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Abstract. In the present study, we have investigated the steady mixed convection nonaxisymmetric
Homann stagnation-point flow in the presence of a magnetic field over a vertical flat wall immersed
in a viscous and incompressible fluid. The magnetic field is applied in the normal direction to the
plate. The governing equations are reduced to a system of nonlinear ordinary differential equations
with suitable boundary conditions by applying similarity transformations to the equations and the
boundary conditions. Using an efficient shooting method, the transformed equations are numerically
solved. The solution involves the dimensionless governing parameters: γ representing the shear-
to-strain-rate ratio, a mixed convection parameter λ, a magnetic field parameter M , and Prandtl
number Pr . An important observation is that dual solutions exist for a certain range of mixed
convection parameter λ. It is noticed that critical values λc of λ are found in opposing flow,
which produce two solution branches by making saddle-node bifurcation at λ = λc. Numerical
results are obtained for representative values of γ, λ, and M and are explored in depth. Through
the use of graphs, the properties of the flow and temperature profiles for various values of the
governing parameters γ, λ, andM are examined. Also, we examined how the solution varied with λ
for representative values of M (magnetic field parameter). A parametric analysis is conducted
to investigate how different governing parameters affect the characteristics of fluid flow and
temperature. Also, we derive asymptotic results for large λ.

Keywords: asymptotic solutions, stagnation-point flow, dual solutions, mixed convection.

1 Introduction

Mixed convection flows arise when the buoyancy forces resulting from temperature dif-
ferences within the flow become comparable to the pressure gradient forces arising from
the forced flow. As a consequence, both the flow and thermal fields are significantly
affected by the buoyancy forces. Mixed convection flows (combined forced and free
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convection boundary layer flows) have been the subject of great attention to scientists
from both practical and theoretical points of view. The significance of this is due to the
widespread occurrence of convective flows in numerous engineering and geophysical
domains, including geothermal energy extraction, nuclear waste disposal, groundwater
movement, thermal insulation, solid-matrix heat-exchangers, drying porous solids oil
and gas production, and many others. Mixed convection heat transfer is induced by the
interaction between internally generated buoyancy forces and an imposed flow, it is also
substantial in crystal growth, solar collectors, nuclear reactors, and the cooling of elec-
tronic systems. Numerous studies of mixed convection flow of an incompressible and
viscous fluid over a vertical surface have already been carried out. The temperature and
velocity fields have been solved analytically and numerically for temperatures. In a review
study, Chen [3] and the books by Gebhart et al. [6], Schlichting and Gersten [26], Pop
and Ingham [23], and Bejan [2] provided a thorough account of the theoretical work
done for both laminar and turbulent mixed convection boundary layer flows for a few
different flow geometries before 1987. Finding exact (or numerical) solutions to partial
differential equations is the objective in many areas of fluid mechanics and heat trans-
port issues. These equations describe the fundamental physical laws. Solutions derived
by employing variable transformations that transform the system of partial differential
equations into a system of ordinary differential equations are notable among the solutions.
These solutions are typically called similarity solutions; see Hansen [8]. Mahmood and
Merkin [18, 19], Merkin and Mahmood [21], and Merkin and Pop [22] have published
a series of publications presenting similarity solutions for the problem under consideration
for the steady mixed convection boundary-layer flow over an impermeable vertical flat
plate and for impermeable vertical cylinders.

In fluid mechanics, the study of stagnation-point flow is extremely influential. Two-
dimensional stagnation-point flows arise near a stagnation line resulting from a two-
dimensional flow impinging on a curved surface at right angles to it and after that flowing
symmetrically about the stagnation line. Stagnation-point flows, referred to as flows about
the front of a blunt-nosed body or the stagnation region, occur on bodies moving in a fluid.
Stagnation-point flows, which describe the fluid motion at the stagnation region at the
front of a blunt-nosed body, exist on all solid bodies moving in a fluid. The pressure,
heat transmission, and mass deposition rates are all maximum in the stagnation area.
Stagnation-point flow is still a topic of interest for scientists and researchers due to its
significance in so many different industrial and scientific applications, such as the polymer
industry, extrusion processes, plane counter-jets, and numerous forms of hydrodynamic
modelling in engineering applications. In recent times, it has drawn a lot of interest from
researchers. Hiemenz [10] was the first researcher who utilized a similarity transform to
investigate two-dimensional stagnation-point flows by condensing the partial differential
Navier–Stokes equations into a set of nonlinear ordinary differential equations. Later,
Eckert [4] and Gorla [7] considered the corresponding forced-convection heat-transfer
problem. Three-dimensional stagnation-point flows have been studied by Homann [11]
and Smith [27], and the axisymmetric stagnation-point flow on a circular cylinder – by
Wang [28]. The steady mixed convection flow near the stagnation region of a vertical flat
plate has been studied by Ramachandran et al. [24]. The steady two-dimensional boundary
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layer flow in the neighborhood of a stagnation point on an infinite wall was studied by
Hiemenz [10] using a similarity transform, which reduces the number of independent
variables from two to one. This result has been later extended to the axisymmetric case by
Homann [11]. Mahapatra and Gupta [14] reinvestigated the stagnation-point flow problem
towards a stretching sheet with different stretching and straining rates. Mahapatra and
Sidui [16] performed an analysis of unsteady heat transfer in nonaxisymmetric Homann
stagnation-point flows of a viscous fluid over a rigid plate. Later, Mahapatra and Sidui [17]
carried out research on the nonaxisymmetric Homann stagnation-point flows of a vis-
coelastic fluid towards a stationary plate.

Magnetohydrodynamics is based on studying the magnetic properties and behaviour
of electrically conducting fluids. MHD technology is based on the fundamental law of
electromagnetism. The interaction between the fluid velocity and the applied magnetic
field generates the Lorentz forces during the movement of fluid. The Lorentz force creates
some resistive force to the motion of the fluid particles, which slows down the fluid
velocity. There are numerous uses of the boundary layer flow of an electrically conducting
fluid in the presence of a magnetic field in engineering problems, such as MHD generator,
plasma studies, nuclear reactors, geothermal energy extraction, and oil exploration. Ariel
[1] investigated the effect of an external magnetic field on Hiemenz flow. Mahapatra and
Gupta [14] examined boundary-layer and magnetohydrodynamics stagnation-point flow
towards a sheet that was stretched.

Eldabe and Ouaf [5] considered the problem of heat and mass transfer in an MHD flow
of a micropolar fluid past a stretching surface with Ohmic heating and viscous dissipation
effects using the Chebyshev finite difference method. Ishak et al. [12] solved the steady
MHD stagnation-point flow problem towards a vertical surface immersed in a micropolar
fluid. Weidman [29] generalized Homann’s problem by superposing periodic terms onto
Homann’s outer potential flow. Lok et al. [13] extended the work of Weidman [29] by
including heat transfer and the effects of the induced buoyancy.

In the present paper, we aim to investigate the magnetic field effects on mixed con-
vection nonaxisymmetric Homann stagnation-point flow over a vertical flat wall. The self-
similar equations are solved numerically using MATHEMATICA 10.0, and the outcomes
are explained from a physical perspective. The presentation of the paper is as follows.
The formulation of the problem is given in Section 2, where a numerical solution of
coupled nonlinear ordinary differential equations is discussed, and asymptotic behaviour
is reported. A stability analysis of the dual solutions is performed in Section 3. Numer-
ical solution procedure of the system of ordinary differential equations are discussed in
Section 4. Section 5 contains the results and discussions. A concluding remark is given
in Section 6.

2 Formulation of the problem

Consider the steady mixed convection nonaxisymmetric Homann stagnation-point flow
over a vertical flat rigid wall placed in a viscous and incompressible electrically conduct-
ing fluid. A uniform magnetic field of strength B0 is applied in the positive z-direction,
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perpendicular to the plate. It is assumed that the surface temperature of the plate is
Tw(x) = T∞ + T0x, where T∞ is the constant ambient temperature, and T0 is a charac-
teristic temperature. This is to note that for a heated surface, T0 > 0, and for a cooled
surface, T0 < 0. The heated surface induces an aiding flow, whereas the cooled surface
induces an opposing flow. The velocity components of the external flow or potential flow
are Ue(x, y) = (a + b)x, Ve(x, y) = (a − b)y, and We(z) = −2az. Here the z-axis is
measured in the normal direction to the wall, and the x-axis is measured in the vertical
direction, a is the strain rate of the stagnation-point flow, b is the shear rate. As the fluid is
electrical conducting, so the Lorentz force for induced current is given by ~J × ~B, where
~J = σ( ~E + ~q × ~B) is the current density. It is also assumed that the conduction current
σE is negligible compared to the convection current σ(~q × ~B), where σ is the electrical
conductivity, ~q = uî+ vĵ +wk̂ is the fluid velocity, and ~B = (0, 0, B0k̂) is the magnetic
field. The magnetic field is applied along z−axis as ~B = B0k̂, then the Lorentz force
takes the form ~J × ~B = −σB2

0(uî + vĵ), which are added to the right-hand side of
u-momentum and v-momentum equations.

The governing equations, respectively, of continuity, momentum and energy in Carte-
sian form are given by

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

= −1

ρ

∂p

∂x
+ gβ(T − T∞) + ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
− σB2

0u

ρ
, (2)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
− σB2

0v

ρ
, (3)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
, (4)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= α

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
(5)

subject to the boundary conditions

u = v = w = 0, T = Tw on z = 0

u→ Ue, v → Ve, w →We, T → T∞, p→ p0 as z →∞,
(6)

where u, v, and w represent the velocity components along x-, y-, and z-directions,
respectively, p is the fluid pressure, g is the acceleration due to gravity, ρ is the constant
fluid density, β is the coefficient of thermal expansion, ν is the kinematic viscosity, µ is
the dynamic viscosity, α is the thermal diffusivity, p0 is the constant far field pressure.
In the right-hand side of Eqs. (2) and (3), the terms σB2

0u/ρ and σB2
0v/ρ represent the

Lorentz force, which generated from the interaction between the fluid velocity and the
magnetic field. Further, we have ignored the induced magnetic field since the magnetic
Reynolds number for the flow is taken to be very small.
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We introduce now the following similarity variables:

u = (a+ b)xf ′(η), v = (a− b)yg′(η),

w = −
√
ν

a

[
(a+ b)f(η) + (a− b)g(η)

]
,

T − T∞ = T0xθ(η), η =

√
a

ν
z.

(7)

Substituting transformation (7) into (2), (3), (5), (6), we obtain the following nonlinear
ordinary differential equations:

f ′′′ + (1 + γ)
(
ff ′′ + 1− f ′2

)
+ (1− γ)gf ′′ + (1 + γ)λθ

+M(1− f ′) = 0, (8)

g′′′ + (1− γ)
(
gg′′ + 1− g′2

)
+ (1 + γ)fg′′ +M(1− g′) = 0, (9)

1

Pr
θ′′ + (1 + γ)(fθ′ − f ′θ) + (1− γ)gθ′ = 0 (10)

subject to the boundary conditions

f(0) = f ′(0) = 0, g(0) = g′(0) = 0, θ(0) = 1,

f ′ → 1, g′ → 1, θ → 0 as η →∞.
(11)

Here primes denote differentiation with respect to the independent variable η, and

Pr =
ν

α
, λ =

gβT0
(a+ b)2

, γ =
b

a
, M =

σB2
0

ρa
.

The pressure field for the viscous incompressible electrically conductivity fluid flow is

p = p0 −
[
ρ

{
(a+ b)2x2

2
+

(a− b)2y2

2

}
+ σB2

0

{
(a+ b)x2

2
+

(a− b)y2

2

}
+ ρνa

{
[(1 + γ)f + (1− γ)g]2

2
+ (1 + γ)f ′ + (1− γ)g′

}]
.

The parameter λ represents the strength of the buoyancy force or mixed convection pa-
rameter relative to shear-to-strain-rate. It is positive for aiding flow, negative for opposing
flow.

The object of this work is in finding the values to skin friction coefficients f ′′(0),
g′′(0) and surface temperature gradient θ′(0) and how they vary in terms of parameters:
shear-to-strain-rate ratio γ, mixed convection parameter λ, and magnetic field parame-
ter M . Also, we study the velocity and temperature profiles for different values of the
governing parameters. In our results, the Prandtl number Pr is set to be unity (Pr = 1).
Using an effective shooting method, these problems are numerically solved.
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2.1 Forced convection, λ = 0

We are interested in finding the solution to the flow problem when γ approaches the
singularity “−1”. To consider this, we put γ = −1 + δ and write f = δ−1F , while δ is
very small. Now Eqs. (8) and (9) become

F ′′′ + FF ′′ − F ′2 + δ2 + (2− δ)gF ′′ +M(δ − F ′) = 0, (12)

g′′′ + (2− δ)
(
gg′′ + 1− g′2

)
+ Fg′′ +M(1− g′) = 0 (13)

subject to the boundary conditions derived from (11)

F (0) = F ′(0) = 0, g(0) = g′(0) = 0, F ′ → δ, g′ → 1 as η →∞. (14)

Equations (12) and (13) subject to the boundary conditions (14) suggest looking for
an expansion of F and g in powers of δ. The leading order terms F0 and g0 satisfy

F ′′′0 + F0F
′′
0 − F ′20 + 2g0F

′′
0 −MF ′0 = 0,

g′′′0 + 2
(
g0g
′′
0 + 1− g′20

)
+ F0g

′′
0 +M(1− g′0) = 0

subject to the boundary conditions

F0(0) = F ′0(0) = 0, g0(0) = g′0(0) = 0, F ′0 → 0, g′0 → 1 as η →∞.

For this problem, a numerical solution gives

F ′′0 =


−1.78068, M = 0,

−1.81993, M = 0.2,

−1.84724, M = 0.5,

g′′0 =


1.66588, M = 0,

1.72428, M = 0.2,

1.80958, M = 0.5,

so that

f ′′(0) ∼


−1.78068(1 + γ)−1 + · · · , M = 0,

−1.81993(1 + γ)−1 + · · · , M = 0.2,

−1.84724(1 + γ)−1 + · · · , M = 0.5,

(15)

g′′(0)→


1.66588 + · · · , M = 0,

1.72428 + · · · , M = 0.2,

1.80958 + · · · , M = 0.5,

(16)

as γ → −1.
The wall shear stress vector can be written as

~τw = µ

[
∂u

∂z
î+

∂v

∂z
ĵ

]
z=0

=
µa3/2

ν1/2
[
(1 + γ)f ′′(0)xî+ (1− γ)g′′(0)yĵ

]
.

From Eqs. (15) and (16) it is evident that wall shear stress increases along the x- and
y-direction with the increase in the magnetic field intensity.
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2.2 Free convection limit, λ large

Suppose that γ 6= −1, and to determine a solution valid for λ� 1, we put

f = λ1/4φ, g = λ1/4h, ξ = λ1/4η.

Equations (8)–(11) then become

φ′′′ + (1 + γ)
(
φφ′′ − φ′2

)
+ (1− γ)hφ′′ + (1 + γ)λ−1

+ (1 + γ)θ +M
(
λ−1 − λ−1/2φ′

)
= 0,

h′′′ + (1− γ)
(
hh′′ − h′2

)
+ (1 + γ)φh′′ + (1− γ)λ−1

+M
(
λ−1 − λ−1/2h′

)
= 0,

1

Pr
θ′′ + (1 + γ)(φθ′ − φ′θ) + (1− γ)hθ′ = 0

subject to the boundary conditions

φ(0) = φ′(0) = h(0) = h′(0) = 0, θ(0) = 1,

φ′ → λ−1/2, h′ → λ−1/2, θ → 0, as ξ →∞.
(17)

Here prime denotes differentiation with respect to ξ. Since λ−1/2 presents in the boundary
conditions (17), we write the solution as

φ = φ0 + λ−1/2φ1 + · · · , h = λ−1/2h0 + λ−1h1 + · · · ,
θ = θ0 + λ−1/2θ1 + · · ·

and obtain, at zero and first order,

φ′′′0 + (1 + γ)
(
φ0φ

′′
0 − φ′20

)
+ (1 + γ)θ0 = 0, (18)

φ′′′1 + (1 + γ)(φ0φ
′′
1 + φ1φ

′′
0 − 2φ′0φ

′
1)

+ (1− γ)h0φ′′0 + (1 + γ)θ1 −Mφ′0 = 0, (19)
h′′′0 + (1 + γ)φ0h

′′
0 = 0, (20)

h′′′1 + (1− γ)
(
h0h

′′
0 − h′20 + 1

)
+ (1 + γ)(φ0h

′′
1 + φ1h

′′
0)

+M(1− h′0) = 0, (21)
1

Pr
θ′′0 + (1 + γ)(φ0θ

′
0 − φ′0θ0) = 0, (22)

1

Pr
θ′′1 + (1 + γ)(φ0θ

′
1 + φ1θ

′
0 − φ′0θ1 − φ′1θ0) + (1− γ)h0θ′0 = 0 (23)

subject to the boundary conditions

φ0(0) = φ′0(0) = h0(0) = h′0(0) = 0, θ0(0) = 1,

φ1(0) = φ′1(0) = h1(0) = h′1(0) = 0, θ1(0) = 0,

φ′0 → 0, φ′1 → 1, h′0 → 1, h′1 → 0, θ0 → 0, θ1 → 0 as ξ →∞.
(24)
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A numerical integration of (18)–(24) gives, for Pr = 1.0 and γ = 0.6, when M = 0,

φ′′0(0) = 0.935402, h′′0(0) = 0.496728, θ′0(0) = −0.752735,
φ′′1(0) = −0.011796, h′′1(0) = 0.602175, θ′1(0) = −0.062065,

f ′′(0) ∼ 0.935402λ3/4 − 0.011796λ1/4 + · · · ,
g′′(0) ∼ 0.496728λ1/4 + 0.602175λ−1/4 + · · · ,
θ′(0) ∼ −0.752735λ1/4 − 0.062065λ−1/4 + · · · ,

for Pr = 1 and γ = 0.6, when M = 2.5,

φ′′0(0) = 0.935402, h′′0(0) = 0.496728, θ′0(0) = −0.752735,
φ′′1(0) = −0.43393, h′′1(0) = 2.59746, θ′1(0) = 0.160829,

f ′′(0) ∼ 0.935402λ3/4 − 0.43393λ1/4 + · · · ,
g′′(0) ∼ 0.496728λ1/4 + 2.59746λ−1/4 + · · · ,
θ′(0) ∼ −0.752735λ1/4 + 0.160829λ−1/4 + · · · ,

for Pr = 1 and γ = 0.6, when M = 4.5,

φ′′0(0) = 0.935402, h′′0(0) = 0.496728, θ′0(0) = −0.752735,
φ′′1(0) = −0.771636, h′′1(0) = 4.19369, θ′1(0) = 0.339145,

f ′′(0) ∼ 0.935402λ3/4 − 0.771636λ1/4 + · · · ,
g′′(0) ∼ 0.496728λ1/4 + 4.19369λ−1/4 + · · · ,
θ′(0) ∼ −0.752735λ1/4 + 0.339145λ−1/4 + · · ·

as λ→∞.

3 Stability analysis

Numerically, it is seen that there are two branches of solution for distinct values of
the physical parameter. Here we have performed a stability analysis of the boundary
value problem to identify whether the dual solutions are stable or unstable. A number of
researchers performed stability analyses to identify the stable solution, including Merkin
[20], Weidman et al. [30], Harris et al. [9], Mahapatra and Nandy [15], Rosca and Pop
[25]. They all noted that the upper branch solution is stable, while the lower branch
solution is unstable. We explore the unsteady similarity solution in the form

u = (a+ b)x
∂f

∂η
(η, τ), v = (a− b)y ∂g

∂η
(η, τ),

w = −
√
ν

a

[
(a+ b)f(η, τ) + (a− b)g(η, τ)

]
,

T − T∞ = T0xθ(η, τ), η =

√
a

ν
z, τ = (a+ b)t,
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where τ is a newly introduced nondimensional time variable. Thus, Eqs. (8)–(10) can be
expressed as

∂3f

∂η3
+ (1 + γ)

[
f
∂2f

∂η2
+ 1−

(
∂f

∂η

)2]
+ (1− γ)g ∂

2f

∂η2

+ (1 + γ)λθ +M

(
1− ∂f

∂η

)
− (1 + γ)

∂2f

∂η∂τ
= 0, (25)

∂3g

∂η3
+ (1− γ)

[
g
∂2g

∂η2
+ 1−

(
∂g

∂η

)2]
+ (1 + γ)f

∂2g

∂η2

+M

(
1− ∂g

∂η

)
− (1 + γ)

∂2g

∂η∂τ
= 0, (26)

1

Pr

∂2θ

∂η2
+ (1 + γ)

(
f
∂θ

∂η
− ∂f

∂η
θ

)
+ (1− γ)g ∂θ

∂η
− (1 + γ)

∂θ

∂τ
= 0 (27)

with the corresponding boundary conditions

f(0, τ) =
∂f

∂η
(0, τ) = 0, g(0, τ) =

∂g

∂η
(0, τ) = 0, θ(0, τ) = 1,

∂f

∂η
(η, τ)→ 1,

∂g

∂η
(η, τ)→ 1, θ(η, τ)→ 0 as η →∞.

(28)

The stability analysis of the steady flow solution was examined by setting f(η) = f0(η),
g(η) = g0(η), and θ(η) = θ0(η) satisfying the boundary value problem (8)–(11). Ac-
cording to Merkin [20] and Harris et al. [9], we can write

f(η, τ) = f0(η) + e−ετF (η, τ),

g(η, τ) = g0(η) + e−ετG(η, τ),

θ(η, τ) = θ0(η) + e−ετH(η, τ),

(29)

where ε is an unknown eigenvalue that represents the growth rate of the disturbance.
Here F (η, τ), G(η, τ), and H(η, τ) are small relative to f0(η), g0(η), and θ0(η). As
recommended by Weidman et al. [30], we examine the stability of the steady flow and
heat transfer solutions f0(η), g0(η), and θ0(η) by setting τ = 0. Thus, F (η, 0) = F0(η),
G(η, 0) = G0(η), andH(η, 0) = H0(η) in Eqs. (25)–(28) respectively indicate the initial
growth or decay of the solution (29). We obtain the following linear eigenvalue problem:

F ′′′0 + (1 + γ)(f0F
′′
0 + f ′′0 F0 − 2f ′0F

′
0 + λH0 + εF ′0)

+ (1− γ)(g0F ′′0 +G0f
′′
0 )−MF ′0 = 0, (30)

G′′′0 + (1− γ)(g0G′′0 +G0g
′′
0 − 2g′0G

′
0) + (1 + γ)(f0G

′′
0 + F0g

′′
0 )

−MG′0 + (1 + γ)εG′0 = 0, (31)
1

Pr
H ′′0 + (1 + γ)(f0H

′
0 + F0θ

′
0 − f ′0H0 − F ′0θ0 + εH0)

+ (1− γ)(g0H ′0 +G0θ
′
0) = 0 (32)
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with the boundary conditions

F0(0) = F ′0(0) = 0, G0(0) = G′0(0) = 0, H0(0) = 0,

F ′0(η)→ 0, G′0(η)→ 0, H0(η)→ 0 as η →∞.
(33)

It should be noted that for particular values of λ, γ, M , and Pr , the stability of the
related steady flow solutions f0(η), g0(η), and θ0(η) are determined by the smallest
eigenvalue ε. According to Harris et al. [9], we can determine the range of possible
eigenvalues by relaxing a boundary condition on F0(η), G0(η), or H0(η). We relax the
condition F ′0(η)→ 0 as η →∞ for the current problem. Consequently, for a fixed value
of ε, we solve the system of Eqs. (30)–(33) along with the newly introduced boundary
condition F ′′0 (0) = 1.

4 Numerical solution procedure

The governing momentum equations are solved numerically using the fourth-order Runge–
Kutta method with the shooting technique in Mathematica. The equations are written as
a system of eight first-order ordinary differential equations, which are solved using a stan-
dard fourth-order Runge–Kutta integration method. Then, for convergence, a Newton
iteration method is used. The system of nonlinear ordinary differential equations (8)–(10)
along with the boundary conditions (11) are solved numerically using shooting technique
by converting it to an initial value problem. To do this, we need first to rewrite the
system of nonlinear ordinary differential equations (8)-(10) as a system of eight first-order
ordinary differential equations as

y′1 = y2, y′2 = y3,

y′3 = −(1 + γ)
(
y1y3 + 1− y22

)
− (1− γ)y4y3 − (1 + γ)λy7 −M(1− y2),

y′4 = y5, y′5 = y6,

y′6 = −(1− γ)
(
y4y6 + 1− y25

)
− (1 + γ)y1y6 −M(1− y5),

y′7 = y8, y′8 = −Pr(1 + γ)(y1y8 − y2y7)− Pr(1− γ)y4y8.

The corresponding boundary conditions (11) become

y1(0) = 0, y2(0) = 0, y3(0) =W1, y4(0) = 0,

y5(0) = 0, y6(0) =W2, y7(0) = 1, y8(0) =W3,

where y1 = f , y2 = f ′, y3 = f ′′, y4 = g, y5 = g′, y6 = g′′, y7 = θ, y8 = θ′, and
the values of W1, W2, and W3 are determined such that they satisfy the outer boundary
conditions y2(∞), y5(∞), and y7(∞). We integrate the resulting first-order differential
equations by using a fourth-order Runge–Kutta method. Then the shooting method is
employed to predict the values of W1, W2, and W3 by iterations until the outer boundary
conditions are satisfied. To this end, we adjust the values of W1, W2, and W3 at η = 0
by using a Newton iteration method to assure quadratic convergence of the iterations.
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We repeated the above procedure until we get the results up to the appropriate degree of
accuracy, 10−5. For this numerical method, η∞ = 8 has been chosen for searching the
possible steady flow solutions (upper and lower branch solutions) with the various values
of the governing parameters considered in this problem.

5 Results and discussion

The system of nonlinear ordinary differential equations (8)–(11) has been solved numeri-
cally for some values of the mixed convection parameter λ, magnetic field parameter M ,
and shear-to-strain-rate ratio γ, while the Prandtl number Pr is set to be unity (Pr = 1).

By comparing the numerical results with previous studies it was discovered that there
was considerable agreement, which are shown in Table 1, and thus we are assured that
the current approach is accurate. The outcomes demonstrate the impact of some signifi-
cant nondimensional parameters on the features of flow and temperature characteristics.
Representative skin friction coefficients f ′′(0), g′′(0), surface temperature gradient θ′(0),
velocity and temperature profiles are shown in Figs. 1–3. Figures 1(a), 1(c), 1(e) show
the variation of skin friction coefficients f ′′(0), g′′(0) and surface temperature gradient
θ′(0) with shear-to strain-rate ratio γ over the range −4 6 γ 6 4 for λ = 0 (forced
convection) and some values of magnetic field parameter M . From Figs. 1(a), 1(c) it is
observed that f ′′(0) and g′′(0) increase with the γ as the magnetic field parameter M
increases. Figure 1(e) also shows that θ′(0) increases with the increase in magnetic field
parameter M for a particular value of γ when −4 6 γ 6 −1.3, but the opposite trend
is observed for a specific value of γ when γ > −1.3. The variations of the skin friction
coefficients f ′′(0), g′′(0) and surface temperature gradient θ′(0) with mixed convection
parameter λ for magnetic field parameter M are shown in Figs. 1(b), 1(d), 1(f) and 2(a),
2(c), 2(e), all for Pr = 1. From Figs. 1(b), 1(d), 1(f) it is found that the skin friction
coefficients f ′′(0) and g′′(0) increase as the magnetic field parameter M increases. This
observation is due to the fact that the effect of magnetic field reduces the boundary
layer thickness, which, in turn, increases the skin friction. In Figs. 1(b), 1(d), 1(f), it
is observed that f ′′(0) (upper and lower branch solution) and g′′(0) (upper and lower
branch solution) increase with the increase of λ for a particular value of γ and M , while
θ′(0) (upper branch solution) decreases. Figures 2(a), 2(c), 2(e) show the variations of the
skin friction coefficients f ′′(0), g′′(0) and surface temperature gradient θ′(0) with mixed
convection parameter λ for M = 0, 0.4, 0.8 when γ = 0.5. From Figs. 2(a), 2(c), 2(e) it
is noticed that the enhancement of the magnetic field parameter M leads to increase the

Table 1. Comparison of f ′′(0) and g′′(0) for different values
of λ when γ = 0, M = 0, and Pr = 1.

Present result Lok et al. [13]
λ f ′′(0) g′′(0) f ′′(0) g′′(0)

0.5 1.51148 1.31847 1.50195 1.31250
1.0 1.70503 1.32466 1.70313 1.32656
1.5 1.89337 1.33054 1.89063 1.33125
2.0 2.07712 1.33616 2.06251 1.33807
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Figure 1. Plots of f ′′(0), g′′(0), and θ′(0): (a), (c), (e) against γ for M = 0, 1.2, 2.2 and λ = 0 obtained
from the numerical solution of (8)–(11) (Pr = 1); (b), (d), (f) against λ for M = 0, 0.4, 0.8 and γ = 0
obtained from the numerical solution of (8)–(11) (Pr = 1).
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Figure 2. (a), (c), (e) Plots of f ′′(0), g′′(0), and θ′(0) against λ for M = 0, 0.4, 0.8 and γ = 0.5 obtained
from the numerical solution of (8)–(11) (Pr = 1). (b), (d), (f) Velocity profiles f ′(η), g′(η) and temperature
profile θ(η) for various values of M = 0, 2.5, 4.5, 6.5 when λ = 30 (large λ), γ = 0.6, and Pr = 1.
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Figure 3. Velocity profiles f ′(η), g′(η) and temperature profile θ(η): (a), (c), (e) for various values of λ =
0, 2, 5, 8 when M = 0.5, γ = 0.6, and Pr = 1; (b), (d), (f) for various values of γ = 0, 0.5, 1.5, 2.5 when
M = 0.5, λ = 2, and Pr = 1.
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Table 2. Smallest eigenvalue ε1 for several values of λ with
γ = 0.5, M = 0.4, and Pr = 1.

λ Upper branch solution ε1 Lower branch solution ε1
−0.8 3.2501 −1.53346
−1.2 2.73275 −1.37096
−1.6 2.59371 −1.18125
−2.0 2.3101 −0.95954

skin friction coefficients. Here solid lines represent the upper branch solution, and dashed
lines represent the corresponding lower branch solution. These figures illustrate that it is
possible to find dual solution of the similarity equations (8)–(11). For negative values of
λ, there is a critical value λc (< 0) with two solutions branches for λ > λc, a saddle-node
bifurcation at λ = λc, and for λ < λc, there is no solution.

In comparison to the lower branch solutions, the upper branch solutions have higher
value of f ′′(0), g′′(0), and θ′(0) for a particular value of λ. These figures also demonstrate
that as the magnetic field parameter M increases, the critical value |λc| increases.

Representative results for the velocity and temperature profiles are displayed in
Figs. 2(b), 2(d), 2(f), and 3(a)–3(f). Figures 2(b), 2(d), 2(f) show the variation in ve-
locity profiles f ′(η), g′(η), and temperature profile θ(η) with η for several values of the
magnetic field parameter M . The effect of the magnetic field on velocity and temperature
profiles is shown in Figs. 2(b), 2(d), 2(f). From Fig. 2(b) we observe that as the magnetic
field parameter M increases, velocity along the x-axis decreases. Figure 2(d) shows that
as the magnetic field parameterM increases, velocity along the y-axis increases. It is clear
from Fig. 2(f) that temperature at a point increases with the increase of the magnetic field
parameter M . The reason is that when a system’s magnetic field rises, resistance forces
are created against the flow, which will cause a reduction in the velocity field. However,
making friction between the magnetic field and the electric field within the flow-stream
layer, enhances the temperature profile. In Figs. 3(a), 3(c), 3(e), velocity and temperature
profiles are shown for different values of mixed convection parameter λ. It is seen from
Figs. 3(a) and 3(c) that the velocities f ′(η) and g′(η) increase with the increase of λ.
Figure 3(e) shows that the temperature θ(η) decreases with the rise of λ. Figures 3(b),
3(d), 3(f) show the effect of γ on velocity and temperature profiles. From Figs. 3(b), 3(d),
and 3(f) it is noticed that when the value of the shear-to strain-rate ratio γ increases, the
velocity along the x-axis increases, while along the y-axis it decreases. It is also observed
that temperature at a point decreases when γ increases. A stability analysis has been
performed by solving the eigenvalue problem generated by Eqs. (30)–(32) subject to the
boundary conditions (33) and determining which of the solutions is stable. Solutions of
the eigenvalue problem (30)–(33) give an infinite set of eigenvalues ε1 < ε2 < ε3 < · · · .
When the smallest eigenvalue ε1 is negative, the flow becomes unstable, and there is an
initial growth of disturbances. Conversely, if ε1 is positive, the flow becomes stable, and
there is an early decline of disturbances. The smallest eigenvalues ε1 for different values
of the mixed convection parameter λ are displayed in Table 2.

From this table it is observed that the upper branch solutions contain positive eigen-
values ε1, while the lower branch solutions contain negative eigenvalues ε1. As a result,
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we obtain the conclusion that the first (upper branch) solution is stable, while the second
(lower branch) solution is unstable. The basic fluid flow problem, which is considered
here, was investigated by Weidman [29], and the corresponding mixed convection flow
was studied by Lok et al. [13]. When a constant magnetic field is applied in the normal
direction to the buoyancy force, the Lorentz force is generated due to the fluid velocity.
This Lorentz force has a significant influence on the mixed convection, which is evident
from different figures presented here.

6 Concluding remarks

We have considered the steady mixed convection nonaxisymmetric Homann stagnation-
point flow of an incompressible viscous fluid over a vertical flat wall in a magnetic field.
The governing equations are transformed into ordinary differential equations by applying
similarity transformations. The equations for the flow and temperature fields reduce to
similarity form and involve four parameters: the Prandtl number Pr , γ representing the
shear-to-strain-rate ratio, magnetic field parameter M , and a mixed convection parame-
ter λ. The transformed equations are solved numerically by an efficient shooting method.
The characteristics of the skin friction coefficient, surface temperature gradient, velocity,
and temperature features for governing parameters are analyzed and discussed. We have
shown how the solutions behave for all λ for representative values of magnetic field
parameter M . The enhancement of the magnetic field parameter M leads to increase
the skin friction coefficient. It is observed that when the mixed convection parameter λ is
large, the upper branch values of f ′′(0) and g′′(0) increase at a constant rate. It is noticed
that as the magnetic field parameter M increases, the critical value |λc| increases. Also,
it is found that dual solutions exist for a specific range of mixed convection parameter λ.
From the stability analysis it is concluded that the upper branch solutions are stable and
physically realizable, while the lower branch solutions are unstable. When the magnetic
field parameter M increases, the fluid velocity along the x-axis decreases, whereas along
the y-axis fluid velocity increases. With the increases of mixed convection parameter λ,
the fluid velocity increases. It is noticed that when the shear-to strain-rate ratio γ increases,
the velocity profile increases along the x-axis but decreases along the y-axis. Also, we
observe that when the shear-to-strain-rate ratio γ increases, the temperature at a point
decreases.
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