bifurcation point and critical frequency are τ0 =
6.7576 and ω0 = 0.1151, respectively. If the latency delay τ = 6.8 > 6.7576 = τ0,
then the endemic equilibrium E∗ is unstable as shown in Fig. 2(a). In order to effectively
control the critical bifurcation point, the feedback coefficient σ = −0.01 is selected.
The corresponding bifurcation point and critical frequency can be calculated as τ0 =
7.6192 and ω0 = 0.1076, respectively. The time delay τ = 6.8 ∈ (0, τ0), the endemic
equilibrium E∗ is locally asymptotically stable as shown in Fig. 2(b). The latent delay
further increases to τ = 7.8 > 7.6192 = τ0, and the endemic equilibrium E∗ is
unstable as shown in Fig. 2(c). Letting σ = −0.02, the condition of Theorem 8 is
still hold. Then the corresponding bifurcation point and critical frequency are τ0 =
8.9677 and ω0 = 0.09832, respectively. The latent delay τ = 7.8 ∈ (0, τ0), according
to Theorem 8, it can be obtained that the endemic equilibrium E∗ once again tends
to be locally asymptotically stable as shown in Fig. 2(d). The above analysis provides
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(a) τ = 0 (b) τ = 2.5815 ∈ (0, τ0) (c) τ = 7.8225 > τ0

(d) τ = 0 (e) τ = 2.5815 ∈ (0, τ0) (f) τ = 7.8225 > τ0

Figure 1. The curve of model (13) with σ = 0.

support for the accuracy of the conclusion of Theorem 8. Meanwhile, it also shows
that adding appropriate delayed feedback controller can make model (13) obtain better
dynamic characteristics.

6.2 Application of optimal control to the COVID-19 pandemic

In Tables 3–6 of [25], it can be found that compared to the corresponding integer-order
epidemic model (order α = 1), the Caputo fractional-order epidemic model can better
predict the short-term trend of COVID-19. In Figs. 2, 3 and Table 1 of [19], it can be
observed that compared to integer-order epidemic model, the Caputo fractional-order
epidemic model can better fit the trend of COVID-19.

In this section, the saturated incidence rate is used to describe the trend of COVID-19
pandemic. In order to fit the type of COVID-19 data, S(t), I(t), and R(t) in model (1)
are all expressed as the number of individuals at time t. Therefore, the corresponding
saturated incidence rate can be described as Sf(I) = γ2SI/(Np+γ1I), whereNp repre-
sents the total population. Therefore, the corresponding model describing the COVID-19
pandemic can be written as

C
0D

α
t S(t) = ΛαS(t)

(
1− S(t)

K

)
− γα2 S(t)I(t)

Np + γ1I(t)
+ bα1 I(t) + bα2R(t),

C
0D

α
t I(t) =

γα2 S(t− τ)I(t− τ)

Np + γ1I(t− τ)
−
(
rα + bα1 + dα1 + dα2

)
I(t),

C
0D

α
t R(t) = rαI(t)−

(
dα1 + bα2

)
R(t).

(14)
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(a) τ = 6.8, σ = 0 (b) τ = 6.8, σ = −0.01

(c) τ = 7.8, σ = −0.01 (d) τ = 7.8, σ = −0.02

Figure 2. The effect diagram of the delayed feedback controller on bifurcation control.

In addition, the commonly used data on the COVID-19 pandemic mainly fall into
three categories: cumulative confirmed cases, recovered cases, and death cases. Based
on the above three types of data, the number of currently infected individuals can be
measured. The relevant data of the COVID-19 pandemic used in this paper are provided
by World Health Organization (https://www.who.int) and Worldometer (https:
//www.worldometers.info). The measurement data during the COVID-19 out-
break in Brazil are selected to identify the parameters of model (14). The average life
expectancy of Brazil is 76.18, then the natural mortality rate is d1 = 1/(76.18 · 365) =
3.5964 · 10−5. Assume that the incubation period of COVID-19 is τ = 2. In addition,
based on the data of cumulative recovered cases and cumulative death cases, the daily
recovery rate and daily death rate can be determined. Assuming that the recovery rate r
and death rate d2 are the average of daily recovery rate and daily death rate, the recovery
rate r = 0.0581 and death rate d2 = 3.4114 · 10−4 can be calculated. Further, the initial
value of currently infected individuals is I(0) = 104523. The initial values for recovered
individuals and susceptible individuals are R(0) = 0.1(Np − I(0)) ≈ 2.1521 · 107 and
S(0) = 0.5(Np − I(0) − R(0)) ≈ 9.6844 · 107, respectively. The data of the currently
infected individuals is selected to identify other parameters of model (14). The least
squares fitting method is adopted to identify the parameters of model (14). Specifically,
the minimization objective function is considered as Jmin =

∑n
i=1(Qm(i) − Qc(i))

2,
where Qm(i) and Qc(i) represent the measurement data and fitting data of the currently
infected individuals on day i. The results of parameter identification are shown in Table 1.
In addition, the fitting effect of model (14) on the COVID-19 data is shown in Fig. 3(d).

Figure 3(a) shows that model (14) can effectively depict the trend of COVID-19
pandemic. Under the above parameters, it can be calculated that the conditions l1 > 0,
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Table 1. Parameter identification.

Parameter Value Parameter Value
Λ 0.0032 (day)−1 b1 0.8955 (day)−1

K 1.7633 · 107 persons b2 0.1149 (day)−1

γ1 4.9262 α 0.9996
γ2 3.1902 (person)−1 · (day) −1

(a) The curve of S(t) (b) The curve of I(t) (c) The curve of R(t)

(d) The fitting effect (e) The control effect (f) The optimal control

Figure 3. The fitting effect and optimal control.

l3 > 0, l1l2 > l3, and fi > 0 (i = 2, 3, 4, 5, 6) hold, which satisfies the conditions of
Theorem 3. According to the result of Theorem 3, the disease-free equilibrium E1 =
(1.763 · 107, 0, 0) of model (14) should be locally asymptotically stable as shown in
Figs. 3(a)–3(c).

Based on model (14), the corresponding DFOCP can be described as

minJ (u) =

tf∫
0

ω1I(t) + ω2u
2(t) dt (15)

with the following state constraints:

C
0D

α
t S(t) = ΛαS

(
1− S

K

)
− (1− u)γα2 SI

Np + γ1I
+ bα1 I + bα2R,

C
0D

α
t I(t) =

(1− u(t− τ))γα2 S(t− τ)I(t− τ)

Np + γ1I(t− τ)
−
(
rα + bα1 + dα1 + dα2

)
I,

C
0D

α
t R(t) = rαI −

(
dα1 + bα2

)
R.

(16)
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According to Theorem 9, the adjoint system, transversality condition, and optimal control
can be obtained. Based on the parameters in Table 1, the FBSM method is adopted to
numerically solve DFOCP (15)–(16). Select the weight coefficient ω1 = 1 and ω2 =
105. The control measures will be implemented for 90 days from January 1, 2022. In
DFOCP (15)–(16), the larger the value of umax, the better the optimal control effect,
which is shown in Figs. 3(e) and 3(f). It can be found that the implementation of the
optimal control strategy can greatly reduce the number of infected individuals in a short
time, which can quickly control the pandemic.

7 Conclusions

The purpose of this paper is to provide theoretical guidance for the effective control
of outbreaks through the fractional-order epidemic model. Considering the universality
of the incubation period of pathogens and the diversity of incidence rates, a delayed
fractional-order SIRS model with general incidence rate is established. In order to capture
better dynamic behaviors regarding Hopf bifurcation, feedback control with time delay is
adopted to the model. The Hopf bifurcation of uncontrolled model and controlled model
is theoretically analyzed.

The parameters of the model are identified through the measurement data of COVID-
19 pandemic. By selecting appropriate control strategies, the DFOCP with delayed control
is proposed. The FBSM is adopted to numerically solve the DFOCP with delayed control.
The corresponding results of numerical simulation show that the optimal control strategy
can quickly and effectively control the trend of the epidemic.
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