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Abstract. In this paper, the impacts of multiple time delays on bifurcation of a class of fractional
nearest-neighbor coupled neural networks are considered. Firstly, the sum of time delays is selected
as a parameter, and the fractional nearest-neighbor coupled neural network model is linearized to
obtain the corresponding characteristic equation. Then, utilizing stability and bifurcation theory of
fractional-order delay differential equations, we investigate the effect of time delays on the system’s
stability and bifurcations. The results show that when the time lag exceeds the critical value, the
system will lose stability and generate Hopf bifurcation. Finally, the correctness of the conclusions
in this paper is verified through numerical simulation.

Keywords: nearest-neighbor coupled neural networks, fractional order, Hopf bifurcation, stability,
delay.

1 Introduction

Coupling refers to the level of correlation between two or more subsystems (or units)
within a system. Specifically, it measures the extent to which a change in one subsystem
affects another subsystem or multiple subsystems, and how such changes impact the
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overall characteristics of the system. The degree of coupling is a critical determinant
of stability and flexibility of a system and can be categorized as either tight or loose.
Tight coupling denotes a close relationship among subsystems with their functions be-
ing interdependent. Conversely, loose coupling describes a weak internal linkage among
subsystems with their functions being largely unrelated.

Coupled systems have been extensively utilized in the design and operation of com-
plex systems. For instance, Shen et al. [19] proposed a method for loosely coupled system
integration, which can be applied in facility management and decision support to advance
multidisciplinary design optimization and intelligent development. Chen et al. [4] devel-
oped a dual-coupling system for electric vehicles charging on the road, which allows
for individual control of charging sections by coupling circuits, reducing power loss and
addressing the current issues of short mileage, high cost, and low charging rate. In [21],
a new dynamic mathematical model is designed for studying coupled hydro-generator
shaft-foundation systems, based on nonlinear differential equations and the Runge–Kutta
algorithm of the nonlinear response of the stimulating subsystem. This coupled model
outperforms the classical model in terms of sensitivity and performance. For additional
examples of applications of coupled systems, please refer to papers [3, 25].

Coupled systems are also widely used in modern science and technology, including
computer network systems [23], robot systems [13], sensor systems [14], virtual reality
systems [2], and artificial neural network systems [12], among others. Neurons in the
human brain, for example, form a complex and highly interconnected large-scale informa-
tion network through coupling behavior, sending electrical signals to collect, process, and
deliver information [20]. Artificial neural networks are computational or mathematical
models that imitate the structure and function of biological neural networks, originating
from the working principle of human brain neurons. Research on neural networks can be
traced back to the 1940s when scholars first proposed a mathematical model based on the
interaction between neurons [6]. The perceptron, a typical structure of neural networks,
was subsequently developed by Rosenblatt [7], and further research on multilayer percep-
trons and the backpropagation algorithm for training followed. Due to the limitations of
computer technology and algorithms at that time, research on neural networks stagnated
for a time. However, the rapid development of science and technology and the rise of
deep learning since 2000 have stimulated renewed interest in neural networks, resulting
in the invention of new models such as convolutional neural network (CNN) [1], Hopfield
network [10], bidirectional associative memory network (BAM) [22], nearest-neighbor
coupling neural network (NNCN) [8], and others. These models have made significant
breakthroughs in image processing, speech recognition, and data prediction [18, 33].

With the advancement of computer technology and information technology, the ap-
plication of artificial neural networks in various fields has gained significant attention.
Therefore, it is of utmost importance to establish a neural network model that is suitable
for practical applications, based on the principles of neuron function. In practical appli-
cations, time delay reflects the time of information transmission and processing in the
system, as well as the system’s inertia and feedback mechanism. Time delay often affects
the performance and stability of the system, causing dynamic behaviors such as periodic
solutions, bifurcations, and chaos [27]. For example, in 2015, Mao and Wang studied the
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dynamic behavior of a four-neuron coupled neural network model with multiple delays,
analyzed the local stability, and provided the sufficient conditions for the occurrence of
Hopf bifurcations [15]. Xu discussed the stability at the zero equilibrium point of a class
of multidelay simplified BAM neural networks in [29] and established the global existence
conditions of periodic orbits using relevant theories. In [11], Zhang and Wei studied
the dynamic behavior of fractional-order financial systems with time-delay feedback and
analyzed the impact of time-delay feedback on system bifurcations. However, most neural
network models focus only on the connection and time delay between adjacent nodes,
and not on the delay in transmission between nonadjacent nodes. The nearest-neighbor
coupled neural network model connects each node to its neighbors or nonadjacent nodes,
which leads to an increase in the number of time delays during information transmission,
thereby more accurately reflecting the overall characteristics of the neural network, and
aligning with practical applications.

In 2020, Wang and Xiao et al. [24] proposed a class of nearest-neighbor coupled
neural networks with six neurons and twelve time delays as follows:

µ̇1(t) = −ϕ1µ1(t) + η1h1
(
µ2(t− ξ2)

)
+ η2l2

(
µ5(t− ξ7)

)
,

µ̇2(t) = −ϕ2µ2(t) + η3h3
(
µ3(t− ξ3)

)
+ η4l4

(
µ6(t− ξ10)

)
,

µ̇3(t) = −ϕ3µ3(t) + η5h5
(
µ4(t− ξ4)

)
+ η6l6

(
µ1(t− ξ9)

)
,

µ̇4(t) = −ϕ4µ4(t) + η7h7
(
µ5(t− ξ5)

)
+ η8l8

(
µ2(t− ξ12)

)
,

µ̇5(t) = −ϕ5µ5(t) + η9h9
(
µ6(t− ξ6)

)
+ η10l10

(
µ3(t− ξ8)

)
,

µ̇6(t) = −ϕ6µ6(t) + η11h11(µ1(t− ξ1)
)

+ η12l12
(
µ4(t− ξ11)

)
,

(1)

where µp (p = 1, 2, . . . , 6) is the state of neuron p at time t, ϕp > 0 is the self-feedback
coefficient, ηi > 0 (i = 1, 2, . . . , 12) is the connection weight between neurons, h2p−1,
h2p are the activation functions, and ξi is the delay between different neurons.

In recent years, fractional calculus has emerged as an interdisciplinary subject and be-
come a hot research topic in various branches of mathematics. Compared with traditional
integer-order calculus, fractional-order calculus exhibits long memory and nonlocality
characteristics, which provide more effective tools for studying dynamic changes in sys-
tems. As a result, it has been widely applied in various fields, including image encryption
[31], fluid mechanics [9], medical research [32], and neural networks [26], among others.
The fractional-order time-delay mathematical model is a dynamical system that combines
fractional-order calculus and time-delay differential equation theory, enabling more real-
istic and accurate analyses of dynamic behavior in practical applications. Consequently,
the study of fractional-order time-delay differential systems has attracted the attention of
many scholars with many excellent results emerging. For example, Xu investigated the
dynamic behavior of fractional-order BAM neural networks with time-delays, deriving
sufficient conditions for system-generated Hopf bifurcations, which verified the impor-
tance of time delays on the dynamic behavior of fractional-order systems [28, 30].

Based on the aforementioned analysis, this paper aims to improve and further promote
model (1) by studying a class of fractional-order nearest-neighbor coupled neural network
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models with multiple delays as follows:

Dqµ1(t) = −ϕ1µ1(t) + η1h1
(
µ2(t− ξ2)

)
+ η2l2

(
µ5(t− ξ7)

)
,

Dqµ2(t) = −ϕ2µ2(t) + η3h3
(
µ3(t− ξ3)) + η4l4

(
µ6(t− ξ10)

)
,

Dqµ3(t) = −ϕ3µ3(t) + η5h5
(
µ4(t− ξ4)) + η6l6

(
µ1(t− ξ9)

)
,

Dqµ4(t) = −ϕ4µ4(t) + η7h7
(
µ5(t− ξ5)) + η8l8

(
µ2

(
t− ξ12)

)
,

Dqµ5(t) = −ϕ5µ5(t) + η9h9
(
µ6(t− ξ6)) + η10l10

(
µ3(t− ξ8)

)
,

Dqµ6(t) = −ϕ6µ6(t) + η11h11
(
µ1(t− ξ1)

)
+ η12l12

(
µ4(t− ξ11)

)
,

(2)

where q ∈ (0, 1], Dq represents the Caputo-type derivative and is the original model for
q = 1. µp (p = 1, 2, . . . , 6) is the state of neuron p at time t, ϕp > 0 is the self-feedback
coefficient, ηi > 0 (i = 1, 2, . . . , 12) is the connection weight between neurons, h2p−1,
l2p are the activation functions, and ξi is the delay between different neurons. For more
parameter information, please refer to paper [24].

For the further development of later research, the following assumptions are necessary.

(H1) h2p−1(·) ∈ (R,R), h2p−1(0) = 0, h′2p−1(0) 6= 0; l2p(·) ∈ (R,R), l2p(0) = 0,
l′2p(0) 6= 0 (p = 1, 2, . . . , 6).

In this paper, we mainly consider the impacts of multiple time delays on bifurcation
of a class of fractional nearest-neighbor coupled neural networks. We demonstrate that
the equilibrium point of system (2) loses its stability, and Hopf bifurcation emerges when
the sum of the delay passes through a critical value.

It is worth mentioning that so far, some research has mainly focused on integer-order
systems, while research on the Hopf bifurcation problem of fractional-order systems, es-
pecially, fractional-order coupled systems, is rare. The key technique to study the stability
and bifurcation of fractional-order coupled systems is to linearize the system by Laplace
transform and consider the influence of delays in this article.

The analysis for the rest of this paper will be carried out in the following order. In
Section 2, the basics of fractional differential systems are introduced. In Section 3, the
sufficient conditions for the stability and bifurcation of the multidelay fractional neighbor
coupled neural network model at the equilibrium point are analyzed. In Section 4, the cor-
rectness of the obtained conclusions is verified through numerical simulation examples.
Section 5 finishes this paper with a conclusion.

2 Preliminaries

In this section, the basic definitions and lemmas of fractional differential systems will
be given. There are three classic definition methods for fractional derivatives, which are
Riemann–Liouville fractional derivatives, Caputo fractional derivatives, and Grünwald–
Letnikov fractional derivatives. Because the Caputo fractional derivative can adjust the
value of the order at any time according to the needs, it is more flexible in calculation and
application. So this article will use the Caputo fractional derivative.
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Definition 1. (See [17].) The Caputo fractional derivative is defined as

C
aD

q
t f(t) =

1

Γ(n− q)

t∫
a

f (n) ds

(t− s)q+1−n ,

where n− 1 < q < n ∈ Z+, Γ(s) =
∫∞
0
ts−1e−t dt.

Caputo fractional derivatives can be obtained by Laplace transform as follows:

L
{
Dqf(t); s

}
= spF (s)−

n−1∑
l=0

sq−u−1f (l)(0)
(
n− 1 < q < n ∈ Z+

)
,

where f (u)(0) = 0 (u = 1, 2, . . . , n), L{Dqf(t); s} = sqF (s).

Lemma 1. (See [16].) Consider the fractional-order system

Dqy(t) = g
(
t, y(t)

)
,

y(0) = y0,
(3)

where q ∈ (0, 1] and g(t, y(t)) : R+ × Rm → Rm. The equilibrium point of system (3)
is locally asymptotically stable if all eigenvalues λ of the Jacobian matrix ∂g(t, y)/∂y
evaluated near the equilibrium point satisfy |arg(λ)| > qπ/2.

Lemma 2. (See [5].) Consider a fractional linear system with several state variables

Dq1ρ1(t) = χ11ρ1(t− τ11) + χ12ρ2(t− τ12) + · · ·+ χ1nρn(t− τ1n),

Dq2ρ2(t) = χ21ρ1(t− τ21) + χ22ρ2(t− τ22) + · · ·+ χ2nρn(t− τ2n),

. . . ,

Dqnρn(t) = χn1ρ1(t− τn1) + χn2ρ2(t− τn2) + · · ·+ χnnρn(t− τnn),

(4)

where qi ∈ (0, 1] (i = 1, 2, . . . , n). Let

∆(λ) =


λq1 − χ11e−λτ11 −χ12e−λτ12 · · · −χ1ne−λτ1n

−χ21e−λτ21 λq2 − χ22e−λτ22 · · · −χ2ne−λτ2n

...
...

. . .
...

−χn1e−λτn1 −χn2e−λτn2 · · · λqn − χnne−λτnn

 .
Then, the zero solution of system (4) is globally asymptotically stable if the real parts of
all roots of det (∆(λ)) = 0 are negative.
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3 Stability of equilibrium point and analysis of Hopf bifurcation

From (H1) it can be obtained that the equilibrium point of system (2) is zero. Now the
linear transformation of system (2) can be obtained

Dqµ1(t) = −ϕ1µ1(t) + γ1µ2(t− ξ2) + η2µ5(t− ξ7),

Dqµ2(t) = −ϕ2µ2(t) + γ3µ3(t− ξ3) + η4µ6(t− ξ10),

Dqµ3(t) = −ϕ3µ3(t) + γ5µ4(t− ξ4) + η6µ1(t− ξ9),

Dqµ4(t) = −ϕ4µ4(t) + γ7µ5(t− ξ5) + η8µ2(t− ξ12),

Dqµ5(t) = −ϕ5µ5(t) + γ9µ6(t− ξ6) + η10µ3(t− ξ8),

Dqµ6(t) = −ϕ6µ6(t) + γ11µ1(t− ξ1) + η12µ4(t− ξ11)

in which γ2p−1 = η2p−1h
′
2p−1(0), γ2p = η2pl

′
2p(0) (p = 1, 2, . . . , 6).

By Lemma 2 the characteristic equation of system (2) is∣∣∣∣∣∣∣∣∣∣∣∣

sq + ϕ1 −γ1e−sξ2 0 0 −γ2e−sξ7 0
0 sq + ϕ2 −γ3e−sξ3 0 0 −γ4e−sξ10

−γ6e−sξ9 0 sq + ϕ3 −γ5e−sξ4 0 0
0 −γ8e−sξ12 0 sq + ϕ4 −γ7e−sξ5 0
0 0 −γ10e−sξ8 0 sq + ϕ5 −γ9e−sξ6

−γ11e−sξ1 0 0 −γ12e−sξ11 0 sq + ϕ6

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (5)

Based on [24], we can carry on the following assumption.

(H2) ξ = ξ1 + ξ2 + ξ10 = ξ1 + ξ6 + ξ7 = ξ2 + ξ3 + ξ9 = ξ3 + ξ4 + ξ12

= ξ4 + ξ5 + ξ8 = ξ5 + ξ6 + ξ11 = ξ7 + ξ8 + ξ9 = ξ10 + ξ11 + ξ12.

Because of (H2), Eq. (5) is equivalent to the following equation:

s6q + P5s
5q + P4s

4q + P3s
3q + P2s

2q + P1s
q + P0

−
(
Q3s

3q +Q2s
2q +Q1s

q +Q0

)
e−sξ + J0e−2sξ = 0, (6)

where

P5 = ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6,

P4 = ϕ1(ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6) + ϕ2(ϕ3 + ϕ4 + ϕ5 + ϕ6)

+ ϕ3(ϕ4 + ϕ5 + ϕ6) + ϕ4(ϕ5 + ϕ6) + ϕ5ϕ6,

P3 = ϕ1ϕ2(ϕ3 + ϕ4 + ϕ5 + ϕ6) + ϕ1ϕ3(ϕ4 + ϕ5 + ϕ6) + ϕ1ϕ4(ϕ5 + ϕ6)

+ ϕ2ϕ3(ϕ4 + ϕ5 + ϕ6) + ϕ2ϕ4(ϕ5 + ϕ6) + ϕ3ϕ4(ϕ5 + ϕ6)

+ ϕ5ϕ6(ϕ1 + ϕ2 + ϕ3 + ϕ4),

P2 = ϕ1ϕ2ϕ3(ϕ4 + ϕ5 + ϕ6) + ϕ1ϕ2ϕ4(ϕ5 + ϕ6) + ϕ1ϕ3ϕ4(ϕ5 + ϕ6)

+ ϕ2ϕ3ϕ4(ϕ5 + ϕ6) + ϕ5ϕ6(ϕ1 + ϕ3)(ϕ2 + ϕ4) + (ϕ1ϕ3 + ϕ2ϕ4),

P1 = ϕ1ϕ2ϕ3(ϕ4ϕ5 + ϕ4ϕ6 + ϕ5ϕ6) + ϕ4ϕ5ϕ6(ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3),

P0 = ϕ1ϕ2ϕ3ϕ4ϕ5ϕ6,
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Q3 = γ1γ3γ6 + γ1γ4γ11 + γ3γ5γ8 + γ2γ6γ10 + γ2γ9γ11

+ γ5γ7γ10 + γ4γ8γ12 + γ7γ9γ12,

Q2 = γ1γ3γ6(ϕ4 + ϕ5 + ϕ6) + γ1γ4γ11(ϕ3 + ϕ4 + ϕ5) + γ3γ5γ8(ϕ1 + ϕ5 + ϕ6)

+ γ2γ6γ10(ϕ2 + ϕ4 + ϕ6) + γ2γ9γ11(ϕ2 + ϕ3 + ϕ4) + γ5γ7γ10(ϕ1 + ϕ2 + ϕ6)

+ γ4γ8γ12(ϕ1 + ϕ3 + ϕ5) + γ7γ9γ12(ϕ1 + ϕ2 + ϕ3),

Q1 = γ1γ3γ6(ϕ4ϕ5 + ϕ4ϕ6 + ϕ5ϕ6) + γ1γ4γ11(ϕ3ϕ4 + ϕ3ϕ5 + ϕ4ϕ5)

+ γ3γ5γ8(ϕ1ϕ5 + ϕ1ϕ6 + ϕ5ϕ6) + γ2γ6γ10(ϕ2ϕ4 + ϕ2ϕ6 + ϕ4ϕ6)

+ γ2γ9γ11(ϕ2ϕ3 + ϕ2ϕ4 + ϕ3ϕ4) + γ5γ7γ10(ϕ1ϕ2 + ϕ1ϕ6 + ϕ2ϕ6)

+ γ4γ8γ12(ϕ1ϕ3 + ϕ1ϕ5 + ϕ3ϕ5) + γ7γ9γ12(ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3),

Q0 = γ1γ3γ6ϕ4ϕ5ϕ6 + γ1γ4γ11ϕ3ϕ4ϕ5 + γ3γ5γ8ϕ1ϕ5ϕ6 + γ2γ6γ10ϕ2ϕ4ϕ6

+ γ2γ9γ11ϕ2ϕ3ϕ4 + γ5γ7γ10ϕ1ϕ2ϕ6 + γ4γ8γ12ϕ1ϕ3ϕ5 + γ7γ9γ12ϕ1ϕ2ϕ3,

J0 = (γ6γ12 − γ5γ11)(γ1γ3γ7γ9 − γ1γ4γ7γ10 + γ2γ4γ8γ10 − γ2γ3γ8γ9).

Multiply the left and right sides of Eq. (6) by esξ at the same time to get(
s6q + P5s

5q + P4s
4q + P3s

3q + P2s
2q + P1s

q + P0

)
esξ

−
(
Q3s

3q +Q2s
2q +Q1s

q +Q0

)
+ J0e−sξ = 0. (7)

When ξ > 0, let s = iν = ν(cosπ2 + i sinπ2) (ν > 0) be a pure imaginary root of
Eq. (7). We can get(

ν6q(cos 3qπ + i sin 3qπ) + P5ν
5q

(
cos

5qπ

2
+ i sin

5qπ

2

)
+ P4ν

4q(cos 2qπ + i sin 2qπ) + P3ν
3q

(
cos

3qπ

2
+ i sin

3qπ

2

)
+ P2ν

2q(cos qπ + i sin qπ) + P1ν
q

(
cos

qπ

2
+ i sin

qπ

2

)
+ P0

)
× (cos νξ + i sin νξ)

−
(
Q3ν

3q

(
cos

3qπ

2
+ i sin

3qπ

2

)
+Q2ν

2q(cos qπ + i sin qπ)

+Q1ν
q

(
cos

qπ

2
+ i sin

qπ

2

)
+Q0

)
+ J0(cos νξ − i sin νξ) = 0.

Separate the real and imaginary parts to get(
ν6q cos 3qπ + P5ν

5q cos
5qπ

2
+ P4ν

4q cos 2qπ

+ P3ν
3q cos

3qπ

2
+ P2ν

2q cos qπ + P1ν
q cos

qπ

2
+ P0

)
cos νξ

−
(
ν6q sin 3qπ + P5ν

5q sin
5qπ

2
+ P4ν

4q sin 2qπ
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+ P3ν
3q sin

3qπ

2
+ P2ν

2q sin qπ + P1ν
q sin

qπ

2

)
sin νξ

−
(
Q3ν

3q cos
3qπ

2
+Q2ν

2q cos qπ +Q1ν
q cos

qπ

2
+Q0

)
+ J0 cos νξ = 0 (8)

and (
ν6q cos 3qπ + P5ν

5q cos
5qπ

2
+ P4ν

4q cos 2qπ

+ P3ν
3q cos

3qπ

2
+ P2ν

2q cos qπ + P1ν
q cos

qπ

2
+ P0

)
sin νξ

+

(
ν6q sin 3qπ + P5ν

5q sin
5qπ

2
+ P4ν

4q sin 2qπ

+ P3ν
3q sin

3qπ

2
+ P2ν

2q sin qπ + P1ν
q sin

qπ

2

)
cos νξ

−
(
Q3ν

3q sin
3qπ

2
+Q2ν

2q sin qπ +Q1ν
q sin

qπ

2

)
− J0 sin νξ = 0. (9)

Let
A11 = ν6q cos 3qπ + P5ν

5q cos
5qπ

2
+ P4ν

4q cos 2qπ

+ P3ν
3q cos

3qπ

2
+ P2ν

2q cos qπ + P1ν
q cos

qπ

2
+ P0,

A12 = ν6q sin 3qπ + P5ν
5q sin

5qπ

2
+ P4ν

4q sin 2qπ

+ P3ν
3q sin

3qπ

2
+ P2ν

2q sin qπ + P1ν
q sin

qπ

2
,

B11 = Q3ν
3q cos

3qπ

2
+Q2ν

2q cos qπ +Q1ν
q cos

qπ

2
+Q0,

B12 = Q3ν
3q sin

3qπ

2
+Q2ν

2q sin qπ +Q1ν
q sin

qπ

2
.

(10)

From (8), (9), and (10) we get

(A11 + J0) cos νξ −A12 sin νξ = B11,

(A11 − J0) sin νξ +A12 cos νξ = B12.
(11)

By (11) we can obtain

sin νξ =
A11B12 −A12B11 + J0B12

A2
11 +A2

12 − J2
0

,

cos νξ =
A11B11 +A12B12 − J0B11

A2
11 +A2

12 − J2
0

.

(12)
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Now, take

a6 = cos 3qπ, a5 = P5 cos
5qπ

2
, a4 = P4 cos 2qπ, a3 = P3 cos

3qπ

2
,

a2 = P2 cos qπ, a1 = P1 cos
qπ

2
, a0 = P0,

b6 = sin 3qπ, b5 = P5 sin
5qπ

2
, b4 = P4 sin 2qπ, b3 = P3 sin

3qπ

2
,

b2 = P2 sin qπ, b1 = P1 sin
qπ

2
, b0 = 0,

c3 = Q3 cos
3qπ

2
, c2 = Q2 cos qπ, c1 = Q1 cos

qπ

2
, c0 = Q0,

d3 = Q3 sin
3qπ

2
, d2 = Q2 sin qπ, d1 = Q1 sin

qπ

2
, d0 = 0,

e0 = J0, ei = 0 (i > 0).

According to the above form, (10) can be transformed into

A11 = a6ν
6q + a5ν

5q + a4ν
4q + a3ν

3q + a2ν
2q + a1ν

q + a0,

A12 = b6ν
6q + b5ν

5q + b4ν
4q + b3ν

3q + b2ν
2q + b1ν

q,

B11 = c3ν
3q + c2ν

2q + c1ν
q + c0,

B12 = d3ν
3q + d2ν

2q + d1ν
q.

(13)

For sin2 νξ + cos2 νξ = 1, it can be obtained

(A11B12 −A12B11 + J0B12)2 + (A12B12 +A11B11 − J0B11)2

=
(
A2

11 +A2
12 − J2

0

)2
. (14)

Let

βk =

6∑
i=0

(aiak−i + bibk−i − eiek−i) (0 6 k 6 12),

δl =

6∑
i=0

(aicι−i + bidι−i − cieι−i)−
∑
ι−i=1

bidι−i +
∑
ι−i=1

bibι−i (0 6 ι 6 9),

εr =

6∑
i=0

(bicr−i − aidr−i + eidr−i)−
∑
r−i=1

(eidr−i − aidr−i)

+
∑
r−i=1

(eibr−i − aibr−i) (0 6 r 6 9).

Substituting (13) into (14), we can get

α0ν
24q + α1ν

23q + α2ν
22q + α3ν

21q + α4ν
20q + α5ν

19q + α6ν
18q

+ α7ν
17q + α8ν

16q + α9ν
15q + α10ν

14q + α11ν
13q + α12ν

12q
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+ α13ν
11q + α14ν

10q + α15ν
9q + α16ν

8q + α17ν
7q + α18ν

6q

+ α19ν
5q + α20ν

4q + α21ν
3q + α22ν

2q + α23ν
q + α24 = 0 (15)

in which

α0 = β2
12, α1 = 2β11β12,

α2 = β2
11 + 2β10β12, α3 = 2(β9β12 + β10β11),

α4 = β2
10 + 2(β8β12 + β9β11), α5 = 2(β7β12 + β8β11 + β9β10),

α6 =
(
β2
9 − δ29 − ε29

)
+ 2(β6β12 + β7β11 + β8β10),

α7 = 2(β5β12 + β6β11 + β7β10 + β8β9)− 2(δ8δ9 + ε8ε9),

α8 = β2
8 + 2(β4β12 + β5β11 + β6β10 + β7β9)− 2(δ7δ9 + ε7ε9),

α9 = 2(β3β12 + β4β11 + β5β10 + β6β9 + β7β8)

− 2(δ6δ9 + δ7δ8 + ε6ε9 + ε7ε8),

α10 =
(
β2
7 − δ27 − ε27

)
+ 2(β2β12 + β3β11 + β4β10 + β5β9 + β6β8)

− 2(δ5δ9 + δ6δ8 + ε5ε9 + ε6ε8),

α11 = 2(β2β11 + β3β10 + β4β9 + β5β8 + β6β7)

− 2(δ4δ9 + δ5δ8 + δ6δ7 + ε4ε9 + ε5ε8 + ε6ε7),

α12 =
(
β2
6 − δ26 − ε26

)
+ 2(β1β11 + β2β10 + β3β9 + β4β8 + β5β7 + β6β8)

− 2(δ3δ9 + δ4δ8 + δ5δ7 + δ6δ8 + ε3ε9 + ε4ε8 + ε5ε7),

α13 = 2(β0β11 + β1β10 + β2β9 + β3β8 + β4β7 + β5β6)

− 2(δ2δ9 + δ3δ8 + δ4δ7 + δ5δ6 + ε2ε9 + ε3ε8 + ε4ε7 + ε5ε6),

α14 =
(
β2
5 − δ25 − ε25

)
+ 2(β0β10 + β1β9 + β2β8 + β3β7 + β4β6)

− 2(δ1δ9 + δ2δ8 + δ3δ7 + δ4δ6 + ε1ε9 + ε2ε8 + ε3ε7 + ε4ε6),

α15 = 2(β0β9 + β1β8 + β2β7 + β3β6 + β4β5)

− 2(δ0δ9 + δ1δ8 + δ2δ7 + δ3δ6 + δ4δ5 + ε1ε8 + ε2ε7 + ε3ε6 + ε4ε5),

α16 =
(
β2
4 − δ24 − ε24

)
+ 2(β0β8 + β1β7 + β2β6 + β3β5)

− 2(δ0δ8 + δ1δ7 + δ2δ6 + δ3δ5 + ε1ε7 + ε2ε6 + ε3ε5),

α17 = 2(β0β7 + β1β6 + β2β5 + β3β4)

− 2(δ0δ7 + δ1δ6 + δ2δ5 + δ3δ4 + ε1ε6 + ε2ε5 + ε3ε4),

α18 =
(
β2
3 − δ23 − ε23

)
+ 2(β0β6 + β1β5 + β2β4)

− 2(δ0δ6 + δ1δ5 + δ2δ4 + ε1ε5),

α19 = 2(β0β5 + β1β4 + β2β3)− 2(δ0δ5 + δ1δ4 + δ2δ3 + ε1ε4 + ε2ε3),

α20 =
(
β2
2 − δ22 − ε22

)
+ 2(β0β4 + β1β3)− 2(δ0δ4 + δ1δ3 + ε1ε3),

α21 = 2(β0β3 + β1β2)− 2(δ0δ3 + δ1δ2 + ε1ε2),

α22 =
(
β2
1 − δ21 − ε21

)
+ 2(β0β2 − δ0δ2),

α23 = 2(β0β1 − δ0δ1), α24 =
(
β2
0 − δ20

)
.

(16)
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Let

$(ν) = α0ν
24q + α1ν

23q + α2ν
22q + α3ν

21q + α4ν
20q + α5ν

19q + α6ν
18q

+ α7ν
17q + α8ν

16q + α9ν
15q + α10ν

14q + α11ν
13q + α12ν

12q

+ α13ν
11q + α14ν

10q + α15ν
9q + α16ν

8q + α17ν
7q + α18ν

6q

+ α19ν
5q + α20ν

4q + α21ν
3q + α22ν

2q + α23ν
q + α24. (17)

Lemma 3. Let the following assumption holds:

(H3) β2
0 − δ20 < 0.

Then there is at least one pair of pure imaginary roots in Eq. (6).

Proof. Combining (16) and (17), we have limν→+∞$(ν) = +∞. Obviously,$(0) < 0.
According to the zero point theorem of continuous functions, we can obtain that Eq. (15)
has at least one positive root, and this positive root is recorded as νk (k = 1, 2, . . . , N ).
Then substitute it into (12) to get

ξ
(j)
k =

1

νk

[
arccos

(
−A11B11 +A12B12 − J0B11

A2
11 +A2

12 − J2
0

)
+ 2jπ

]
,

where k = 1, 2, . . . , N ; j = 0, 1, 2, . . . .
Now define ξ0 = min{ξ(0)k }, and ξ0 is the root of Eq. (6) to ν0, that is, there are at least

one pair of pure imaginary roots in characteristic equation (6). The proof is complete.

We assume that the following condition holds.

(H4) κRλR + κIλI/(λ
2
R + λ2I) > 0, where

κR =

(
6qw6q−1

0 cos
(6q − 1)π

2
+ 5qP5w

5q−1
0 cos

(5q − 1)π

2

+ 4qP4w
4q−1
0 cos

(4q − 1)π

2
+ 3qP3w

3q−1
0 cos

(3q − 1)π

2

+ 2qP2w
2q−1
0 cos

(2q − 1)π

2
+ qP1w

q−1
0 cos

(q − 1)π

2

)
cos(w0ξ0)

−
(

6qw6q−1
0 sin

(6q − 1)π

2
+ 5qP5w

5q−1
0 sin

(5q − 1)π

2

+ 4qP4w
4q−1
0 sin

(4q − 1)π

2
+ 3qP3w

3q−1
0 sin

(3q − 1)π

2

+ 2qP2w
2q−1
0 sin

(2q − 1)π

2
+ qP1w

q−1
0 sin

(q − 1)π

2

)
sin(w0ξ0)

−
(

3qQ3w
3q−1
0 cos

(3q − 1)π

2
+ 2qQ2w

2q−1
0 cos

(2q − 1)π

2

+ qQ1w
q−1
0 cos

(q − 1)π

2

)
,
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κI =

(
6qw6q−1

0 cos
(6q − 1)π

2
+ 5qP5w

5q−1
0 cos

(5q − 1)π

2

+ 4qP4w
4q−1
0 cos

(4q − 1)π

2
+ 3qP3w

3q−1
0 cos

(3q − 1)π

2

+ 2qP2w
2q−1
0 cos

(2q − 1)π

2
+ qP1w

q−1
0 cos

(q − 1)π

2

)
sin(w0ξ0)

+

(
6qw6q−1

0 sin
(6q − 1)π

2
+ 5qP5w

5q−1
0 sin

(5q − 1)π

2

+ 4qP4w
4q−1
0 sin

(4q − 1)π

2
+ 3qP3w

3q−1
0 sin

(3q − 1)π

2

+ 2qP2w
2q−1
0 sin

(2q − 1)π

2
+ qP1w

q−1
0 sin

(q − 1)π

2

)
cos(w0ξ0)

−
(

3qQ3w
3q−1
0 sin

(3q − 1)π

2
+ 2qQ2w

2q−1
0 sin

(2q − 1)π

2

+ qQ1w
q−1
0 sin

(q − 1)π

2

)
,

λR =

(
w6q

0 cos
6qπ

2
+ P5w

5q
0 cos

5qπ

2
+ P4w

4q
0 cos

4qπ

2

+ P3w
3q
0 cos

3qπ

2
+ P2w

2q
0 cos

2qπ

2
+ P1w

q
0 cos

qπ

2
+ P0

)
w0 sin(w0ξ0)

+

(
w6q

0 sin
6qπ

2
+ P5w

5q
0 sin

5qπ

2
+ P4w

4q
0 sin

4qπ

2

+ P3w
3q
0 sin

3qπ

2
+ P2w

2q
0 sin

2qπ

2
+ P1w

q
0 sin

qπ

2
+ P0

)
w0 cos(w0ξ0)

+ J0w0 sin(w0ξ0)

λI = −
(
w6q

0 cos
6qπ

2
+ P5w

5q
0 cos

5qπ

2
+ P4w

4q
0 cos

4qπ

2

+ P3w
3q
0 cos

3qπ

2
+ P2w

2q
0 cos

2qπ

2
+ P1w

q
0 cos

qπ

2
+ P0

)
w0 cos(w0ξ0)

+

(
w6q

0 sin
6qπ

2
+ P5w

5q
0 sin

5qπ

2
+ P4w

4q
0 sin

4qπ

2

+ P3w
3q
0 sin

3qπ

2
+ P2w

2q
0 sin

2qπ

2
+ P1w

q
0 sin

qπ

2
+ P0

)
w0 sin(w0ξ0)

+ J0w0 cos(w0ξ0).

Lemma 4. Assume that s(ξ) = α(ξ) + iw(ξ) be the root of Eq. (15) at ξ = ξ0 that
satisfies α(ξ0) = 0, w(ξ0) = w0. Then

Re

((
ds

dξ

)−1∣∣∣∣
ξ=ξ0

)
> 0.
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Proof. Let s(ξ) = α(ξ) + iw(ξ) be the root of Eq. (15) near ξ = ξ0 that satisfies α(ξ0) =
0, w(ξ0) = w0. Next, we verify the condition of transversality. Taking the derivative of
Eq. (6) with respect to ξ, we have(

6qs6q−1 + 5qP5s
5q−1 + 4qP4s

4q−1 + 3qP3s
3q−1 + 2qP2s

2q−1 + qP1s
q−1)esξ ds

dξ

+
(
s6q + P5s

5q + p4s
4q + P3s

3q + P2s
2q + P1s

q + P0

)(
s+ ξ

ds

dξ

)
esξ

−
(
3qQ3s

3q−1 + 2qQ2s
2q−1 + qQ1s

q−1)ds

dξ
− J0

(
s+ ξ

ds

dξ

)
e−sξ = 0. (18)

Simplify (18) to get (
ds

dξ

)−1
=
κ(s)

λ(s)
− ξ

s
, (19)

where

κ(s) =
(
6qs6q−1+ 5qP5s

5q−1+ 4qP4s
4q−1+ 3qP3s

3q−1+ 2qP2s
2q−1+ qP1s

q−1)esξ
−
(
3qQ3s

3q−1+ 2qQ2s
2q−1+ qQ1s

q−1),
λ(s) = sJ0e−sξ − sesξ

(
s6q + P5s

5q + p4s
4q + P3s

3q + P2s
2q + P1s

q + P0

)
.

Now define the real numbers κR, κI , λR, and λI as the real and imaginary parts of
κ(s) and λ(s), namely,

κ(s) = κR + iκI , λ(s) = λR + iλI , (20)

where κR, κI , λR, and λI are as in condition (H4).
Based on (19), (20), and (H4), we have

Re

((
ds

dξ

)−1∣∣∣∣
ξ=ξ0

)
=
κRλR + κIλI
λ2R + λ2I

> 0.

The proof is complete.

Next, we assume that

(H5) The following conditions hold:

D1 = P5 > 0, D2 =

∣∣∣∣ P5 1
P3 −Q3 P4

∣∣∣∣ > 0,

D3 =

∣∣∣∣∣∣
P5 1 0

P3 −Q3 P4 P5

P1 −Q1 P2 −Q2 P3 −Q3

∣∣∣∣∣∣ > 0,

D4 =

∣∣∣∣∣∣∣∣
P5 1 0 0

P3 −Q3 P4 P5 1
P1 −Q1 P2 −Q2 P3 −Q3 P4

0 P0 −Q0 − J0 P1 −Q1 P2 −Q2

∣∣∣∣∣∣∣∣ > 0,
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D5 =

∣∣∣∣∣∣∣∣∣∣
P5 1 0 0 0

P3 −Q3 P4 P5 1 0
P1 −Q1 P2 −Q2 P3 −Q3 P4 P5

0 P0 −Q0 P1 −Q1 P2 −Q2 P3 −Q3

0 0 0 P0 −Q0 P1 −Q1

∣∣∣∣∣∣∣∣∣∣
> 0,

D6 = (P0 −Q0)D5 > 0.

Lemma 5. If ξ = 0 and (H5) holds, the zero equilibrium point of system (2) is asymptot-
ically stable.

Proof. When ξ = 0, Eq. (6) is

s6q + P5s
5q + P4s

4q + (P3 −Q3)s3q + (P2 −Q2)s2q

+ (P1 −Q1)sq + (P0 −Q0 − J0) = 0. (21)

If λ = sq , the above formula (21) becomes

λ6 + P5λ
5 + P4λ

4 + (P3 −Q3)λ3 + (P2 −Q2)λ2

+ (P1 −Q1)λ+ (P0 −Q0 − J0) = 0. (22)

Equation (22) is a one-variable high-degree equation about λ. According to (H5), all
roots λi of the characteristic equation (22) satisfy |arg(λi)| > qiπ/2 (i = 1, 2, . . . , 6).
By Lemma 1 the zero equilibrium point of system (2) is asymptotically stable. The proof
is complete.

Based on the above analysis results, according to Lemmas 1–5, we have the following
theorem.

Theorem 1. Suppose that hypotheses (H1)–(H5) hold. Then the zero equilibrium point of
system (2) is locally asymptotically stable when ξ ∈ [0, ξ0) and a Hopf bifurcation will
happen around the equilibrium point for ξ = ξ0.

4 Numerical simulations

This section will give a numerical simulation example to prove the effectiveness of the
conclusions obtained. Take ϕp = 1.2, ηi = −1, h2p−1(x) = l2p(x) = tanh(x),
p = 1, 2, . . . , 6, i = 1, 2, . . . , 12, and consider the following system:

D0.9x1(t) = −1.2x1(t)− tanh
(
x2(t− ξ2)

)
− tanh

(
x5(t− ξ7)

)
,

D0.9x2(t) = −1.2x2(t)− tanh
(
x3(t− ξ3)

)
− tanh

(
x6(t− ξ10)

)
,

D0.9x3(t) = −1.2x3(t)− tanh
(
x4(t− ξ4)

)
− tanh

(
x1(t− ξ9)

)
,

D0.9x4(t) = −1.2x4(t)− tanh
(
x5(t− ξ5)

)
− tanh

(
x2(t− ξ12)

)
,

D0.9x5(t) = −1.2x5(t)− tanh
(
x6(t− ξ6)

)
− tanh

(
x3(t− ξ8)

)
,

D0.9x6(t) = −1.2x6(t)− tanh
(
x1(t− ξ1)

)
− tanh

(
x4(t− ξ11)

)
.

(23)
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Figure 1. The trajectory of system (23) with respect to time t. When τ = 0.42 < τ0 = 0.4532, the zero
solution of the model is asymptotic stability.

It is obvious that system (23) has an equilibrium point. We take q = 0.9 and can find out
by numerical calculation D1 = 7.2000 > 0, D2 = 112.9600 > 0, D3 = 2092.4057 > 0,
D4 = 27206.6148 > 0, D5 = 613226.6916 > 0, D6 = 10308330.8754 > 0, so (H5)
is satisfied. It is calculated that Eq. (15) has two positive real roots, and ω0 = 1.56974,
ξ0 = 0.4532, (κRλR + κIλI)/(λ

2
R + λ2I) = 0.8092 > 0, which show that (H3) and (H4)

also hold. Therefore, the value satisfies the requirements of Theorem 1. Now, let ξi= 0.14
(i = 1, 2, . . . , 12), that is, ξ = 0.42 < 0.4532. Figures 1–3 show that system (23) is
locally asymptotically stable at the zero equilibrium point. Let ξi= 0.2 (i=1, 2, . . . , 12),
that is, ξ = 0.60 > 0.4532. Figures 4–6 show that system (23) loses its stability near the
zero equilibrium point, and Hopf bifurcation phenomenon appears.
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Figure 2. Part of the phase diagram of system (23) with respect to time t. When τ = 0.42 < τ0 = 0.4532,
the zero solution of the model is asymptotic stability.
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Figure 3. Part of the phase diagram of system (23) with respect to time t. When τ = 0.42 < τ0 = 0.4532,
the zero solution of the model is asymptotic stability.
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Figure 4. Part of the phase diagram of system (23) with respect to time t. When τ = 0.60 > τ0 = 0.4532,
the model loses stability and presents a Hopf bifurcation at the equilibrium point.
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Figure 5. Part of the phase diagram of system (23) with respect to time t. When τ = 0.60 > τ0 = 0.4532,
the model loses stability and presents a Hopf bifurcation at the equilibrium point.
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Figure 6. The trajectory of system (23) with respect to time t. When τ = 0.60 > τ0 = 0.4532, the model
loses stability and presents a Hopf bifurcation at the equilibrium point.

5 Conclusions

As is well known, the study for dynamics of fractional neural network systems with
time delay has become a hot topic in the field of nonlinear research. However, most
current neural network systems only involve the delay between adjacent nodes, and there
is a lack of research on the delay between nonadjacent nodes. In contrast, the nearest-
neighbor coupled neural network system studied in this paper connects each node to its
surrounding adjacent or nonadjacent nodes, resulting in a more complex topology that is
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better suited to practical applications. This paper analyzes the characteristic equation of
a particular class of multidelay fractional nearest-neighbor coupled neural network model
and selects the sum of time delays as branch parameters to obtain the stability of the
system at the equilibrium point, as well as the sufficient conditions for Hopf bifurcation.
The research results indicate that time delay has a significant impact on the stability
of the system. When the time delay exceeds a critical value, the system loses stability
and produces Hopf bifurcation. The results of this study provide theoretical guidance for
the practical application of neural network systems and open up possibilities for neural
network systems to better serve human society.
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