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Abstract. We consider two types of entropy, namely, Shannon and Rényi entropies of the Poisson
distribution, and establish their properties as the functions of intensity parameter. More precisely,
we prove that both entropies increase with intensity. While for Shannon entropy the proof is
comparatively simple, for Rényi entropy, which depends on additional parameter α > 0, we can
characterize it as nontrivial. The proof is based on application of Karamata’s inequality to the terms
of Poisson distribution.
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1 Introduction

The concept and formulas for different types of entropy, which come mainly from infor-
mation theory, are now widely used in many applications, in particular, in detecting DDoS
attacks (see, for example, [2, 6]), in investigation of structure of the neural codes [17],
network traffic [14], keyword extraction [21], stock market forecast modelling [12], and
many others. Considering these applications, it is natural to assume that, for example,
the distribution of the number of DDoS attacks and of some other related phenomena is
Poisson with some fixed intensity at least over some fixed time interval. Considering two
types of entropy, namely, Shannon and Rényi entropy, it is natural to assume that both
entropies increase together with intensity parameter. To the best of our knowledge, this
statement was not established rigorously. Moreover, if for Shannon entropy the proof is
comparatively simple, for Rényi entropy, which depends on additional parameter α > 0,
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we can characterize it as nontrivial. In order to get the proof, we apply Karamata’s
inequality to the terms of Poisson distribution. The verification of conditions of this
inequality also is nontrivial. It involves rearrangement of the terms of Poisson distribution
into a nonincreasing sequence and exploring the monotonicity of partial sums of this
sequence.

If to take a historical look, the concept of entropy for a random variable was intro-
duced by Shannon [20] to characterize the irreducible complexity inherent in a specific
form of randomness. Then Shannon entropy was generalized by Rényi entropy [19] by
introducing an additional parameter α > 0 that allows for a range of entropy measures.
The presence of this parameter makes it difficult to accurately calculate the Rényi entropy
for various distributions and study its behavior. A pleasant exception is the normal dis-
tribution. For it, many types of entropies are calculated exactly, and it can be noted that
these entropies increase along with the variance; see [15]. Furthermore, if the decrease of
the Rényi entropy with respect to the parameter α is a well-known fact, its convexity for
discrete distributions depends on the distribution; see [4].

Taking into account the difficulty with exact computation of entropies, many attempts
were devoted to the numerical calculation and approximation of entropies (see, e.g., [1–
3,5,9,10,22]), while the limit of Shannon entropy of Poisson distribution was calculated,
e.g., in [8].

As already mentioned, the purpose of this paper is to prove analytically the natural
fact that the entropy of a Poisson distribution increases with the intensity of the distribu-
tion. We considered Shannon and Rényi entropy. The paper is constructed as follows. In
Section 2, we consider increase and convexity of Shannon entropy of Poisson distribution
as the function of intensity parameter. In Section 3 the increase in intensity of Rényi
entropy for any α > 0 is proved with the help of Karamata’s inequality. Some by-
product inequalities are obtained in Section 4, while auxiliary statements are postponed
to Appendix.

2 Analytical properties of Shannon entropy of Poisson distribution
as the function of intensity parameter λ

Consider a discrete distribution {pi, i > 1}. Its Shannon entropy is defined as

HS(pi, i > 1) = −
∑
i>1

pi log pi.

In particular, we consider Poisson distribution with parameter λ:

P{ξλ = k} = λke−λ

k!
, k ∈ N ∪ {0}.

Its Shannon entropy HS(λ) equals

HS(λ) = −
∞∑
k=0

λke−λ

k!
log

λke−λ

k!
= −λ log λ

e
+ e−λ

∞∑
k=2

λk log k!

k!
. (1)
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It is natural to assume that Shannon entropy HS(λ) of Poisson distribution strictly in-
creases with λ ∈ (0,+∞). We will prove this result, as well as the concavity property of
HS(λ), in the next statement.

Theorem 1. Shannon entropy HS(λ), λ ∈ (0,+∞) is strictly increasing and concave in
λ, its derivative in λ is strictly positive and decreasing.

Proof. Obviously, we can differentiate the series (1) term by term for any λ > 0, and we
get the equality

H ′S(λ) = − log
λ

e
− 1− e−λ

∞∑
k=2

λk log k!

k!
+ e−λ

∞∑
k=2

λk−1 log k!

(k − 1)!

= − log λ+ e−λ
∞∑
k=1

λk log(k + 1)!

k!
− e−λ

∞∑
k=2

λk log k!

k!

= − log λ+ e−λ
∞∑
k=1

λk log(k + 1)

k!
. (2)

It is clear that both terms in the right-hand side of (2) are nonnegative for λ ∈ (0, 1], and
the second one is strictly positive, therefore H ′S(λ) > 0 for λ ∈ (0, 1]. So, it is necessary
to prove that H ′S(λ) > 0 for λ > 1. Let us calculate

H ′′S(λ) = −
1

λ
− e−λ

∞∑
k=1

λk log(k + 1)

k!
+ e−λ

∞∑
k=1

λk−1 log(k + 1)

(k − 1)!

= − 1

λ
+ e−λ

∞∑
k=0

λk log(k + 2)

k!
− e−λ

∞∑
k=1

λk log(k + 1)

k!

= − 1

λ
+ e−λ

∞∑
k=0

λk log(1 + 1
k+1 )

k!

< − 1

λ
+ e−λ

∞∑
k=0

λk

(k + 1)!
< − 1

λ
+ e−λ

1

λ

∞∑
k=0

λk+1

(k + 1)!

< − 1

λ
+ e−λ

1

λ
eλ = 0.

So, H ′′S(λ) < 0 for all λ > 0. Therefore H ′S(λ) strictly decreases in λ, and it is sufficient
to prove that

lim
λ→∞

H ′S(λ) > 0.

However,

lim
λ→∞

H ′S(λ) = lim
λ→∞

log λ

(
e−λ(log λ)−1

∞∑
k=1

λk log(k + 1)

k!
− 1

)
,
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and it is sufficient to establish that

lim inf
λ→∞

e−λ(log λ)−1
∞∑
k=1

λk log(k + 1)

k!
> 1.

This inequality is proved in Lemma A1. Finally, we get that H ′S(λ) > 0 for all λ > 0 and
H ′′S(λ) < 0 for all λ > 0, whence the proof follows.

Remark 1. Strictly increasing property ofHS was also established in [7] by a bit different
calculations and without convexity.

3 Analytical properties of Rényi entropy of Poisson distribution as
the function of intensity parameter λ

Again, consider a discrete distribution {pi, i > 1}. Its Rényi entropy is defined as

Hα
R(pi, i > 1) =

1

1− α
log

(∑
i>1

pαi

)
, α > 0, α 6= 1,

and
Hα
R(pi, i > 1)→ HS(pi, i > 1)

as α→ 1, where HS(pi, i > 1) is a Shannon entropy. In the case of Poisson distribution,

Hα
R(λ) =

1

1− α
log

(
e−αλ

∞∑
k=0

λkα

(k!)α

)
, α > 0, α 6= 1. (3)

As for the Shannon entropy, our goal is to investigate the behaviour of Rényi entropy of
Poisson distribution as the function of intensity λ. To be more precise, we wish to prove
that for any fixed α > 0, α 6= 1, Rényi entropy of Poisson distribution increases in λ. Let
us take into account equality (3) and consider two cases.

• Let α ∈ (0, 1). Then 1/(1− α) > 0, and since logarithm is strictly increasing, for
Hα
R(λ) to increase in λ, the function

ψ(α, λ) = e−αλ
∞∑
k=0

(
λk

k!

)α
(4)

should increase in λ ∈ (0,+∞).
• Let α > 1. Then 1/(1 − α) < 0, and for Hα

R(λ) to increase in λ, functions
log(ψ(α, λ)) and ψ(α, λ) should decrease in λ ∈ (0,+∞).

In Theorem 2 below, we will establish desired character of monotonicity of ψ(α, λ)
in λ ∈ (0,+∞) for both cases 0 < α < 1 and α > 1. To prove this result, we will
apply Karamata’s inequality (see Lemma A2 in Appendix). This inequality deals with
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nonincreasing sequences, so it suggests to rearrange the terms of the Poisson distribution
in nonincreasing order and study the properties of the resulting sequence.

Let, as before, pk(λ) = P{ξλ = k} = (λk/k!)e−λ, k ∈ N ∪ {0}. Denote by {qk(λ),
k > 0} the terms of the sequence {pk(λ), k > 0}, which are rearranged in nonincreasing
order. Note that the sequence {pk(λ), k > 0} may contain equal terms. In this case the
sequence {qk(λ), k > 0} will contain equal terms as well.

Lemma 1. For each n > 0, the function Sn(λ) =
∑n
k=0 qk(λ) strictly decreases on

(0,+∞).

Proof. Fix n > 0. Firstly, we will establish that for every λ > 0, the number Sn(λ) is
equal to the sum of some n+1 consecutive terms of the initial sequence {pk(λ), k > 0}.
Note that pk+1(λ)/pk(λ) = λ/(k + 1), thus pk(λ) < pk+1(λ) for k < λ − 1, and
pk(λ) > pk+1(λ) for k > λ − 1. Therefore for every 0 6 i1 < i2 < i3, we have
pi2(λ) > min{pi1(λ), pi3(λ)}. It follows that q0(λ), . . . , qn(λ) are n + 1 consecutive
terms of the sequence {pk(λ), k > 0}. Thus (q0(λ), . . . , qn(λ)) is a permutation of terms
(p`(λ), . . . , p`+n(λ)) for some ` = `(λ) > 0, so Sn(λ) =

∑n
k=0 qk(λ) =

∑`+n
k=` pk(λ).

Let us determine `(λ). Put sn(m,λ) =
∑m+n
k=m pk(λ), m > 0. Clearly,

Sn(λ) = sn(`, λ) = max
m>0

sn(m,λ).

Note that

sn(m+ 1, λ)− sn(m,λ)

=

m+n+1∑
k=m+1

pk(λ)−
m+n∑
k=m

pk(λ) = pm+n+1(λ)− pm(λ) < 0

if and only if

pm+n+1(λ)

pm(λ)
=

λn+1m!

(m+ n+ 1)!
=

λn+1

(m+ 1) . . . (m+ n+ 1)
< 1,

i.e., λ < cm = ((m+1) . . . (m+n+1))1/(n+1). It follows that sn(m+1, λ) > sn(m,λ)
for λ > cm and sn(m + 1, λ) < sn(m,λ) for λ < cm. Therefore maxm>0 sn(m,λ) is
achieved at

`(λ) =

{
0 for 0 < λ 6 c0,

m for cm−1 6 λ 6 cm, m > 1

(in particular, in the case λ = ck, we have sn(k+1, λ) = sn(k, λ), so one can take either
`(λ) = k or `(λ) = k + 1).

For 0 < λ 6 c0, we have Sn(λ) =
∑n
k=0 pk(λ) =

∑n
k=0(λ

k/k!)e−λ, so

S′n(λ) =

n∑
k=1

λk−1

(k − 1)!
e−λ −

n∑
k=0

λk

k!
e−λ =

n−1∑
k=0

λk

k!
e−λ −

n∑
k=0

λk

k!
e−λ

= −λ
n

n!
e−λ < 0,
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and the function Sn(λ) strictly decreases on (0, c0]. For cm−1 < λ 6 cm, m > 1, we
have Sn(λ) =

∑m+n
k=m pk(λ) =

∑m+n
k=m(λk/k!)e−λ, so

S′n(λ) =

m+n∑
k=m

λk−1

(k − 1)!
e−λ −

m+n∑
k=m

λk

k!
e−λ =

m+n−1∑
k=m−1

λk

k!
e−λ −

m+n∑
k=m

λk

k!
e−λ

=
λm−1

(m− 1)!
e−λ − λm+n

(m+ n)!
e−λ < 0,

which is equivalent to λn+1 > m(m+ 1) · · · (m+ n) or λ > cm−1. Hence the function
Sn(λ) also strictly decreases on [cm−1, cm] for each m > 1. Clearly, cm → +∞ as
m→∞. Thus Sn(λ) decreases on

(0, c0] ∪
∞⋃
m=1

[cm−1, cm] = (0,+∞). �

Recall that ψ(α, λ) =
∑∞
k=0 p

α
k (λ), α > 0, λ > 0.

Theorem 2. For every 0 < α < 1, the function ψ(α, λ) strictly increases as a function of
λ on (0,+∞), while for every α > 1, the function ψ(α, λ) strictly decreases as a function
of λ on (0,+∞).

Proof. Put rn(λ) =
∑∞
k=n+1 qk(λ), n > 0. Note that rn(λ)→ 0 as n→∞ as a remain-

der of a convergent series. It follows from the proof of Lemma 1 that for every λ > 0, there
exists N(λ) ∈ N such that (q0(λ), . . . , qn(λ)) is a permutation of (p0(λ), . . . , pn(λ)) for
each n > N(λ). Hence qn(λ) = pn(λ) for every n > N(λ). Without loss of generality,
let N(λ) > 2λ. Then pk+1(λ)/pk(λ) = λ/(k + 1) < 1/2 for all k > N(λ). Thus

rn(λ) =

∞∑
k=n+1

pk(λ) 6
∞∑

k=n+1

pn(λ)

2k−n
= pn(λ) = qn(λ), n > N(λ).

Fix any 0 < λ1 < λ2. For every n > N = max{N(λ1), N(λ2)}, we have
(i) q0(λi) > q1(λi) > · · · > qn(λi) > rn(λi), i = 1, 2,

(ii)
∑i
k=0 qk(λ1) >

∑i
k=0 qk(λ2) for 0 6 i 6 n by Lemma 1,

(iii)
∑n
k=0 qk(λ1) + rn(λ1) =

∑n
k=0 qk(λ2) + rn(λ2) = 1,

i.e., (q0(λ1), . . . , qn(λ1), rn(λ1)) majorizes (q0(λ2), . . . , qn(λ2), rn(λ2)) (see Lemma A2
for the definition of majorization).

For 0 < α < 1, the function xα, x ∈ [0, 1], is concave, thus by Karamata’s inequality
n∑
k=0

qαk (λ1) + rαn(λ1) 6
n∑
k=0

qαk (λ2) + rαn(λ2), n > N. (5)

Passing to the limit as n→∞, we obtain

ψ(α, λ1) =

∞∑
k=0

qαk (λ1) 6
∞∑
k=0

qαk (λ2) = ψ(α, λ2), (6)
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therefore the function ψ(α, λ) increases as a function of λ on (0,+∞). Now we will
strengthen inequalities (5) and (6) to ensure that ψ(α, λ) is strictly monotonic as a func-
tion of λ. Fix m such that qm(λ1) > qm+1(λ1) (actually, one can take m = 0 or m = 1
because the sequence {qk(λ1), k > 0} contains at most two copies of each term). Put
q̃m(λ1) = qm(λ1)− δ, q̃m+1(λ1) = qm+1(λ1) + δ, where δ > 0 is such that

δ 6
1

2

(
qm(λ1)− qm+1(λ1)

)
and

δ <

m∑
k=0

qk(λ1)−
m∑
k=0

qk(λ2).

Note that for every n > Ñ = max{N(λ1), N(λ2),m+1}, conditions (i)–(iii) above
remain valid if qm(λ1), qm+1(λ1) are replaced with q̃m(λ1), q̃m+1(λ1). Indeed, only
inequalities q̃m(λ1) > q̃m+1(λ1) in (i) and

∑m−1
k=0 qk(λ1) + q̃m(λ1) >

∑m
k=0 qk(λ2)

in (ii) are to be verified anew, and both of them hold by the choice of δ. It means that(
q0(λ1), . . . , qm−1(λ1), q̃m(λ1), q̃m+1(λ1), qm+2(λ1), . . . , qn(λ1), rn(λ1)

)
majorizes (q0(λ2), . . . , qn(λ2), rn(λ2)). Therefore inequalities (5) and (6) remain valid
if qm(λ1), qm+1(λ1) are replaced with q̃m(λ1), q̃m+1(λ1). Thus

∞∑
k=0

qαk (λ1) + q̃αm(λ1) + q̃αm+1(λ1)− qαm(λ1)− qαm+1(λ1) 6
∞∑
k=0

qαk (λ2).

Since the function xα, x ∈ [0, 1], is strictly concave on [0, 1], we have

q̃αm(λ1) + q̃αm+1(λ1) > qαm(λ1) + qαm+1(λ1).

Hence

ψ(α, λ1) =

∞∑
k=0

qαk (λ1) <

∞∑
k=0

qαk (λ2) = ψ(α, λ2). (7)

For α > 1, the function xα, x ∈ [0, 1], is convex, thus by Karamata’s inequality
inequalities (5), (6), and (7) are reversed.

Corollary 1. For every α > 0, α 6= 1, Rényi entropy Hα
R(λ) strictly increases as

a function of λ on (0,+∞).

Remark 2. The case α = 2 was treated in [18].

4 By-product inequalities

As can be seen from Section 3, the proof of increasing (decreasing) properties of function
ψ(α, λ) did not use differentiation of ψ(α, λ) and the properties of its derivatives. How-
ever, function ψ(α, λ) can be differentiated term by term at any point α > 0 in λ > 0,

https://www.journals.vu.lt/nonlinear-analysis
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and as a result, we shall get after some elementary transformations that for any α, λ > 0,

ψ′λ(α, λ) = αe−αλ
∞∑
k=0

(k − λ)λ
αk−1

(k!)α
.

Obviously, if α = 1, then for any λ > 0, the derivative is zero because it differs by
a strictly positive multiplier αe−αλ from the expression

R(α, λ) =

∞∑
k=0

(k − λ)λ
αk−1

(k!)α
,

and

R(1, λ) =

∞∑
k=1

λk−1

(k − 1)!
−
∞∑
k=0

λk

k!
= 0.

However, taking into account Theorem 2, we can establish some nontrivial inequalities.

Lemma 2. For any λ > 0 and α ∈ (0, 1),

∞∑
k=1

λαk−1k1−α

((k − 1)!)α
>
∞∑
k=0

λαk

(k!)α
, (8)

while for any λ > 0 and α > 1,

∞∑
k=1

λαk−1k1−α

((k − 1)!)α
6
∞∑
k=0

λαk

(k!)α
. (9)

Proof. Both inequalities follow immediately from the fact that R(α, λ) and ψ′λ(α, λ) are
of the same sign, therefore it follows from Theorem 2 that R(α, λ) > 0 for all λ > 0 and
α ∈ (0, 1) and R(α, λ) 6 0 for all λ > 0 and α > 1.

Remark 3. The nontrivial character of inequalities (8) and (9) is implied by the fact
that we cannot compare the respective series term by term, and the relation between kth
terms depends on whether the condition λ > k or the inverse one is satisfied. The similar
situation was with ψ(α, λ), but now, having Theorem 2 in hand, we do not need to analyze
the series in more detail in order to compare them.

5 Graphical support of results

In this section, we present several plots and surfaces illustrating the behaviour of Rényi en-
tropy as the function of parameters α and λ. Obviously, all of them confirm our theoretical
results. First, we demonstrate the behaviour of the function ψ(α, λ) from (4).

We see from Fig. 1(a) that for fixed α ∈ (0, 1) (the values of α are chosen from 0.1 to
0.9 with interval 0.1), the function ψ(α, λ) strictly increases in λ ∈ (0,+∞). The same
is confirmed by the surface on Fig. 1(b).
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(a) (b)

Figure 1. ψ(α, λ) is an increasing function of λ when α is fixed, 0 < α < 1, λ > 0.

(a) (b)

Figure 2. ψ(α, λ) is a decreasing function of λ when α is fixed, α > 1, λ > 0.

Respectively, we see from Fig. 2(a) that for fixed α > 1 (the values of α are chosen
from 1.1 to 2.0 with interval 0.1), the function ψ(α, λ) strictly decreases in λ ∈ (0,+∞).
The same is confirmed by the surface on Fig. 2(b).

Now, let us illustrate Lemma 2.

We see from Fig. 3(a) that for λ > 0 and α ∈ (0, 1) (the values of α are chosen
from 0.1 to 0.9 with interval 0.1), R(α, λ) > 0. The same is confirmed by the surface on
Fig. 3(b).

Respectively, we see from Fig. 4(a) that for λ > 0 and α > 0 (the values of α are
chosen from 1.1 to 2.0 with interval 0.1), R(α, λ) < 0. The same is confirmed by the
surface on Fig. 4(b).

https://www.journals.vu.lt/nonlinear-analysis
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(a) (b)

Figure 3. R(α, λ) > 0 when 0 < α < 1, λ > 0.

(a) (b)

Figure 4. R(α, λ) < 0 when α > 1, λ > 0.

Appendix

Lemma A1. The following relation holds:

lim inf
λ→∞

e−λ(log λ)−1
∞∑
k=1

λk log(k + 1)

k!
> 1.

Proof. It is sufficient to consider λ > 4. Let us rewrite the sum under the sign of a limit
as follows:

S(λ) :=

∞∑
k=1

λk log(k + 1)

k!
=

[λ/2]∑
k=1

λk log(k + 1)

k!
+

∑
k>[λ/2]+1

λk log(k + 1)

k!

=: S1(λ) + S2(λ),

Nonlinear Anal. Model. Control, 29(4):802–815, 2024
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where [λ/2] is the floor function of λ/2 (i.e., the greatest integer less then or equal to
λ/2). Obviously,

S1(λ) 6 log

([
λ

2

]
+ 1

) [λ/2]∑
k=1

λk

k!
.

Moreover, λk/k! increases in k = 1, . . . , [λ/2]. Therefore

S1(λ) 6 log

([
λ

2

]
+ 1

)
λ[λ/2]

[λ2 ]!

[
λ

2

]
.

Now, according to two-sided Stirling’s approximation of factorial, for any n > 1,

√
2πn

(
n

e

)n
e1/(12n+1) < n! <

√
2πn

(
n

e

)n
e1/(12n).

So, we can bound e−λ(log λ)−1S1(λ) as λ→∞:

0 < e−λ(log λ)−1S1(λ)

6
e−λλ[λ/2]

[λ2 ]!
·
log([λ2 ] + 1)

log λ

[
λ

2

]
6

e−λλ[λ/2]e[λ/2][λ2 ]
√
2π
√
[λ2 ][

λ
2 ]

[λ/2]
e1/(12[λ/2]+1)

.

Now shift the range of the values of λ under consideration to λ > 42 and note that for
such λ, we have the bounds [λ/2] > λ/2− 1 > λ/2.1. Therefore for λ > 42,

e−λ(log λ)−1S1(λ) 6
e[λ/2]−λ(2.1)[λ/2][λ2 ]
√
2π
√

[λ2 ]e
1/(12[λ/2]+1)

<
( 2.1e )[λ/2]

√
[λ2 ]√

2πe1/(12[λ/2]+1)

−→
λ→∞

0. (A.1)

Now consider

e−λ(log λ)−1S2(λ) > e−λ
∑∞
k=[λ/2]+1

λk

k! log([
λ
2 ] + 1)

log λ
.

Obviously, log([λ/2] + 1)log λ→ 1 as λ→∞. Therefore

lim inf
λ→∞

e−λ(log λ)−1S2(λ) > lim inf
λ→∞

∑∞
k=[λ/2]+1

λk

k!

eλ
. (A.2)

Obviously, eλ =
∑∞
k=0 λ

k/k!, while it follows immediately that, similarly to previous
calculations in (A.1),

0 6 lim inf
λ→∞

∑[λ/2]
k=1

λk

k!

eλ
6 lim sup

λ→∞

λ[λ/2]

[λ2 ]!
[λ2 ]

eλ

6 lim sup
λ→∞

( 2.1e )[λ/2]
√
[λ2 ]√

2πe1/(12[λ/2]+1)
= 0. (A.3)
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Relation (A.3) implies that the following limit exists:

lim
λ→∞

∑∞
k=[λ/2]+1

λk

k!

eλ
= lim
λ→∞

eλ −
∑[λ/2]
k=0

λk

k!

eλ
= 1. (A.4)

The proof immediately follows from (A.1), (A.2), and (A.4).

Lemma A2 [Karamata’s inequality]. (See [11, 13, 16].) Let f be a convex function on
an interval I ⊂ R and a1, . . . , an, b1, . . . , bn be numbers in I such that (a1, . . . , an)
majorizes (b1, . . . , bn), i.e., the following conditions are fulfilled:

(i) a1 > a2 > · · · > an, b1 > b2 > · · · > bn;
(ii)

∑i
k=1 ak >

∑i
k=1 bk for every 1 6 i 6 n− 1;

(iii)
∑n
k=1 ak =

∑n
k=1 bk.

Then the inequality
∑n
k=1 f(ak) >

∑n
k=1 f(bk) holds.

If f is a concave function on I , the inequality is reversed.
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