Nonlinear Analysis: Modelling and Control, Vol.29, No. 6, 1080-1105 5 RS,

¥ -1579-

https://doi.org/10.15388/namc.2024.29.37848 S | viius
P ¢ z o University
% & | Press
> TAs ¥

Results on integral inequalities for a generalized
fractional integral operator unifying two existing
fractional integral operators

Supriya Kumar Paul?, Lakshmi Narayan Mishra®'®, Vishnu Narayan Mishra

#Department of Mathematics, School of Advanced Sciences,
Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
rgumathsupriya@gmail.com; lakshminarayanmishra04 @ gmail.com;
lakshminarayan.mishra@vit.ac.in

bDepartment of Mathematics, Indira Gandhi National Tribal University,
Lalpur, Amarkantak, Anuppur 484 887, Madhya Pradesh, India
vishnunarayanmishra@gmail.com; vam@igntu.ac.in

Received: November 13, 2023 / Revised: September 30, 2024 / Published online: December 1, 2024

Abstract. The main aim of this article is to design a novel framework to study a generalized frac-
tional integral operator that unifies two existing fractional integral operators. To ensure the suitable
selection of the operator and with the discussion of special cases, it is shown that our considered
fractional integral generalizes the well-known Atangana—Baleanu fractional integral (AB-fractional
integral) and the ABK-fractional integral. Conditions are stated for the generalized AB-fractional
integral operator (GAB-fractional integral operator) to be bounded in the space X% (vy1,72). We
also provide a fractional product-integration formula for this operator. Furthermore, we generalize
the reverse Minkowski’s inequality and the reverse Holder-type inequality by utilizing the GAB-
fractional integral operator. Additionally, some other types of integral inequalities are established,
and several special cases are noted. The concepts in this article may influence further research in
fractional calculus.

Keywords: Atangana—Baleanu fractional integral, generalized fractional integral, Minkowski’s
inequality, Holder’s inequality, fractional integral inequality.

1 Introduction

The theory of fractional calculus, a branch of mathematical analysis dealing with inte-
grals and derivatives of arbitrary order using the gamma function, is one of the most
significant mathematical tools for physical investigation, such as nonlinear oscillations
of earthquakes, the fluid dynamic traffic model, computer networking, image processing,
signals, biology, viscoelastic theory, and several others. The papers [10-12,21,25,27-29]
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describe the advancement of fractional calculus and provide explanations of some of its
wide applications in engineering and science.

An advantageous characteristic of this area is that there are many fractional opera-
tors, which allows researchers to select the most suitable operator in order to model the
research issue. A major number of researchers have worked on definitions, theorems,
models, and a variety of generalizations of existing results [3, 10, 15,21,23,26].

One interesting area of study is the generalization of classical inequalities using frac-
tional-order integral operators. Many authors have presented several types of integral
inequality by means of fractional order. In the literature we found, a Gronwall-type in-
equality was presented by Jarad et al. [16] for the Atangana—Baleanu fractional derivative
and Adjabi et al. [4] for generalized fractional operators. Nice outcomes were recently
observed regarding Hermite—-Hadamard-type inequalities [30], Ostrowski-type integral
inequalities [5], and Minkowski’s inequality [20] involving the Atangana—Baleanu frac-
tional integral operator. In 2021, Kashuri [17] introduced a new generalized fractional
integral operator, namely, ABK-fractional integral, and presented Hermite—Hadamard-
type inequalities for this integral operator. Butt et al. [13] introduced some generalized
integral inequalities for the ABK-fractional integrals.

Such types of generalizations motivate future research to introduce more new con-
cepts to unify the fractional integral operators and obtain integral inequalities via such
generalized operators. Integral inequalities and their applications play an important role
in the theory of differential equations and applied mathematics [9].

In this paper, we introduce a generalized version of the AB-fractional integral and
the ABK-fractional integral, which we name generalized AB-fractional integral (GAB-
fractional integral). Conditions are stated for the GAB-fractional integral operator to be
bounded in the space X?(v1,72). We also provide a fractional product-integration for-
mula for this operator. Taking into account the novel ideas, we establish a new version of
reverse Holder-type inequality and reverse Minkowski’s inequality for the GAB-fractional
integral, and we also introduce some certain types of integral inequalities related to this
fractional integral that are advantageous to current research.

This article is structured as follows: In Section 2, some background information is
given. The definition of GAB-fractional integrals (left-sided and right-sided) is given in
Section 3. Reverse Minkowski’s inequality and some corresponding integral inequalities
for the GAB-fractional integrals are discussed in Section 4. Reverse Holder-type inequal-
ity for the GAB-fractional integrals and some special cases are obtained in Section 5. In
Section 6, some other types of inequalities for the GAB-fractional integrals are obtained.
Finally, the conclusions and future work are given in Section 7.

2 Preliminaries
In this section, we provide some background information, which are useful for the pre-

sentation of our main results. We denote the set {# € R: v > 0} by the notation R’
throughout the entire paper, where R is the set of real numbers.
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Definition 1. (See [18].) Let ¢ € Rand 1 < p < oo. The space X?(v1,72) con-
sists of those complex-valued Lebesgue measurable functions ¢ on [y, 2] for which

[¢llxz < oo with
Y2 q 1/p
v
¢l xr = </|VCC(V)|pV> , 1<p<oo,
Y1

and
[Cllxee =ess sup  [v°[¢(v)]], p=oc.
Y1SVEY2

In particular, when ¢ = 1/p (1 < p < 0), the space X?(v1,72) coincides with the
classical LP(7y1,72)-space. Moreover, the Sobolev space H'(v1,2) is defined as [14]

H'(71,72) = {¢: ¢ € L*(1,72) and ¢' € L?(m1,72) }-

The generalized Mittag-Leffler function appears in the Atangana—Baleanu (AB) frac-
tional derivative, which is known to have a nonlocal fractional derivative with nonsingular
kernel [22,24]. In [1, 8], Atangana and Baleanu developed two novel fractional-order
derivatives depending on the definitions of Riemann-Liouville and Caputo fractional
derivatives. The AB-fractional integrals in terms of the Riemann—Liouville fractional
integral are stated as follows:

Definition 2. (See [2,8].) The AB-fractional integral of a function { € H'(v1,72) is
given by

v

B(o)T (o) /(V — w7y dp, v >y,

Y1

ABTec) = 2T 0 4

where 1 < 2,0 € [0, 1], '(0) is the Gamma function and B(c’) > 0 is the normalization
function obeying B(0) = B(1) = 1.
Also, the opposite side of the AB-fractional integral is described as,
Y2

- /(M — )7 (p)dp, v < .

ABTOC(v) =

17

Remark 1. Since B(o) > 0 is positive, it immediately follows that the AB-fractional
integral of a positive function is positive. It should be observed that, when o is 0, we
obtain the initial function, and if o is 1, we recover the ordinary integral.

In 2021, Kashuri [17] introduced the ABK-fractional integrals (left-sided and right-
sided) in terms of the Katugampola fractional integrals [18], which are defined as follows:

https://www.journals.vu.lt/nonlinear-analysis
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Definition 3. (See [17].) Let [y1,72] C R be a finite interval. Then the ABK-fractional
integrals (left-sided and right-sided) of order o € (0,1) of ( € XP(+1,2) are given by

ABKSTIC(v)
_1—0' y LH I/ﬁ— gyo—1 B—1 5
~ B(0) e+ B(U)F(o)/( p7)” P () dp, v > 2 0,
and
APRSTI((v)
1—0 o -0 "2 o B
— B(o‘) C(V) + B(O?)I‘(O-) / (/‘Lﬁ _ I/ﬂ) 1,[,145 1C(/$) d/,L, U< 72’

where B(o) > 0 is the normalization function obeying B(0) = B(1) =1, and 8 > 0.

Remark 2. (See [17].) Since B(o) > 0 is positive, it immediately follows that the ABK-
fractional integral of a positive function is positive. Note that, when 5 = 1, we recover
the AB-fractional integral.

Recently, Katugampola [6, 19] implemented a new fractional integral that unifies
six fractional integrals, namely, Erdélyi—Kober, Katugampola, Riemann-Liouville,
Hadamard, Liouville, and Weyl fractional integrals as follows:

Definition 4. (See [6,19].) Let ¢ € X?(v1,72), o0 > 0, and 8,7,6,k € R. Then the
generalized Katugampola fractional integrals (left-sided and right-sided) are defined by

o Blonyk LGRS
( I»y1)+;§,k<) (V) = F(O') / (Vﬁ _ /J/j)l*o'é-('u) d:“? O < 71 <v< 72 < OO?
Y1
and
2
1-—mn,,B86 k+p8—1
B o,m o 6 14 1%
( I’Yg—;57k}<) (V) - 1—\(0) / (NB — Vﬂ)l—UC('u) d.u“v 0 < M <V <72 < 00,

v
respectively, if integrals exist.

Theorem 1. (See [19].) Leto > 0,1 < p< 00, 0 <71 < v2 < o0, and let B,¢c € R be
such that 8 > c. Then the operator 51;71’1;5’,@ is bounded in X?(v1,72), and

|‘5I$£1;6,kd|Xf < KHCHX?’

where

517n7§(a+5)+k 72//’“150[3(0'4»5)1

(o) (tF — 1)

K dt, B#0, kR, 5> 0.
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Theorem 2. (See [19].) Leto > 0,1 < p <
let B,c € R be such that 3 > c. Then for {,H
integration formula holds. That is,

0o, n € R0 <m <72 < o0 and
€ XP(v1,72), the fractional product-

Y2 Y2
/uﬁ—lg(y)(ﬂzjﬁ;&k%)(y) dv = /uﬂ—ly(u)(ﬂz‘;ﬂ;mg)(u) dv.
Y1 71

3 Generalized AB-fractional integral operator (GAB-fractional
integral operator)

Motivated by the above literature, we introduce the GAB-fractional integrals (left-sided
and right-sided) as follows:

Definition 5. Let 0 < 713 < 12 < 00, 1 < p < 00,9 >0, and let 5,1, k, c € R be such
that 5 > c and 8 # 0. Then the left-sided GAB-fractional integral of order o € [0, 1] of
a function ¢ € X?(v1,72) is defined by

GABg 70,
et Losl(v)

_1l-0 oBk ; ppE+D-1
- 5+ o | e >0 W)

Y1

where B : [0, 1] — (0, c0) is the normalization function obeying B(0) = B(1) = 1.
Sometimes, especially in variational calculus, fractional integrals work in pairs [7].
Therefore, the corresponding right-sided GAB-fractional integral is defined by

GABﬁ IU,?] (l/)

Y2— v,0,k
1-0 oB=MyPs ”? A1
B WC(V) + B(o)T'(0) / (1P — vP)l-o Clpw)dp, v <ye.

Remark 3. When 8 > 0, since B(o) is positive, it immediately follows that the GAB-
fractional integrals of a positive function is positive. Also, when 7 is not an integer and
B < 0, then 81~ is complex and can be treated using the theory of complex analysis,
considering appropriate branches. It should be observed that, when = o, k = 0, and
6 = 0, we recover the ABK-fractional integrals. Moreover, when k& = 0, § = 0, and
B = 1, we recover the AB-fractional integrals. Furthermore, the interested researcher
can discover a new nonlocal fractional derivative of it with a Mittag-Leffler nonsingular
kernel, various formulas, and a variety of applications.

Now, we show that the GAB-fractional integral operator (Sﬁ_B BI;’(?’ ) is well defined
on XP(v1,2). We have the following theorem:

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 3. Let0 <o < 1,0< v <y <oo,1<p<ood >0 andlet B,n,k,c e R
be such that 8 > ¢ and 5 # 0. Then the operator (GABBIZ(?k) is bounded in X?(v1,72),
and

ISAP T3kl o < MICN x2,

where
l1—0
M = + —
B(o) B(U)
and
B ot Y2/m o Blos)
IC:ﬁl n%é( +o)+k / 1e—B(0+9) 1dt
(o) (tF —1)t-o 77

Proof. To establish the result, we write Eq. (1) as follows:

1 _
ST = 55 0+ s (Tl )

where

. gLk B(64+1)—1
(Tt sk00) = o [ s ) di

71

For o = 0, the result is obvious. So, we have to show for 0 < o < 1.
Since ((v) € XP(y1,72) and by Theorem 1, we get that the operator (ﬂl'y’z_ sk) 18
bounded in X? (71, 72) with

P25 5 1€l xr S KISl xz for 1 < p < oo
where
/m
Bl’"vg(H‘S)J’k T e Blo+0)-1

I G

K=

Then for 1 < p < oo and by using the triangle inequality, we get

o,n 1- o’
942252, = Hf“ BZ,) (Tt
< (0‘;'| +5a711C 700
g g
< (U)HCHX Boy el

which implies that
GA
H'Yl"rBﬂ :g]kCHXP MHCHX@H

Nonlinear Anal. Model. Control, 29(6):1080-1105, 2024
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where
1—0 o
M = —K. 2
B(r) " B(0) @
For p = oo, we have
v GAP I < By e + 5 v (T3 k00
Y1+ v,0,k X ( ) ) 1436,k
1 o o
[¢lIxse + 7= Kl xe
B(o) B(o) ‘
1—0 o
= —=—+—K .
(57 * iy it
This agrees with above (2). This completes the proof. O
Corollary 1. Let 0 < 0 < L0 < 71 < 12 <00, 1 <p<ood >0 andlet

B, Z,plz eR I;e such that B > 1/p and 8 # 0. Then the operator (GAB’*Igg’k) is bounded
in V1,72

Now we will establish the fractional product-integration formula for the GAB-fractional
integral operator with the help of Theorem 2.

Theorem 4. Let 0 < 0 < 1,0 <11 < 2 <00, 1 <p< oo >0 and let
B,n,k,c € R be such that § > c and B # 0. Then for (,H € XP(y1,72), the fractional
product-integration formula holds. That is,

2 Y2
/ VA1) (CAPS T, H(v)) dv = / PIHW) (ST Cv)) dv.
71 "

Proof. To establish the result, we write Eq. (1) as follows:

1—0

B(o)

GAB
Y1+ °TI, Z(?k(( )

() + 57 (T han) )

where

L-n,k Bo+1)—1
(L2150 0) = P [ el

71

From Theorem 2 we have

Y2 Y2
[V T 00 dr = [ 1) CI,0) 0) d
71 71

https://www.journals.vu.lt/nonlinear-analysis
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Now,
V2
I/ﬁ71<(l/) (glﬁ_BﬁI;’ng(V)) dv
Y1
Y2
1—
= /Vﬁ_lg(u)< B(U;"H(V) + BET(T)(ﬂIzl’i;&kH)(V)) dv
71
V2 V2
1-— _ _ o
-5 [ v gTs [T ) @) av
Y1 71
72 72
1—
= B(g;’ / VI () H () dv + % / VITIH) (I 50 (v) dv
Y1 Y1
Y2
1—
= /yﬁl’}-[(y)< B(O'()TC(V) + B(UU) (61;72’71;6,%;4) (I/)) dv
71
2
= /Vﬁ_lﬂ(v) (SzéBﬁIZ”gka(u)) dv.
71
This completes the proof. O

4 Reverse Minkowski inequality for the GAB-fractional integral
operator

In this section, we establish the reverse Minkowski’s inequality for the GAB-fractional
integrals. Due to a similar treatment for the right-sided integral, we will only work with
the left-sided integral in this instance.

Theorem 5. Leto € (0,1, 5> 0,0,k € R 6 2 0,andp > 1. Let 0 < 71 < 7y2 < 00,

and ¢, H € XP(y1,72) be two positive functions such that S’lﬁBf*IZ”gka(u) < o0 and

S’lﬁ_BﬂI;’ngp(u) <ooforallv >y > 0.If0 < XA < ((v)/H(v) < B for some

A, B € RY and for all v € [y1, 2], then

(AP TR ) " + GAP T e w)
<OEAPIIL () + Hw))Y,

where © = (B(1+ A\)+ (B+1))/((1+X)(B+1)).

Proof. From the condition ¢(v)/H(v) < B we get

¢(v) < B(¢(v) + H(v)) — BC(v),

Nonlinear Anal. Model. Control, 29(6):1080-1105, 2024
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which implies
()< 5o
v) < ——
B+1

Taking the pth power of both sides, we get

(CWw) +H(v)).

") < <BB+1> (Cw) +H())", (3)

Multiplying both sides of (3) by (1 — 0)/B(c), we have

l1—0

» B P1-0¢ P
501 < (g ) g (00 + M) @

Now, replacing v by y in inequality (3) and multiplying both sides by o 31 ~"v* A 0+1) =1/
(B(o)I'(0)(v? — pP)1=7), where i1 € (71, v), we obtain
Bk A6+ -1
i ¢ (1)
B(o)L'(o)(v# — u”)

B \? ogpl-nyk,B0+1)-1 )
- (B+1> B(afr(g)(;ﬁ — Ao (C(u) +H(m))". 5)

Integrating both sides of (5) with respect to u, we get

GBIk [ B
B(o)I'(o0) / (VP — pB)1—o ¢P(p) dp

71

P ,Rl-nyk B(6+1)—1 »
< ( Bi) B(ﬁa)l‘(a) / (Vﬁ_uﬁ)l_a (C) + H ()" dp. (©)

Y1

Adding (4) and (6), we get

l—0 , oBl-nyk pporu-1
WC W)+ B(o)T'(o) / (VB _'uﬁ)l—o'c (p) dp
1—0

s (BB+1> B(0)

GBIk [ B ,
B(ﬂJ)F(J) / (VI;_MB)H, (C(u) +H ()" duel,

71

Cw)+Hw)"

_|_

i.e.,

(o B b (e
ST (v) < (B+1> ST () + H)" ()

https://www.journals.vu.lt/nonlinear-analysis
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Taking the (1/p)th power of both sides of (7), we obtain

B
B+1

Again, by the condition 0 < A < ((v)/H(v), we can write

HP( ( > ))". 9)
(o)

Multiplying both sides of (9) by (1 — 0)/B

l—-0 l-0
P(v) < 1

S0 < (115 B () + 1)) (10)
Now, replacing v by y in inequality (9) and multiplying both sides by o3~/ (0+1) =1/
(B(o)T'(0)(v? — 1uP)1=7), we obtain

ok fE+1) -1

s (1)
B(o)T'(0)(v* — p”)

1 \? gpl-mkupe+)-1
(1 + A) B(o)I(0)(v? — )=

Integrating both sides of (11) with respect to u, we get

(GABg o7 Py ))1/p

ot AR (GAPAZZT (C(v) + Hw))") 7. )

, we have

(C(w) + H(p)". (11)

1-n k ¢ B06+1)—-1
iy

B(o)L(o) J (vF —uP)i e

71

1 oBt-k pB+— »
s <1+)\> B(o)T(0) / wF e G+ W) e (2

71

Adding (10) and (12), we get

10, , OB o
Blo) W)+ B(o)I'(0) / WP = )=t (1) dpa

Y1

< (HlA) “3(_0‘; (C0) +HE)"

g Bk M,B(é—i—l)—l

BT (0) / (WP — B)i—o (Cr) +H(w)" dpe],

71

1.e.,

g 1 b (8
SAPRTZN HP(v) < (1+/\) SAPA T (Cw) + H (W) (13)

Nonlinear Anal. Model. Control, 29(6):1080-1105, 2024
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Taking the (1/p)th power of both sides of (13), we obtain

o 1 3 TO0
AP )" < s G T o) + 1)) as

Adding (8) and (14), we get

o, 1 o 1

(SAP Tz )" + (AP T P ()7
<OEII () +HW)")',

where © = B(1+ X))+ (B+1)/((1+ X)(B+1)). O

Corollary 2. Ifwe take n = 0, k = 0, and § = 0 in Theorem 5, the reverse Minkowski’s
inequality for the ABK-fractional integral is as follows:

G Zoer @)+ QR Iz ) < ORI (Cw) + Hw)”),
where © = B(1+X\)+ (B+1)/((14+ A\)(B +1)).

Remark 4. Khan et al. [20] presented the reverse Minkowski’s inequality for the AB-
fractional integral. In this case, kK = 0, 4 = 0, and 8 = 1 in Theorem 5.

5 Reverse Holder’s inequality for the GAB-fractional integral
operator

In this section, we prove the reverse Holder-like inequalities for the GAB-fractional
integral operator. Due to a similar treatment for the right-sided integral, we will only
work with the left-sided integral in this instance.

Theorem 6. Leto € (0,1], 8>0,n,keR 6§ >0, p>1,¢g> 1L and1l/p+1/g=1
Let 0 < v < 72 < 00, and (,H € XP(v1,72) be two positive functions such that

%ﬁBﬁII‘:’gk(j(V) < oo and glﬁBﬁI;’ng(u) <ooforallv >~ >0.If0 <A< ((v)/

H(v) < B for some N\, B € R and for all v € [y1, 2], then
GABgj 7o, 1/p (GABg o, 1/q
(G "Iy @) "G5 61}}75{1@%(’/))

B

) (>1/<pq> (GABaTon ((1/n()341/9(0))]
S{ it vk |

Proof. By the given condition {(v)/H(v) < B, we get
M) < BY1HY (). (15)
Multiplying (15) by ¢/P (1) and using the condition 1/p + 1/¢ = 1, we get

C(v) < BY¢P(wyHY(v). (16)

https://www.journals.vu.lt/nonlinear-analysis
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Now, multiplying (16) by (1 — 0)/B(o), we obtain

1—0o l/qlfa

B(o)

CMPYHY (). a7)

Again, replacing v by p in inequality (16) and multiplying by o3'~"/*pf0+1)-1/
(B(o)I'(0)(v? — pP)1=7), we obtain
BTk A1) -1
BN o) — oy W)
BTk B+ -1
B(o)l'(o) (v — pf)t=

< B/ P HY (), pe (mv).  (18)

Integrating both sides of (18) with respect to u from v to v, we get

o Bk r AETD) -1
oo | Gy S

Y1

1-m k 7+ B(6+1)—1
< BV | Gy e ) (1

71

From (17) and (19) we get

l1—0 O'Bl_nllk v M5(5+1)_1
B(o) )+ B(o)T(0) / WP — pP)i—o C(p) dp

Y1

LT b yptiaw)

< Bl/4
B(o)

o Bk PP y y
"B / wF =i Wl

71

which implies that
g, A o,
GABaTon ((v) < BY4[SABITTY (CVP()HY (). (20)

v

Taking (1/p)th power of both sides of (20), we have
0 1 loa 1
(AR I, ) < BV [SAR 1T, (O )] )
By the given condition A < {(v)/H(v), we get

HYP(v) < ATHPCP (). (22)

Nonlinear Anal. Model. Control, 29(6):1080-1105, 2024
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Multiplying (22) by #'/4(v) and using the condition 1/p + 1/q = 1, we get

H(v) < X7YPCYPy Y 9(v). (23)
Now, multiplying (23) by (1 — o)/B(0), we obtain
-0 v Up(yHV/
S ) < AT S ), a4

Again, replacing v by p in inequality (23) and multiplying by 3!~k f0+1)-1/
(B(o)T'(0) (v — 1iP#)1=7), we obtain
oLk B+ -1
i )
B(o)T'(0)(vF — u?)
Bk A1
B(o)l'(o)(vF — pf)t=e

Integrating both sides of (25) with respect to u from v, to v, we get

< A~ /p

CP(HY (), p€ (n,v).  (25)

o Bk y A1
/(Vﬁ—uﬁ)lf"mmdu

B(o)I'(0)
71
—1/ Uﬁl_”uk/y pA+)-1 Y y
< pB(U)F(U) (I/f‘—uﬁ)l—‘fC Py H 4 (p) dp. (26)
Y1
From (24) and (26) we get
l—0o GBIk | pPE+) -1
(U)H( v)+ B(o)I'(0) /(yﬁ—uﬁ)l—oﬂ(u) dp
Y1
_ip|l-o B T I B ICERVES
1/p| =Y ~1/ 1/ 1/ 1
S B TR By /(yﬂ,,tﬁ)kac PR (1) dp]

Y1

which implies that
ST M) S XV [SEPTTY (TP )Y ()] 27
Taking (1/q)th power of both sides of (27), we have
a, 1 — T 1
AP I H) ' < NV EAR I (e w)] Y @)
From (21) and (28) we obtain
GABg 7o, 1/p (GABg 7o, 1/
(’)’1+ A ,/(;]k(,_( )) p(’y1+ °T, (?kH( )) !

< A1/ g1/ (v0) [SﬁBﬁIZ’gk (Cl/p@)q.[l/q(y))] 1/p+l/a
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This implies
GABj 701 1/p GABg 7o 9/ 1/q
(’)’1+ V,6,kc(y)) (714— v,0,k (V))
B\ GAB 1 1
< ()\) [t AN (s PyHYI(v))]. U

Corollary 3. Leto € (0,1, 3> 0,7,k €R, §>0,p>1,¢> L,and1/p+1/q= 1.
Let 0 < v < 72 < 00, and (,H € XP(v1,72) be two positive functions such that
SﬁBﬂI:gka(V) < o0 and S’IA_FB‘;II‘:’;”,CH‘I(V) < ooforallv >y > 0.If0 < A <
C(v)/HU(v) < B for some X\, B € R and for all v € [y1,72), then

i ) B\ Y/ ®a) i
ST 0) G T w) < (B) T A como).

Corollary 4. If we take n = o, k = 0, and § = 0 in Theorem 6, the following inequality
for the ABK-fractional integral holds:

GRS Tew) P GR Zon) ' < <B>l/(pq) BT (M) ()]
Y1+ v Y1+ v = Y Y1+ v :

Remark 5. If we take £k = 0, = 0, and 8 = 1 in Theorem 6, the following inequality
for the AB-fractional integral holds:

1/(prq)
arzew)rermHe) < (3) T B om o),

Khan et al. presented this inequality for the AB-fractional integral in [20].

6 Other types of integral inequalities

In this section, our discussion will be on some other types of fractional integral inequali-
ties via the left-sided GAB-fractional integral.

Theorem 7. Leto € (0,1, 8 > 0,k e Rop > 1, ¢ > 1, and1/p+1/q = 1

Let 0 < v < 72 < oo, and let (,H € XP(v1,72) be two positive functions such

thar SAPSTN CP(v) < oo, SAPOIT CI(v) < oo, SAPPITY HP(v) < oo, and

SlﬁBﬁIi’ngq(u) <ooforallv > v > 0.If0 < XA < ((v)/H(v) < B for some
A, B € RY and for all v € [y1, 2], then

S () HW))
< PHSAPRIIN (CP(v) + HP(v)) + Q@ SAPPITL (CU(v) + HI(v)),

where P* = 2P~1BP /(p(B + 1)P), Q* = 2971 /(q(1 + \)9).
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Proof. From the given condition ((v)/H(v) < B we obtain

B
‘S pia

Taking the pth power of both sides of (29), we get

¢v) < (BBH) (CO) +HW))". (30)

Multiplying both sides of (30) by (1 — o)/B(0), we have

(Cw) +H(W)). (29)

1—0 » B 1770 , N
()C() (B+1> B(a)(C(”'H( )" 31)

Replacing v by y in inequality (30) and multiplying by o1~ "0 P+ =1 /(B(5)T(o) x
(P — 1)1 =7), we obtain
oLk BEH) -1
RS ()
B(o)I'(0)(vF — 1)
_ B \P oBl-myk A1
B11) Blo)To)F e

Integrating both sides of (32) with respect to p from v, to v, we get

() +HW)", we@ny). (G2

o Bk i GRS
B(U)F(U)/(Vﬁ—ﬂﬁ)k”

71

B PRty k i B(d+1)—1 ,
S <B+1> B(ﬁamg) / (,fé_uﬁ)l_a (C(w) +H () dp. - (33)

71

¢P(p) dp

From (31) and (33) we get

l-o Btk ppe+H-1
ch(y) - B(o)I'(0) / (VB — Py ¢P(p) dpe
71

B p .
S <B+1> (C) +H())
oBl-mk pPE+H-1

+ B(O’)F(J) / (yﬁ _ uﬂ)lfo' (C(,U) +H(:u))p d/.L 5

71

1—0

B(o)

which implies that

G' B P T
TEPIHCP(v) < ( 5 +1> ST () + M) (34)
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Multiplying (34) by 1/p, we get

—_

1
I () <

B P 0, 7]
Jox (527) Sz C@ 1) 69

p
Again, the given condition 0 < A < ((v)/H(v), we obtain

o) < (115 ) 60+ H0)', 3o
Multiplying both sides of (36) by (1 — ¢)/B(o), we have
1-0 1 M—-0
B(0) H(v) < <1+)\) W(C(”) JFH(V))q- 37

Replacing v by x in inequality (36) and multiplying by o8~ "v* A0+ =1 /(B(5)T (o) x
(P — 1P)1=7), we obtain
oLk B0
i ()
B(o)I'(0)(v* — p”)

1 9 gpl-myk B+ .
S (1 + A) B(o)[ (o) (P — pP)i—o (Cl) +H(w)"

(38)

Integrating both sides of (38) with respect to x from ; to v, we get

o Bk y A+ -1
S | e P

71

1 \?opt-m* B(6+1)—1
S (1+/\> ;(ﬁo)r(g) / (V’L;_Nﬁ)lfa () +H(m) du. (39)
71

From (37) and (39) we get

l—0o o Bk B+ -1
= s g

80) T Bo(0) ] WF =y

71

< (1+1A> “3(0‘)’ (C@) + M)

oBl—nyk B(d+1)—1 .
B(ﬁa)l—‘(o’) / (VIL,;_MB)l—o (C(u) +H ()" dp

71

+

which implies that
(o ]' ? (e
Iz < (1) VTR FHO) 6o

Nonlinear Anal. Model. Control, 29(6):1080-1105, 2024


https://doi.org/10.15388/namc.2024.29.37848

1096 S.K. Paul et al.

Multiplying (40) by 1/q, we get
q
lGABEIo,n Hq(V) <1 1 GABgIa,n (C(V)—FH(U))Q
q’Yl+ v,0,k = q 1+>\ Y1+ v,0,k .
From (35) and (41) we get
1GABBIU,77 D ]-GABgIa,n q
ot vkl (V) + PR st (v)
1/ B \aas p
< I [—;'1'0'777
P (B n 1) 14 u,6,k(g(y) +H(V))
1 1 qGABgza,n ey q
+5 14\ Y1+ v,0,k (g(l/) + (V)) .

Using Young’s inequality,

and multiplying (43) by (1 — 0)/B(0), we get

1-—0 1—0o((P(v)  HI(v)
B(o) (W) < B(U)( g >

(41)

(42)

(43)

(44)

Replacing v by  in inequality (43) and multiplying by o8~ "v*pf0+D=1/(B(o)T (o) x

(v — 1P)1=7), we obtain for y1 € (71,),

o Btk AEF L
B(o)T(0)(vP — uf)i—o C(p)H (1)
o Bk A +1)=1

P VIR

S DB (@) (WP — uP) )+ gB(o)T (o) (VP — May—a%q(“)'

Integrating both sides of (45) with respect to u from v, to v, we get

opl=nyk / B(6+1)—1
B(BU)I‘(U) / (yl,;_M/g)l_U C(p)H(p) dp

!

Jﬂl_nyk I M,@(6+1)_1 )
< BTy | T

71

Y I I Ce ,
T BT / F =y ) dp

71

(45)

(46)
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From (44) and (46) we obtain

-0 GBIk [ B
B(o) C)H(v) + B(o)T (o) / 7 Py C(H(p) dp

7

L—o (CP(v)  HI@w)) | oft~mb [ pfe+D-1
s B(U)( p g )+pB(0)F(J)/(yﬁ—M6)1oC ()

71

oBIIE [ e
BN (@) / WF —ppyie 1t ) dp

7

This implies
(o8 ]‘ 0' ]‘ 0'
ST COMW) < SSARTIC o)+ SAR T ). @
From (42) and (47) we have

ST (M) < 3 (5o ) ST )+ W)

42 (1 ! A) SAPPTZR (Cw) +HW)!. (48
Using the elementary inequality

C+H)™ <2m M+ H™), (H=0,m>1, (49)
for m = p and multiplying (49) by (1 — 0)/B(0), we get

l1-0o p p—11 p P(y
B0y (W) +HW)" <2 ()@(>+H<». (50)

Again, for m = p and multiplying (49) by o3 "0k /P O+D=1 /(B(0)T (o) (VP —1iP) 1 —9),
we get

Uﬂknykuﬁ(ﬂl)q

B(U)F(J)(Vﬁ — uﬁ)lfo
T ) , ’
s? B(o)I'(0)(vP — pf)t—o (CP(w) +HP (W), p € (71,0). (51)

(C(w) + H(w)”

Integrating both sides of (51) with respect to p from ; to v, we get
o Bk . pBE+)-1 )
H d
B(o)T'(0) / (VB — pB)i-o (C(N) + (M)) H
71
< o1 I8 / pPE+-1
< B(o)I'(0) (yﬁ _ M,B)lfa

71

(CP(w) +HP (1)) dps. (52)
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Now, from (50) and (52) we get

1—0
B(o)

b, Bk y AEH) -1 )
(€0)+ 1) + G [ e (€0 + )

71

<2t [13(_0()7 (P (v) +H(v))

oBl-nyk pPO+H-1 ) )
dp|.
71

This implies that

SAPALIY () + HO) <2 AP IIL (W) + W) 5
Now, applying the similar process for m = ¢, we get

ST (W) + H ) <207 SEPP T (T (v) + (V). (54)
Using (53), (54), and (48), we get

ST (M)
<SP ST (P ) + HO () + @ AP TV (CU) + HA).

where P* = 2P~1BP/(p(B + 1)P), @* = 2971 /(q(1 + X\)9). The result is proved. [

Corollary 5. Ifwe take n = 0, k = 0, and § = 0 in Theorem 7, the following inequality
for the ABK-fractional integral holds:

SERATI (C()H(v))
Y1+ v
<P ARV I (CP0) + HP () + QST (C(v) + HO(v)),

where P* = 2P~1BP /(p(B + 1)P), Q* = 2971 /(q(1 + \)9).

Remark 6. If we take £ = 0, § = 0, and 8 = 1 in Theorem 7, the following inequality
for the AB-fractional integral holds:

WL (CHW)) < P*IPTI(CP(v) + HP (v)) + Q' 3PT7 (CU(v) + HA(v)),

where P* = 2P~1BP /(p(B + 1)?), Q* = 2971 /(q(1 + \)9).
Khan et al. presented this result for the AB-fractional integral in [20].
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Theorem 8. Leto € (0,1, 8 >0, 1,k €R 6 20,andp > 1. Let 0 < 41 < y2 < 00,
and {,H € XP(v1,72) be two positive functions such that S’lﬁBBIng (v) < o0 and
%ﬁBﬁIZg’kH(u) < oo, forallv > v > 0.If0 < A < ¢(v)/H(v) < B for some

A, B € RY and for all v € 1,72, then

SO (M) < m (SAP T3, (C0) + H(v)*)

1 ’,
< LI CHD)).

Proof.  Since

((v)
0< A HO) < B, (55)
this can be written as )
1 H(v 1
E X C(V) X X (56)
Therefore, from (55) and (56) we get
H@)A+1) <C(v)+H() < H@Y)(B+1), 57
and
B+1 A+1
W) ; <)+ HY) < (W) i : (58)
Using (57) and (58), we get
1 () +H(v))?
EC(”)H(V) < m C( JH(v). (59)
Multiplying (59) by (1 — o) /B(c), we obtain
_ _ 2 _
1-01 o 1—0 (((v)+H(v)) o 1-0 1C(V)7-L(l/). 60)

Bo) B* VS By Br 0+ S By a

Replacing v by 4 in inequality (59) and multiplying by o810 A0+ =1 /(B(5)T (o) x
(v — uP)1=7), where pu € (1, ), we obtain

O.Blfnykﬂﬁ@Jrl)fl 1

B(o)I'(0)(vF — /ﬁ)l_a B

C()H (1)

< GBI R BN (¢ () + H(p))?
S BT () (WP — 17— (B+1)(A £ 1)
R DGR I |
S Blo)T (o) (WP — pP)ie NS H (p). 61)
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Integrating (61) with respect to x from v, to v, we get

’ Uﬁl_nykuﬁ((s-‘rl)—l 1
/ B(o)T(0) (w7 — pP)i—r Bo U du

71

/V aﬁlfn,/kﬂﬁ(éﬂ)q () + H(u))2
/ B(o)['(0)(vP — pP)1=o (B+1)(A+1)
f oLk AN

/ B(o)T(0) (w7 — )i 2w

71

Using (60) and (62), we get

H(pr) dp. (62)

SOAPTO, (COH W) < m (AP (W) + 1))

1 o
<3S M),

Corollary 6. If we take n = 0, k = 0, and § = 0 in Theorem 8, the following inequality
for the ABK-fractional integral holds:

%fi“fs (CWH»)) < m BRI () + 1))

1
< Xﬁ}?ﬁﬁlg (CW)H(v)).

N

Remark 7. If we take £ = 0, § = 0, and 5 = 1 in Theorem 8, the following inequality
for the AB-fractional integral holds:

LABTo (cu)H () <

o ABTT(C(v) +H(v))")

(B+1)(A+1) (’“
1 (2
<IN C)HW)).
Khan et al. presented this inequality for the AB-fractional integral in [20].

Theorem 9. Lero € (0,1, 8>0,n,k€R, § 20, andp > 1. Let 0 < 71 < 72 < 00,

and let ,H € XP(v1,72) be two positive functions such that SﬁB‘*I;’gkap(u) < 0

and SAPPTT WP (v) < oo forallv >y > 0. If0 < Ay < ((v) < By, 0 < Ap <

V7

H(v) < Bg forallv € [y1,72), then
AT @) + AP T @)
o, 1
<O T (o) + Hw)")

where © = B1()\1 + Bs) + Ba(A2 + Bl)/(()q + Bs)(A2 + B1)).
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Proof. By the given condition 0 < Ay < H(v) < Ba, we get
1 1 1
- S < 1
Bg H(l/) /\2

Now, using (63) and the given condition A; < {(v) < By, we get

From (64) we have

Multiplying (66) by (1 — ¢)/B(c), we obtain

l1-0 » l1-0 By
Bo) L WS B ()\1 t B,

)@M+HMW

1101

(63)

(64)

(65)

(66)

(67)

(68)

(69)

Replacing v by x in inequality (66) and multiplying by o8~ "v*pf0+D=1/(B(5)T (o) x

(P — 1P)1=7), we obtain
L=k )1
s (1)
B(o)l'(o) (v — p?)
O_ﬁl—nykuﬁ(é-‘rl)—l B,
<
B(o)I(0)(v? — )= (Al + By

Integrating (70) with respect to x from v, to v, we get

)@w+ﬂmﬂ

f Uﬁl_nvkuﬁ(é'ﬂ)—l )
/ B(o)T'(o)(vP _uﬁ)l—gH (p) dp
71

A+ By

B p 1-n, k, B(6+1)—1
<< 2 ) /BUB G (C(w) + H(w))" dp.

(@) (o) (v = pP)i=e

1
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From (69) and (71) it follows that
B p
GA o, 2 GA o,
’71+BﬂIV,57{Ic,HP(V) < (}\1 + B2) 71+Bﬁzu,g{k (C(V) + H(V))p (72)
Taking (1/p)th power of both sides of (72), we get

GABj 7o, 1/p By
e S v

By the similar steps, from (68) we get

(GABeZn (C(v) + HW))YP. (73)

By

GABg o, 1/p
( 8o P(y)) < m

SABsTOY, (GABeZR (C(v) + HW))YP. (74

Thus, from (73) and (74) we get

o, 1/ o, 1/
Gy W)+ (GAP I P () 7

<OEAP I (W) + HE))
where © = (Bl()q + Bg) + BQ()\Q + Bl))/(()\l + BQ)()\Q + Bl)) O

Corollary 7. If we take n = o, k = 0, and § = 0 in Theorem 9, the following inequality
for the ABK-fractional integral holds:

GEZgerw) "+ QR ZgHr ) < ORI () + 1)),

where @ = (B1(>\1 + Bg) + BQ(/\Q + Bl))/((/\l + BQ)(/\Q + Bl))

Corollary 8. Ifwe take k =0, § = 0, and = 1 in Theorem 9, the following inequality
for the AB-fractional integral holds:

APZscr ) + (PZonr ) < 0PI (Cw) + 1)),
where © = (Bl(/\l + Bg) + BQ(/\Q + Bl))/((/\l + Bg)(/\g + Bl))

7 Conclusions and future work

In this article, we introduced the left-sided and right-sided GAB-fractional integrals.
In Theorem 3, we stated the conditions for the GAB-fractional integral operator to be
bounded in the space X?(a,b). Also, a fractional product-integration formula for this
operator is provided in Theorem 4. To develop the area of integral inequalities, we ob-
tained the reverse Minkowski’s inequality and reverse Holder-type inequality for the
left-sided GAB-fractional integral. Moreover, we established some other types of inte-
gral inequalities for the considered fractional integral, and several special cases were
discussed. Theorems 5-8 that we presented are generalizations of the existing results
obtained by Khan et al. [20] for the AB-fractional integral. Since the GAB-fractional
integral is a generalized form of the existing integrals, we can do a lot of research based
on this integral operator. In the future, one can explore more results in the area of integral
inequalities for this generalized framework, such as the Ostrowski-, Chebyshev-, Gruss-
type, etc.
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