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Abstract. In this paper, we study a class of coupled fractional conformable Langevin differential
system and inclusion on the circular graph. On the one hand, the existence and uniqueness of
solutions of this coupled fractional conformable Langevin differential system are studied by fixed
point theorems. On the other hand, in the multivalued case, the existence of at least one solution
of the fractional conformable Langevin differential inclusion on the circular graph is discussed and
the sufficient conditions are established by using Leray—Schauder nonlinear alternative and Covitz—
Nadler fixed point theorem.

Keywords: circular graph, fractional conformable derivative, Langevin differential equation and
inclusion, fixed point theorem.

1 Introduction and preliminaries

Fractional calculus is a branch of mathematics that extends the traditional calculus theory.
It allows the calculation of fractional derivatives and fractional integrals, can capture the
long-range dependence of time and space more accurately when describing nonlocal
behaviors, can be used to model fractional differential equations [6, 13, 27], and can
also be applied to physics, engineering, biology and other fields [10, 18], especially,
nonlinear dynamics, signal processing and image processing. In recent years, fractional
calculus is often used to describe nonlinear, multiscale and time-varying systems, and
it is also widely used in deep learning such as fractional neural network and fractional
convolutional neural network.

What’s more, fractional differential equations occupy an important position in math-
ematical theory and have a wide range of applications in many fields such as natural
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Figure 1. n-edge star graph G.

science and engineering technology [9, 15]. Fractional differential equations can be used
to simulate and predict dynamic behaviors in tumor cell proliferation and hemodynamics
[2], in addition, it can also be used to describe time-dependent behaviors of nonlinear ma-
terials and elastic and plastic behaviors of nanostructures [20]. More results on fractional
differential equations can be found in [3, 14,28]. In 2017, Jarad et al. [16] proposed a new
fractional derivative called the fractional conformable derivative. As described by Jarad
et al., this fractional conformable derivative contains some classical fractional derivatives.
For more information, please refer to [16].

In recent years, the research of fractional calculus has been further developed and
has become a new interdisciplinary research field. As one of the representative models
of fractional calculus, fractional Langevin equation is of great significance to deeply
explore the principle and application of fractional calculus. Fractional Langevin equation
is widely used in various fields [22, 26]. In the field of biomedical engineering, it is
used to establish the model of heart disease to study the complex dynamic phenomena in
cardiovascular system. In the field of robot control, it is used to study the motion control
and trajectory tracking of robots, so as to improve the motion accuracy and stability of
robots [29]. With the wide application of fractional Langevin equation, the solutions of
its initial value problem and boundary value problem have attracted more attention from
scholars [1,4,24,25].

In 2019, Mehandiratta, Mehra and Leugering [19] studied a star graph with n edges
and n+ 1 vertices (Fig. 1) with V(G) = {z¢, 21, ...2,} and E(G) = {e; = Toxi, €3 =

T2Z(, -, €y = TpTo), Where I; = |z x4 is regarded as the length of e; connecting
vertices x; to g (j = 1,...,n). They considered the following system:

D§Y;(t) = o (t,9,(1),°DgY;(1)), te(0,0;), j=1,2,...,n,

9;00)=0,  9;(;) =0uls) (P #5), D yp(ly) =0 M
j=1
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in which v € (1,2], a € (0, v — 1], p; € C([0,1;] x R%/R), and °D} is the vth Caputo
derivative. The authors established transformations w = t/l; € [0, 1] and y(w) = 9(¢t) =
J(ljw) for t € (0,1;] to prove the relation “Dgd(t) = 1;*(“Dgy(w)). By the above
transformations over the interval [0, 1], system (1) can be rewritten into the following
form:

Dy (w) = 5h; (w,y;(w), 17Dy (w)), w € [0,1],
BO) =0, M =uw@) G5, S0 =0, @

j=1

where y;(w) = u;(ljw) and hj(w,u,§) = ¢;(lw,u,g) for j € N7 :={1,2,...,n}.

Inspired by the above research, this paper studies a class of coupled fractional con-
formable Langevin differential system and inclusion on the circular graph. Circular net-
work structure is widely used in neural network, image processing, computer vision
and bioinformatics [12, 17]. For example, recurrent neural network is a kind of neural
network with a circular structure that can be used to process temporal data. It has a wide
range of applications in natural language processing, speech recognition, music gener-
ation, etc. [12]. In addition, in the field of bioinformatics, circular networks are often
used to demonstrate the relationships between complex systems such as genes, proteins,
metabolic pathways and interaction networks [17].

In order to reduce the complexity of the presentation, we study the fractional boundary
value problem on the simplest circular graph. In particular, the circular graph used in this
paper is an example that includes a circular network structure. We construct a circular
graph G = (V, E), which consists of a set of nodes V' = {vg, v1} and a set of arcs E =
{e1 = vovi, ea = vouy} connecting these nodes. The arcs e; and e are parameterized
by the interval (0, ), s0 e; and es form a circular with a length of 27 (Fig. 2).

To be precise, we study the fractional conformable Langevin differential system on
the circular graph as follows:

OCﬂDa (OC’YDQ + )\j)uj (t) = g (t, Uj (t)), t e [0, 7T],
u1(0) = u2(0) = 0, uy () = uz (), 3
SYD; (0) + §7D¥uy(0) = 0,

https://www.journals.vu.lt/nonlinear-analysis
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where a, 8,7 € (0,1], v < 3, g; € C([0,7] x R,R), \; € R* and j = 1,2. §#D*
and §'7 D represent fractional conformable derivatives of Caputo type of order 3 and ,
respectively.

The multivalued problem corresponding to (3) is also studied in this paper by

gﬁDa(OC’YDa—‘r)\j)Uj(t) S Fj(t,Uj(t)), te [O,TFL
u1(0) = u2(0) = 0, uy () = ug(m), 4
6" Du1(0) + § 7D u2(0) =0,

where j = 1,2, F} : [0, 7] xR — P(R) (P(R) represents a family of all nonempty subsets
of R) denotes a multivalued map.

For the rest of this article, we arrange as follows. In Section 2, some related prelim-
inary concepts and lemmas are reviewed. Section 3 is devoted to proving the existence
and uniqueness of the single-valued problem. Section 4 proves the existence results of the
multivalued problem. Finally, in Section 5, several examples are provided to verify the
reliability of the proposed results.

2 Some preliminary concepts and lemmas

Definition 1. (See [16].) Let § € C, Re(8) > 0, the fractional conformable integral
operator is defined as

BTon(t) = F(lﬂ) a/t <(t —a)* ;(U - a)a>ﬂ1h(u)(v _d;)l_a.

Definition 2. [16] Let &« > 0, Re(8) > 0 and n = [Re(8)] + 1. If h € Cf ,,
Caputo fractional conformable derivative of the function / is defined as

copany — ! /t((t—a)"—(v—a)a>n_’@_1 STUh)

the Sth

- 5) a oo
where
ZT(X — aTCKaTa e aTa7 aTah('U) - ('U - a)l_ah/(v)'
—
n times

Lemma 1. (See [16].) Let Re(3) > 0, Re(ry) > 0. Then
BI(T)h(t) = 5T Ih(t).

Lemma 2. (See [16].) Let h € CYy [a,b], B € C. Then

ST (D) = hie) — 3 L — )
k=0
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https://doi.org/10.15388/namc.2024.29.36106

1030 L. Zhang et al.

Next, we give a linear variation lemma, which provides an auxiliary result for the
transformation of our boundary value problem.

Lemma 3. Let h; € C([0,7],R), 8,7 € (0,1], v < B, j = 1,2. Then u; satisfy the
following problem

SOD (1D + Ay )uy(t) = by (1), te 0,7,
u1(0) = uz(0) =0, uy () = uz(m), 5
S1D%u; (0) + §7D¥uy(0) = 0

if and only if

u;(t)

s /( Y 000 o)
0

Ny [(mr—so\T T ds M [ \T! ds
+ L'() /( « ) u2(s) sl—a I'(v) /< o ) u1(s) 51&]' (6)
0 0

Proof. Suppose that u; satisfy problem (5). Integrating OIa on both sides of Eq. (5) and
according to Lemma 2, we have

ST(SPD (S DY + Ay (1)) = (§7D + Ay )uy () — .

Consequently,
§7Dus(t) = GT0;(t) = Agu (1) + . )
Continuing to taking integral JZ“ on both sides of Eq. (7), we find that
wi(t) = 3T IL;(8) — AT u;(t) + AT (41 e+, ®)

From the condition u;(0) = wu2(0) = 0 we get c(J ) = 0. Further, using boundary
conditions u1 (1) = ug(7) and § YDy (0) + CVD"‘uz (0) = 0, we obtain

e / () -t

i () gt -y () o)

By plugging the values of c(()j ) into (8), we get (6). Further, the inverse of this lemma can

be obtained by direct calculation. O

o) — (=1)7a"T(y+1)
2wy

https://www.journals.vu.lt/nonlinear-analysis
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3 The single-valued problem

In this section, we will obtain the main results of problem (3) on a circular graph. Firstly,
we consider the Banach spaces M; ={u;: u; € C[0, 7]} with ||u; ||Mj: SUPe(o,x] |15 (1)]
for j = 1,2. Then the product space M = (M;, M>) equipped with the norm ||u||,, =

lull 5y, + lluzlly, is @ Banach space.
Here by considering Lemma 3, define ¢ on M by

o (u1, ug)(t) = ((Fu1)(t), (Faug)(t)),
where o7 : M; — M; (j = 1,2),

‘527“7()

e O/ (5 a)7+ﬁ_1gj(s,uj<s>)sfsa - &5 0/ (t"‘;sc")v_;j(sgfi
T [ JE2) i i

<” ) o) -5 0/ (”aasa)Hm(s)Sffa].

0

3.1 Existence

Lemma 4. (See [23].) Let M be a Banach space, and let </ be a completely continuous
mapping on M. Then {x € M: v = Az, X € (0,1)} is unbounded, or there exists
a fixed point of </ in M.

Theorem 1. Assume that

(H1) the functions g; : [0,71] x R — R (j = 1,2) are continuous, and there exist
positive functions p;(t), q;(t) € L'[0,7] (j = 1,2) such that

|95 (w3 (1) | < p; (1) + a;(8)[u; (1)
forallt € [0,7], u; € R.

If
=P +q5) + N+ X)) <1

where

B+ v
2 1 2 1
pP=—_°- (= a(B+7) N = (> oy 9
F(V+B+1)<a) " T(v+y\a) " ©

Nonlinear Anal. Model. Control, 29(5):1026-1050, 2024
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and
p; = lpillc,  a = llagllze-

Then on the circular graph, problem (3) has at least one solution.

Proof.  We first verify that &7 is completely continuous. Continuity of g; (j = 1,2)
implies that .o/ : M — M is continuous. Let © be a bounded subset of M, and let
O = {u; € Mj: |Juj|la; <ej}. Then, for any u = (u1,u2) € O, we find that

|Zju;(t)]

t
1 o — s\ d
F(v+ﬁ)/< 048 > ’gj(s’uj(s))’slf“
0

t
by o _ga\771 ds
o [(Fa) el

1 /ﬂ(wo‘—SOt)wrﬁ1(’91(8,u1(5))| + ’92(&%(3)”)%

L(y+p) ) !

N A2 ] T —s® Vﬁl‘u )| ds N A /Tr T — g 771|u )| ds
rm )\ e Ol e [\ Pt
0 0
B+ vy
1 1 o * * Aj 1 a

S T3y +1)

1 1 B+ 5+ 2
4+ " — T ) +qr s || M,
2r(ﬂ+v+1)<a> 2 (v i)

1
| = ay
+ sy (2 ) }jAanM

1
2

Thus,

2
|7 ullar = Il usla,

2 N @iy
<— - (= B+ 5t sl
SEErl O BRAD YORL (0

j=1

2
oy
tre(5) ZA sl

2
= P(p] +p3) + (P(a7 +a3) + N(A1 + A2) Z

https://www.journals.vu.lt/nonlinear-analysis
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From this we deduced that the operator .« is uniformly bounded. In order to prove the
equicontinuity of the operator <7, let u = (u1,us) € 6, t1,t2 € [0, 7] and ¢; < t5. Then

|(ju;)(t2) — (ju;) ()]

t1
1 ty — s A=l 1 — 5@ B+v-1 ds
<o/ ((50) - (550) sl
0
to
1 ta _ go B+v—1 ds
+F(ﬁ+7)/( : o ) |9j(s,uj(8))|sl,a
t1

e ()= (555 ot

to

Aj o ga\771 ds
i [ (B25) ol
ty
oy —t5 1 T o g \7 AL ds
I J(FRE) T tn ) )
0

. FX) 0] (W“;SQ )7_1|uQ(s)|s?Sa T F?}y) O/ (”a;SQ)W_1|u1(s)|S?Sa]

l ﬂ‘i"‘/ ﬁ+"/ oz(BJr’Y))(psf + q*HuH )
ﬂ+’y+1 a g A T NM;
. 1 a N
tOC’Y t 1 T g« y+B8-1 ds
2W ey /( - ) (1 (5:0(60) [+, 19) ) 5
0

iy () oot i [ ]

The right-side converges to zero (independently of u € ©) as t; — to2. Hence, ||/ u(t2)—
u(ty)||lmy — 0 as t; — to. This shows that &/ is an equicontinuous operator on
M. Applying the Arzela—Ascoli theorem, we obtain that .7 is completely continuous.
Consider a subset of M

A= {(u1,uz) € M: (uy,us) = pe (uy,uz), p € (0,1)}.
We prove the boundedness of A. Let (u1,u2) € A. Then
(u17u2) = MM(UDUQ)»

Nonlinear Anal. Model. Control, 29(5):1026-1050, 2024
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and u;(t) = petju; forall t € [0,7] and j = 1,2. Thus,
()] < Y BTy (p* Nl ar.
) <1 gy (5) 7+ 6l )

Aj 1\ .,
“rma) i

1 N e >22
+2I‘(6+7+1) (a) Q (pz "’ququMl)

=1

oo (2) MZA el }

This implies that

2
lullar = llujllag,
j=1

2 1\ o s
<— = (= a(B+y 4ot sl
T(B+7+1) (a) i > (w5 + ajlluslla,)

j=1

tre(5) ZA sl

= P(pi +p5) + (P(ai +95) + N(A1 + X2)) [|ullar

It follows from ¢* < 1 that A is bounded. By using Lemma 4, we conclude that <7
has a fixed point, which is a solution of problem (3). O

3.2 Uniqueness

Lemma 5. (See [23].) Suppose that $ is a Banach space, M C R is closed, and
o/ : M — M is a strict contraction, i.e., —q| < A|p — q| for some \ € (0,1) and
all p,q € M. Then a unique fixed point p* of of exists.

Theorem 2. Suppose that there exist constants p; > 0 such that
(H2) forallu;,y; € R(j =1,2)andt € [0, 7],
|95 (8 w5) = g5(t, y5)| < pjluy — w5
Then on each edge of the circular graph, problem (3) has a unique solution if
o :P(pl —‘y—pg)—‘y—N()\l —|—)\2) < 1.

Proof. Use Banach’s fixed point theorem to transform problem (3) into a fixed point

problem. Then our main goal is to prove that operator < has a fixed point, where operator
o M — M.

https://www.journals.vu.lt/nonlinear-analysis
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Firstly, we will prove that &7, C B,, where B, = {uv € M: ||ul|aps < r}. Letr >
PQ/(1—0*) and maxycjo, |g;(t,0)] = Q < oo. By (H2), we have

195 (¢, u5 (1) | < |g; (8 u;(1)) — g5 (2, 0)] + |g5(¢,0)]
<Pj|uj }"‘Q Py |UJHM + Q.

For any u; € B,., we obtain

| (juz) (1)

t
1 o _ga\ 18-l ds
F(w+5)/< o ) |95 (s, u5(s)) | ==

1 r o — s\’ ds
o [(TaT) (ol ) 5

1 7 ag@ Ao (LY
< ———— | — @ v . . . - ay . ‘
STB+r+1) (a> i (pslluslag, + Q) + £y (a> 7 ||,

1 1 B+ @ ) 2
- @ (= a(B+y E Naws

i=1

1
- | = ary
+ F(’y—H ( ) E )‘ Huz”M

Consequently,

2
|l ullar = Il usliag,

2 1 B+~ (ﬁ ) 2
< — a(f+y Maws 4+
T(B+v+1) <a> ™ ;(PJH illa, + Q)

tre(5) MZA sl

2 2
= P> (pjllusliag, + Q) + NS Nlluslla, < PQ+0%r <,
j=1 j=1

and thus, @B, C B,.

Nonlinear Anal. Model. Control, 29(5):1026-1050, 2024
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Next, in order to prove that <7 is a contraction, let u = (u1,u2),y = (y1,y2) € M.
For t € [0, 7], we have

| (jui) () = (Zy;)()]

1 )]<taa5a>’y+ﬁ_l|gj(57uj'(5))—gj(57yj(5))|;1—504

L(v+8) ) p
)‘j / ¥ — g% y—1 R i
TT) 0/< o ) [13(5) = 93
1 1 7 T g y+B-1 2 ds
+3 T 15) O/( 5 ) ; (|gi (s,ui(s)) — gi(s,5i(s))]) pr

n P?i) j(”a;ﬁ)w\ug(@ —m(@!%

A1 ](W“—sa )71 ds
+ lur(s) — y1(s)]
F a Sl—a
(7) /
B+~ v
1 1 N Aj L\' o
(a) G PR +)<)ﬂ-wwj—ymM;

ST(Ety+D) T(y+1

] ] B+'Y ( ) 2

1 .
PN - A 7 (2
toresr(2) 7 }j s = il

Hence,

2
7w — oyl =D |y — F5y;lla,

9 1\t B4 2
< = | = a vy . P .
T(At+1) (a) m E pillws = yjlln;

Jj=1

2 1Y 2
n =) 7" Nl =yl
F(’Y ‘1> (Oé) i j=1 JHUJ yJ”M]

2 2
P(p1+p2) Y llug = ysllaa, + N+ X2) D> llwg — yjllag,
j=1 Jj=1

= (P(p1+ p2) + N(A1 + X)) lu =yl -

https://www.journals.vu.lt/nonlinear-analysis
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27 is a contraction due to o* < 1. According to Lemma 5, we concluded that operator .o
has a unique fixed point, which is the unique solution of problem (3). O

4 The multivalued problem

For a normed space (D, ||-||), one can define:

Pa(D) ={Y € P(D): Y is closed},

P, (D) ={Y € P(D): Y is compact},

Pep.c(D) ={Y € P(D): Y is compact and convex},
Pab(D) ={Y € P(D): Y is closed and bounded}.

For each u; € M; (j = 1, 2), define the set of a selection of F; by
SFj,uj = {l/j S Ll([O,ﬂ,R): Vj(t) S Fj(t,Uj(t)) on [0,71']}

Definition 3. If there exist functions v; € L'([0,7],R) with v;(t) € F;(t,u;(t)) for
almost every t € [0,7] and j = 1,2 such that u; satisfy the differential equations
§ADY(§YDY + Aj)u;(t) = v;(t) on [0, 7] and boundary conditions u(0) = uz(0) = 0,
up(7) = uz(7w) and §7D; (0) + §7Dus(0) = 0, then the continuous function u is
a solution of problem (4).

We define Gr(G) = {(p,q) € P x Q, ¢ € G(p)} as a graph of G and review two
important lemmas.

Lemma 6. (See [8].) IfG : P — Py(Q) is u.s.c., then Gr(G) is a closed subset of P x Q),
ie., for every sequence {pptneny C P and {qn}neny C Q, if when n — 00, p, — Ds,
Gn — @ and q, € G(py,), then g, € G(p.). Inversely, if G is completely continuous and
has a closed graph, then it is upper semicontinuous.

Lemma 7. (See [21].) Suppose there exists a linear continuous mapping ‘B from
LY([0,7],R) to C(]0, 7], R) and an L*-Carathéodory multivalued map F : [0, 7] x R —
Pep.c(R). Then

B oSk : C’([O,?T],]R) — PCP,C(C([O,W},R)),
u = (% o SF)(U) = %(SF,u)
is said to be a closed graph operator in C([0, 7|, R) x C([0, 7], R).

Remark 1. (See [21].) A multivalued map F : [0, 7] x R — P, (R) is said to be L'-
Carathéodory if:

(i) foreach u € R, ¢t — F(¢, u) is measurable;
(i) for almost all ¢ € [0, 7], u — F (¢, u) is upper semicontinuous;
(iii) there exists o3 € L'([0, 7], R™) such that

[E(# w)ll = sup{lw|: w € F(t,u)} < ¢p(t)

for each 8 > 0, u € R with |Ju|| < 8 and any ¢ € [0, 7].

Nonlinear Anal. Model. Control, 29(5):1026-1050, 2024
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4.1 The Carathéodory case

For the case where the multivalued map has convex values, we establish an existence
result by the following lemma.

Lemma 8. (See [11].) Assume that B is a Banach space, Q 7ls a closed convex subset
of B, and let W be an open subset of Q and 0 € W. IfF : W — P.,(Q) is an upper
semicontinuous compact map, then either

() F has a fixed point in W or
(ii) there ax € OW and € € (0,1) with x € €F(x).

Theorem 3. Suppose that:
(Gl) F;:[0,7] x R = P, o(R) are L'-Carathéodory;
(G2) for each (t,u;) € [0,7] x R, H; € L*([0,n],RT),
(|55 (¢, ws (D) || p = sup{lv;|: v; € Fj (t,u;() } < Hy(0); (lull )
where ¢; are continuous nondecreasing functions: Rt — R™;
(G3) there exists a constant & > 0 such that

2
PZ Hihj(L)+ NE(A + Xo) < Z,

where P and N are defined by (9), and H; = ||| 1.

Then, for all j = 1,2, the multivalued problem (4) has at least one solution on the circular
graph.

Proof. We define an operator 7 : M — P(M), where T; : M; — P(MM;),

nm= {h SN 0= pg /( ayw s

ds

§ Slfa

|
Al
2 <
SN—
o\bb
/N
~
Q
o
¥
Q
"
2
—
o
—
S—

fort € [0, 7] and v; € SF, .. Obviously, the fixed point of 7 is a solution of problem (4).

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Langevin differential system and inclusion on the circular graph 1039

We split the proof into the following steps.

Step 1. For each u; € Mj, T;(u;) are convex.
Since SF, ., are convex, this step is obvious, and we omit the proof.

Step 2. T maps bounded sets to bounded sets in M.
Let B, := {u = (u1,u2) € M = (My, Ma): ||u|]las < 7}, > 0. Then, for each
hj € Tj(uy;), u; € B,, there exist v; € Sg, ,,; such that

1o g™ y+B-1 e v—-1 ds
) o) F;/( SR

h;(t) =

7+,3

(55
(Ji)

1 1 B+ (54) >‘j 1\”
<— (= B+ * . L P TITI
T(B+y+1) (a> TG00 T D (a) T uslla,

1 1 B+ ) 2 1
o2 - o\ « v * s R ay
+ T (Bt~ +1) (a> T Z% oi(r) + ICES) ( > Z)\ Nl az, -

i=1

Hence,

B+ 2
2 1 .
e < ey () 70 L0

j=1
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2 2 2
<PY Hioi(r) + NI N D lluglla,
,_ -_1 j:1

_PZ”H [05(1) + N1+ Ao)r.

Step 3. A bounded sets is mapped by 7 to an equicontinuous sets of M.
Let t1,t2 € [0,7], t1 < t2 and w € B,. Then, for any h; € T;(u;), we have

| (t2) = hy(t1)]

t

1 ; tgy — s Bty-1 o — 5@ B+y—1 ds

Sr(ﬁ+7)0/<< o ) _< o ) )|Vj(8)|81a
to

1 1o — o B+y—1 ds

ERYCERY /< . ) Qe
ty

A “ e g™ y—1 1o go y—1 ds

+F(’Jy)/<(2a ) _<1a ) >|Uj(3)’51a
0

ta

ey [ (F25) el

ty
to) — 177 1 [ (o ge\TH ds
Ay F(’Y‘f’ﬂ) / a (|V1 | + |V2 |) gl—«a
0

)\ A a_ L y—1 d )\ ~ a_ .o v—1 d
e (Y g 2 () ;u1<s>|slfa]
0 0
- ; l B+ (ta(ﬁ‘i"‘/) o ta(ﬂ'i")’))?_l#j(b_(r)
S T(BHy+1) \ 2 1 AL
Aj 1 7 ary ary *
+ D(y+1) (a) (t2 -1 )Hj¢j(7")
Y Y 1 ™ a_ .a\7t+B-1 d
2 1 eRw /<7T as ) (Jra(s)| + |V2(3)|)81—fa
0

ot (S22 e+t (2 o]

Therefore, |h;(t2)—h;(t1)] — 0ast; — to, independently of u € B,.. By the application
of the Arzela—Ascoli theorem, 7 : M — P(M) is completely continuous.

2y
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Next, we prove that 7 has a closed graph, which means that 7 is an upper semicon-
tinuous multivalued map by Lemma 6.

Step 4. T has a closed graph.
Let u;, — uj,, hj, € T;(u;,) and h;, — h; . Then we need to show that h; €
T;(uj,). Since hy, € T;(uy, ), there exist w;, € S, ., such that, foreach t € [0, 7],

hj, (t) e e N N F /e gyl ds
7+5 0/( ) i F(;)o/( ) ) R
O

R s

Thus, we need to prove that there exist w;, € S Fjouj, such that, for each ¢ € [0, 7],

h;. (t)
-6 0/ (5%~ )W_l“’j* 5~ 0/ (== )W_I“j(s)s?i“
+ (—21)j (;)M F(71+5) Z(WQ;SQ)Wﬁl(wh(S) —wz*(s));i

Lo / (”a—) us(s) / (” — ) m(s)sfﬂ.

Define the linear operator (2 : L!([0, 7], R) — M as follows:

vi = 2(v;)(#)

ek (555 o (5 o
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Observe that ||h;, — hy, [[a; — 0asn — oo. Hence, by Lemma 7 we get that {2 o S,
is a closed graph operator. Further, we get hj, (t) € 2(SF; u;, ). Since uj, — u;,, we
have

t t
1 o _ga\7TA-1 ds As o _ga\771 ds
b0 = [(550) w0 g [(555) wos
0

e / () ) o)

o

o [ oty () ]

for some wj, € SE; u;, -

Step 5. We show that there exists an open set 2 C M such that, for all u € 02
and any € € (0,1), u ¢ €7 (u). Let u; € €7T;(u;) and € € (0,1). Then there exists
v; € L'([0,7],R), where v; € S, ,, such that, for t € [0, 7],

uj(t>:€{%1+ﬁ)o/t <ta;sa)wﬁl”j(s) T / (=) DR
) [t <><>

o Y o T2 o]

Then, similar to the second step, we get

PZ’H 5 (lullar) +NZ>\ [ullar = [lullar-

By (G3), there exists . such that ||u|| s # -Z. Set
7 ={ueM: |u|u <2}
Note that the operator 7 : Z — P(M) is a multivalued map that is upper semicontin-
uous, compact and contains convex closed values. By definition of 2, there isnou € 0%

such that u € €T (u) for some € € (0,1). Therefore, through Lemma 8, we can get that
T has a fixed point u € &, which satisfies multivalued problem (4). O
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4.2 The Lipschitz case

Our next existence result is that F; are nonconvex, we will use Covitz—Nadler fixed point
theorem to solve this problem.

Lemma 9. (See [7].) Let (B,d) be a complete metric space. If A: B — P.(B) is
a contraction, then Fix A # ().

Theorem 4. Suppose that:

(S1) F; : [0,7] xR — Pcp(R) such that F;(-,u;) : [0, 7] — Pcp(R) are measurable
for each u; € R;
(S2) there exist positive functions mj € L0, ] such that

Hy(Fj(t,uy), F (8, 45)) < my(t)|u; — ;]
for almost all t € [0, 7] with d(0, F;(t,0)) < m;(t), uj,4; € R
Then, for all 7 = 1,2, problem (4) has at least one solution on the circular graph if
0" == P(m] +m3) <1,
where P is given by (9), and m’; = ||m;| ..

Proof. For each u; € M;, by assumption (S1), the sets Sg, ., are nonempty. According
to [7, Thm. II1.6], F; have a measurable selection. Now we will show that 7 (u) € P (M)
for each u € M. Let {2, }n>0 € T;(u;) such that z;, — z;(n — oo) in M;. Then we
have z; € Mj, and there exist J;, € SF; ., such that, for each ¢ € [0, 7],

t t

0= T / G RCE / (F27) wtos
R [ ) -
s JEE) e 22 ]

¥;, converge to ¢; in L' ([0, 7], R) because F; have compact values. Hence, ¥; € Sp, v,
and for each ¢ € [0, 7], we have

2 (8) = (1)

1 1o g™ y+B-1 dS )\ t 1o ga v—1 dS
_F(7+B)/< o > 19]-(5)81_@_“;)0/( o ) () =

0
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Consequently, z; € T;(u;).
In the next step, we prove that, for each u, 4 € M,

Hy (T (u), T(0)) < 0%|lu—dlly, 607 <1.

Let u,% € M and hj, € T;(u;). Then there exist ¥}, (t) € F;(¢,u;(t)) such that, for
each ¢ € [0, 7],

t
o _ga\ VA1 ds Aj to—ga\771 ds
2 ()
0
1 o — g \7 AL ds
o () -
0

a5 e gy (55 o]

Using (S2), we obtain

1
bl = 755 /

Hy(Fj(t,ug), F(t, ) < my(t)|u;(t) — a;(t)).
Hence, there exist w; € F}(t,,(t)) such that
|0, (8) — w;(t)] < my(t)|u;(t) —a;(t)|, te0,7].
Define Q : [0, 7] — P(R) by
Q(t) = {w; € R: |95, () — w;(t)] < my(1)]uy (1) — i, (t)|}.

The multivalued operators Q(t)NF;(t, @;(t)) are measurable according to [5, Prop. IIL4].
Thus, there exist functions ¥, (¢), which are measurable selections for Q. So ¥, (t) €
Fy(t.;(t)). and for each € [0, ], [0, (£) — 0 (6)] < m; (8)]u; (£) — (1)
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Let us define

g\ AL ds A o g\ ds
b0 = 7 / (555) ot ré)o/ (557) W

F(’Y{Fﬂ) /Tr(wa;sa >7+ﬂ_1(1912(8) — ¥y, (s))%
0

0
() ey liw o
2 T L(v+p) ! i Viz sl—o
0
1 1 B+
S TF+D <> w D me |y — a5,

1 1\ ager )Zz
z a(B+y s — tllnr
+2F(ﬂ+v+1)<a> " il = il

i=1
Hence,

by = hallar =Y NI, = hyylla,

j=1

<—— [ = a(B+y o — Gl
L(B+v+1) (a) T ZmJHU’J ajlla,

j=1
< P(mi +m3)llu —alar-
Swapping the roles of v and u, we get
Hy(T (u), T(@)) < P(my +m3)lu— -
Therefore, T is a contraction. 7 has a fixed point u by Lemma 9, which satisfies prob-

lem (4). O]
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5 Some examples

Several examples are provided in this section to verify the theoretical results.

Example 1. Consider the following fractional conformable Langevin differential system:

1
g%D% <gépé + >U1(t) =g (t,ui (1)),

20
(10)
citifcrr 1
5403 (5403 + g5 )ua(t) = 2t a0
with boundary value conditions
§3D3ui(0) = § D3 us(0) =0, an

up(m) = ug(m), u1(0) + u2(0) =0,

where « = 1/3, 8 = 1/4, v = 1/5, Ay = 1/20, A2 = 1/30, and we can compute that
P = 4.3956, N ~ 2.9286. Define continuous functions g1, g2: [0, 7] x R — R by
t  sinu(t)
10 ' 2(t +3)%

uz(t)
3(t+2)%

g1 (t,ul(t)) =
(12)
g2 (t,uQ(t)) =sint +

Let u1,us € R, itis clear that

g1 (t,ur ()| < 5o+ 5—arg [ua(t)

|g2(t, u2(t))| < sint +

1
_— t
R
in which q(t) = 1/(2(¢ + 3)?), q2(t) = 1/(3(¢ + 2)?). Hence, q} = 1/54, q5 = 1/12.
Further, we get

0 = P(q; +q3) + N(A1 + X2) = 0.6918 < 1.

Using Theorem 1, we can conclude that the fractional conformable Langevin differential
system (10)—(12) has a solution.

Example 2. Consider the following fractional conformable Langevin differential system:

1
Ciph (gépé + 40)“1(75) = g1(t;w (1)),

13)
1
§10} (5404 + 5 Jualt) = anft 0a(0)
with boundary value conditions
§3D5ui(0) = § 5D uz(0) = 0, (14

up(m) = ug(m), u1(0) + u2(0) =0,
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where o = 1/3, 8 = 1/4,v = 1/5, \y = 1/40, Ao = 1/30, and we can compute that
P ~4.3956, N = 2.9286. Define continuous functions g1, go: [0, 7] X R — R by

1 lur (£)]  _pgq 1
g1t ua(t)) = 4= 4 9O ey L
g2 (t,u2(t)) — 43 Meﬂspu'

50100 + [ua(t)]

For uj,y; € R(j = 1,2), we estimate

1 ®) = 0n (O < |5 @~ 500+ o

[T

< 5%‘%1(75) —1(t)

3lu 3 .
o) = x| < | (550~ 100 )

)

3
Hence, p; = 1/50, po = 3/100. Therefore, we see that

By utilizing Theorem 2, we deduce that the fractional conformable Langevin differential
system (13)—(15) has a unique solution.

Example 3. Assume that (10) is replaced by
(16)

where

Fl(taul(t)) = [07 m + i:|7

Buln) = [0 5 (et 1]

Observe that F); (¢, u;(t)) (j = 1, 2) are measurable sets. On the other hand,

Hy(Fy (tur (1)) Fy (1, (1)) < myum — (),
Hy(Fa(t,ua(t)), Fa(t, a2(t))) < m’uﬂﬂ — da(t)],
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where m;(t) (j = 1,2) are defined by m1(t) = 1/(5(1 + 2t)), ma(t) = 1/(9(3¢ + 1)).
Therefore, m7 = 1/5, m3 = 1/9. Since

0" = P(m} +m}) ~ 0.6837 < 1,

according to Theorem 4, we obtain that under the boundary conditions (11), the Langevin
fractional differential inclusion (16) has at least one solution on [0, 7).

6 Conclusion

In this paper, we mainly study a class of coupled fractional conformable Langevin differ-
ential and inclusion system on the circular graph. We obtain the existence and uniqueness
of the solution for single-valued problems and the existence of the solution for multivalued
problems by using fixed point theorems. So far, although some scholars have studied the
fractional differential equation on the graph, the coupled fractional conformable Langevin
differential and inclusion system on the circular graph is studied for the first time. There
are still some topics worthy of our further research. For example, one can study the sta-
bility of fractional differential and inclusion systems on different graphs and their specific
applications in chemical theory. In the future, we will consider numerical calculation and
simulation of fractional differential and inclusion systems on graphs.
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