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Abstract. We systematically classify Lie symmetries of a class of (2 + 1)-dimensional nonlinear
wave equations. Our methodology proposes a symmetry classification for Lie generators applicable
to four distinct cases inherent within this equation. For each identified category, we comprehensively
analyze symmetry reduction and delineate the invariant solutions. Furthermore, we extend our Lie
symmetry analysis to encompass reduced 1 + 1 partial differential equations (PDEs). Through
our investigations, we establish local conservation laws corresponding to each conserved vector,
employing the formal Lagrangian approach. Significantly, this classification constitutes a novel
contribution to the scientific discourse, as it remains absent from extant literature to date.

Keywords: nonlinear wave equation, Lie symmetries, conservation laws, invariant solutions,
symmetry algebra.

1 Introduction

The wave equation, a fundamental mathematical construct, finds widespread utility in
elucidating the propagation characteristics of waves across diverse domains of physics,
including electromagnetism, fluid mechanics, acoustics, hydrodynamics, general rela-
tivity, and quantum mechanics [3, 14]. Consequently, the exploration of wave equations
represents a dynamic frontier in applied mathematics research.
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Tracing its origins, investigations into wave phenomena extend back to antiquity,
notably exemplified by Pythagoras’ inquiry into the properties of sound waves ema-
nating from vibrating strings in musical instruments during the sixth century BC [8].
After this early exploration, the scientific revolution catalyzed rapid advancements in our
understanding of wave dynamics with the contributions of prominent scientists such as
Bynam et al. [2] being particularly noteworthy. Furthermore, a transformative paradigm
shift in our comprehension of wave phenomena occurred during the nineteenth century,
marked by Maxwell’s formulation of electromagnetic field theory [22]. This seminal
development fundamentally altered the landscape of human perception regarding wave
behavior, underscoring the profound impact of scientific inquiry on our understanding of
the natural world.

Indeed, mathematicians have directed their efforts towards exploring the genesis and
dynamics of waves. Consequently, substantial investigations have been undertaken to
derive precise solutions for both linear and nonlinear wave equations. Notably, Cajori
and Farlow achieved a significant milestone by obtaining the inaugural exact solution
to the linear wave equation [4, 20]. Subsequent endeavors have delved into the realm
of nonlinear wave equations, prompting the development of various approximate and
numerical methodologies. A plethora of research works, exemplified by references [5,
9, 19, 23, 25], has contributed to this endeavor, further enriching our understanding of
wave dynamics.

To comprehend these physical systems effectively, it is imperative to undertake a thor-
ough investigation of wave equations. Numerous authors have delved into various cate-
gories of wave equations, either by scrutinizing their solutions or by examining their
asymptotic behaviors [7, 21, 24]. Furthermore, certain researchers have opted for a nu-
merical approach to tackle such equations [17]. Additionally, specific instances of wave
equations have been subjected to analysis from the perspective of Lie symmetries. For
instance, Raza et al. [16] conducted a study on the Lie symmetry analysis of the 1 + 1 case
of the nonlinear wave equation featuring a single arbitrary function. Similarly, Gandarias
et al. [6] explored the same analysis for the identical equation but with two arbitrary func-
tions. Ibragimov [10] delved into various forms of unperturbed damped wave equations,
delineating their Lie symmetries. Moreover, certain researchers have utilized symmetries
of specific classes of damped wave equations to derive analytical solutions [13]. Usamah
et al. [1] contributed by classifying multidimensional nonlinear damped wave equations
utilizing Lie symmetries. However, despite these endeavors, the investigation of (2 + 1)-
dimensional wave equations in terms of the Lie point symmetries they accommodate
has not received adequate attention in the literature. The focus has primarily been on
classifying symmetries of classical wave equations thus far.

Undoubtedly, one of the primary applications of symmetries lies in the formulation of
conservation laws for a given system. The pivotal connection between conservation laws
and symmetries was initially elucidated by Noether in 1918 [15, 18]. While Noether’s
theorem offers a potent mechanism for deriving conservation laws, it is constrained by
its applicability solely to variational PDEs, necessitating the existence of a Lagrangian.
Consequently, to address this limitation, the formal Lagrangian approach has been devised
to derive conservation laws for both variational and nonvariational PDEs. Numerous
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scholarly works expound upon the methodology of obtaining conservation laws via the
formal Lagrangian approach, as documented in various references [11, 12].

This study endeavors to explore wave equations through an examination of the (2+1)-
dimensional nonlinear wave equation delineated as follows:

Utt = div
(
F (U) gradU

)
. (1)

The objective is to classify this equation based on the Lie point symmetries it accom-
modates. These identified symmetries will subsequently inform the execution of various
similarity reductions, facilitating the acquisition of exact solutions wherever feasible.
Furthermore, the discerned symmetries will be leveraged to formulate conservation laws
for select cases of interest, employing the formal Lagrangian approach.

2 Symmetry classification

We shall examine Eq. (1), which can be expressed equivalently in the following manner:

Utt = F (U)(Uxx + Uyy) + FU
(
U2
x + U2

y

)
. (2)

In general, a symmetry of a differential equation refers to a transformation that maintains
the invariance of its set of solutions. To derive the symmetry algebra of Eq. (2), we
consider the infinitesimal generator of the symmetry algebra in the following form:

Z = ζ1
∂

∂x
+ ζ2

∂

∂y
+ ζ3

∂

∂t
+ ρ

∂

∂U
.

To complete our task, we must determine the values of ζ1, ζ2, ζ3, and ρ, while verifying
that the operator Z satisfies the condition for Lie symmetry

Z [2]
(
Utt − F (U)(Uxx + Uyy)− FU

(
U2
x + U2

y

))∣∣
(2) = 0, (3)

where Z [2] is the second extension of Z .
Case 1: F (U) is arbitrary function. Solving Eq. (3) provides us with the expressions

for infinitesimals ζ1, ζ2, ζ3, and ρ, thus leading to the establishment of five symmetry
generators given by

Z1 =
∂

∂x
, Z2 =

∂

∂y
, Z3 =

∂

∂t
,

Z4 = y
∂

∂x
− x ∂

∂y
, Z5 = x

∂

∂x
+ y

∂

∂y
+ t

∂

∂t
.

Case 2: F (U) = aU+b, where a and b are constants. In this case, the solution of (3)
leads to the conclusion that (2) features the generators Z1, Z2, Z3, and Z4 along with

Z6 = t
∂

∂t
− (2aU + 2b)

a

∂

∂U
, Z7 = x

∂

∂x
+ y

∂

∂y
+

(2aU + 2b)

a

∂

∂U
.
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Case 3: F (U) = c (constant). In this case, the solution of (3) leads to the conclusion
that (2) features the generators Z1, Z2, Z3, Z4, and Z5 along with

Z8 = U
∂

∂U
, Z9 = t

∂

∂x
+
x

c

∂

∂t
, Z10 = t

∂

∂y
+
y

c

∂

∂t
,

Z11 = xy
∂

∂x
+

(
y2

2
+
ct2

2
− x2

2

)
∂

∂y
+ yt

∂

∂t
− yU

2

∂

∂U
,

Z12 = xt
∂

∂x
+ yt

∂

∂y
+

(
ct2 + x2 + y2

2c

)
∂

∂t
− tU

2

∂

∂U
,

Z13 =

(
y2

2
− ct2

2
− x2

2

)
∂

∂x
− xy ∂

∂y
− xt ∂

∂t
+
xU

2

∂

∂U
.

Case 4: F (U) = eαU , where α is a constant. In this case, the solution of (3) leads to
the conclusion that (2) features the generators Z1, Z2, Z3, and Z4 along with

Z14 = t
∂

∂t
− 2

α

∂

∂U
, Z15 = x

∂

∂x
+ y

∂

∂y
+

2

α

∂

∂U
.

3 Invariant solutions

Similarity reduction for Case 1: F (U) is arbitrary function

(i) For Lie operator Z1 = ∂/∂x, the formulation of the Lagrange equation can be
accomplished as follows:

dx

1
=

dy

0
=

dt

0
=

dU

0
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
θ(p, q), where p = y, q = t. By means of this transformation mechanism Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:

θqq − F (θ)θpp − F ′(θ)θ2p = 0. (4)

Let us revisit our method to tackle Eq. (4) with following results:

ζp = c1p+ c2, ζq = c1q + c3, ρθ = 0. (5)

Case A. Under the stipulation that c2 = 1 and rest constants are zero, we obtain the
characteristic equation from (5) as

dp

1
=

dq

0
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = q. By virtue of
this transformation we can move on to present the simplified form of Eq. (4) as follows:

τ ′′ = 0.
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This gives
τ(s) = c1s+ c2,

which implies,
θ(p, q) = c1q + c2.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = c1t+ c2.

Similarity reduction for Case 2: F (U) = aU + b

(i) For Lie operator Z1 +Z3 = ∂/∂x+ ∂/∂t, the formulation of the Lagrange equation
can be accomplished as follows:

dx

1
=

dy

0
=

dt

1
=

dU

0
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
θ(p, q), where p = y, q = −x + t. By means of this transformation mechanism Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:

(−aθ − b+ 1)θqq + (−aθ − b)θpp − a
(
θ2p + θ2q

)
= 0. (6)

Let us revisit our method to tackle Eq. (6), with following results:

ζp = c1p+ c2, ζq = c1q + c3, ρθ = 0. (7)

Case A. Under the stipulation that c3 = 1 and rest constants are zero, we obtain the
characteristic equation from (7) as

dp

0
=

dq

1
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = p. By virtue of
this transformation we can move on to present the simplified form of Eq. (6) as follows:

(−aτ − b)τ ′′ − aτ ′2 = 0.

This gives

τ(s) =
−b−

√
(2c1s+ 2c2)a+ b2

a
,

which implies

θ(p, q) =
−b−

√
(2c1p+ 2c2)a+ b2

a
.

Thus, we can express the solution for Eq. (2) in the initial variables as follows:

U(x, y, t) =
−b−

√
(2c1y + 2c2)a+ b2

a
.
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(ii) For Lie operator Z2 + Z3 = ∂/∂y + ∂/∂t, the formulation of the Lagrange
equation can be accomplished as follows:

dx

0
=

dy

1
=

dt

1
=

dU

0
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
θ(p, q), where p = x, q = −y + t. By means of this transformation mechanism Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:

(−aθ − b+ 1)θqq + (−aθ − b)θpp − a
(
θ2p + θ2q

)
= 0. (8)

Let us revisit our method to tackle Eq. (8) with following results:

ζp = c1p+ c2, ζq = c1q + c3, ρθ = 0. (9)

Case A. Under the stipulation that c2 = 1, c3 = 1, and rest constants are zero, we
obtain the characteristic equation from (9) as

dp

1
=

dq

1
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = −p+ q. By virtue
of this transformation we can move on to present the simplified form of Eq. (8) as follows:

(−2aτ − 2b+ 1)τ ′′ − 2aτ ′
2
= 0.

This gives

τ(s) =
−2b+ 1 +

√
(4sc1 + 4c2)a+ 4(b− 1/2)2

2a
,

which implies

θ(p, q) =
−2b+ 1 +

√
(4(−p+ q)c1 + 4c2)a+ 4(b− 1/2)2

2a
.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) =
−2b+ 1 +

√
(4(−x− y + t)c1 + 4c2)a+ 4(b− 1/2)2

2a
.

(iii) For Lie operator Z3 = ∂/∂t, the formulation of the Lagrange equation can be
accomplished as follows:

dx

0
=

dy

0
=

dt

1
=

dU

0
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
θ(p, q), where p = x, q = y. By means of this transformation mechanism Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:

(−aθ − b)θqq + (−aθ − b)θpp − a
(
θ2p + θ2q

)
= 0. (10)
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Let us revisit our method to tackle Eq. (10) with following results:

ζp = if3(q − ip)− if4(q + ip) + c2,

ζq = f3(q − ip) + f4(q + ip),

ρθ =
f1(q − ip) + f2(q + ip)

θ + b/a
+ c1

(
θ +

b

a

)
.

(11)

Case A. Under the stipulation that c1 = 1, c2 = 1, and rest constants are zero, we
obtain the characteristic equation from (11) as

dp

1
=

dq

0
=

dθ

θ + b/a
.

From this we obtain the similarity variables θ(p, q) = epτ(s) − b/a, where s = q. By
virtue of this transformation we can move on to present the simplified form of Eq. (10) as
follows:

−2aτ2 − aττ ′′ − aτ ′2 = 0.

This gives
τ(s) =

√
−c1 sin (2s) + c2 cos (2s),

which implies

θ(p, q) = ep
√
−c1 sin (2q) + c2 cos (2q)−

b

a
.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = ex
√
−c1 sin (2y) + c2 cos (2y)−

b

a
.

Similarity reductions for Case 3: F (U) = c

(i) For Lie operatorZ3+Z8 = ∂/∂t+U∂/∂U , the formulation of the Lagrange equation
can be accomplished as follows:

dx

0
=

dy

0
=

dt

1
=

dU

U
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
etθ(p, q), where p = x, q = y. By means of this transformation mechanism, Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:

− c(θpp + θqq) + θ = 0. (12)

Let us revisit our method to tackle Eq. (12) with following results:

ζp = −c6q + c8, ζq = c6p+ c7,

ρθ =
1

e
√
a1p

(
c5
((
e
√
a1p
)2
c2 + c3

)
cos

√
ca1 − 1q√

c

+ c4
((
e
√
a1p
)2
c2 + c3

)
sin

√
a1c− 1q√

c
+ c1θe

√
a1p

)
.

(13)
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Case A. Under the stipulation that c6 = 1 and rest constants are zero, we obtain the
characteristic equation from (13) as

dp

−q
=

dq

p
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = p2 + q2. By
virtue of this transformation we can move on to present the simplified form of Eq. (12) as
follows:

−4csτ ′′ − 4cτ ′ + τ = 0.

This gives

τ(s) = c1 BesselI

(
0,

√
s√
c

)
+ c2 BesselY

(
0, i

√
s√
c

)
,

which implies

θ(p, q) = c1 BesselI

(
0,

√
p2 + q2√
c

)
+ c2 BesselY

(
0, i

√
p2 + q2√
c

)
.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = et
(
c1 BesselI

(
0,

√
x2 + y2√

c

)
+ c2 BesselY

(
0, i

√
x2 + y2√

c

))
.

Case B. Under the stipulation that c1 = 1, c7 = 1, c8 = 1, and rest constants are
zero, we obtain the characteristic equation from (13) as

dp

1
=

dq

1
=

dθ

θ
.

From this we obtain the similarity variables θ(p, q) = epτ(s), where s = −p + q. By
virtue of this transformation we can move on to present the simplified form of Eq. (12) as
follows:

−2c

es
τ ′′ +

2c

es
τ ′ − c

es
τ = 0.

This gives
τ(s) = c1e

(c+i
√
c
√
c−2)s/(2c) + c2e

(c−i
√
c
√
c−2)s/(2c),

which implies,

θ(p, q) = ep
(
c1e

(c+i
√
c
√
c−2)(−p+q)/(2c) + c2e

(c−i
√
c
√
c−2)(−p+q)/(2c)).

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = ex+t
(
c1e

(c+i
√
c
√
c−2)(−x+y)/(2c) + c2e

(c−i
√
c
√
c−2)(−x+y)/(2c)).
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(ii) For Lie operator Z1 + Z8 = ∂/∂x + U∂/∂U , the formulation of the Lagrange
equation can be accomplished as follows:

dx

1
=

dy

0
=

dt

0
=

dU

U
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
exθ(p, q), where p = t, q = y. By means of this transformation mechanism Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:

− c(θqq + θpp)− cθ = 0. (14)

Let us revisit our method to tackle Eq. (14) with following results:

ζp = c4q + c5, ζq = c4cp+ c6,

ρθ = c1θ + c2e
a1(p
√
c+q)c3e

√
c(−q/

√
c+p)/(4a1).

(15)

Case A. Under the stipulation that c4 = 1, c6 = 1, and rest constants are zero, we
obtain the characteristic equation from (15) as

dp

q
=

dq

cp+ 1
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = −cp2 + q2 − 2p.
By virtue of this transformation we can move on to present the simplified form of Eq. (14)
as follows:

(−4cs+ 4)τ ′′ − c(4τ ′ + τ) = 0.

This gives

τ(s) = c1 BesselJ

(
0,

√
−1 + cs√

c

)
+ c2 BesselY

(
0,

√
−1 + cs√

c

)
,

which implies

θ(p, q) = c1 BesselJ

(
0,

√
−1 + c(−cp2 + q2 − 2p)√

c

)
+ c2 BesselY

(
0,

√
−1 + c(−cp2 + q2 − 2p)√

c

)
.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = ex
(
c1 BesselJ

(
0,

√
−1 + c(−ct2 + y2 − 2t)√

c

)
+ c2 BesselY

(
0,

√
−1 + c(−ct2 + y2 − 2t)√

c

))
.
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(iii) For Lie operator Z9 = t∂/∂x + (x/c)∂/∂t, the formulation of the Lagrange
equation can be accomplished as follows:

dx

t
=

dy

0
=

dt
x
c

=
dU

0
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
θ(p, q), where p = y, q = t2− x2/c. By means of this transformation mechanism Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:

4qθqq − cθpp + 4θq = 0. (16)

Let us revisit our method to tackle Eq. (16) with following results:

ζp = c1q +
c1
c
p2 + c2p+ c3, ζq = 2q

(
2p

c
c1 + c2

)
,

ρθ =
1

ce
√
a1p

((
e
√
a1pθc4 +

(
c7 BesselJ(0,

√
−ca1

√
q)

+ c8 BesselY(0,
√
−ca1

√
q)
)((

e
√
a1p
)2
c5 + c6

))
c− c1e

√
a1ppθ

)
.

(17)

Case A. Under the stipulation that c2 = 1 and rest constants are zero, we obtain the
characteristic equation from (17) as

dp

p
=

dq

2q
=

dθ

0
.

From this, we obtain the similarity variables θ(p, q) = τ(s) where, s = q/p2. By virtue of
this transformation we can move on to present the simplified form of Eq. (16) as follows:

−4cs2τ ′′ − 6csτ ′ + 4sτ ′′ + 4τ ′ = 0.

This gives
τ(s) = c1 + c2 arctan(

√
cs− 1),

which implies

θ(p, q) = c1 + c2 arctan

(√
c
q

p2
− 1

)
.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = c1 + c2 arctan

(√
ct2 − x2
y2

− 1

)
.

(iv) For Lie operator Z8 + Z9 = U∂/∂U + t∂/∂x+ (x/c)∂/∂t, the formulation of
the Lagrange equation can be accomplished as follows:

dx

t
=

dy

0
=

dt

x/c
=

dU

U
.
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Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
(
√
cx + ct)

√
cθ(p, q), where p = y, q = t2 − x2/c. By means of this transformation

mechanism Eq. (2) undergoes conversion into the (1 + 1) PDE outlined as follows:

− c3/2θpp + 4
√
c qθqq + 4

√
cθq + 4cθq = 0. (18)

Let us revisit our method to tackle Eq. (18) with following results:

ζp = c1q +
c1
c
p2 + c2p+ c3, ζq = 2q

(
2p

c
c1 + c2

)
,

ρθ =
1

c3/2e
√
a1p

(((
e
√
a1p
)2
c5 + c6

)(
BesselJ(

√
c,
√
−ca1

√
q
)
c7

+BesselY(
√
c,
√
ca1
√
q)c8)c

3/2q−
√
c/2

+ e
√
a1p
(
−c1p

√
c+ c4c

3/2 − 2c1pc
)
θ
)
.

(19)

Case A. Under the stipulation that c2 = 1, c3 = 1, and rest constants are zero, we
obtain the characteristic equation from (19) as

dp

p+ 1
=

dq

2q
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where, s = q/((p+ 1)2). By
virtue of this transformation we can move on to present the simplified form of Eq. (18) as
follows: (

−4s2τ ′′ − 6sτ ′
)
c3/2 + 4

√
csτ ′′ + 4(c+

√
c )τ ′ = 0.

This gives

τ(s) = c1 + hypergeom

([
−
√
c,
1

2
,−
√
c

]
, [1−

√
c ], cs

)
s−
√
cc2,

which implies

θ(p, q) = c1 + hypergeom

([
−
√
c,
1

2
,−
√
c

]
, [1−

√
c ],

cq

(p+ 1)2

)
× q−

√
c(p+ 1)2

√
cc2.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) =

(
c1 + hypergeom

([
−
√
c,
1

2
,−
√
c

]
, [1−

√
c ],

c(t2 − x2/c)
(y + 1)2

)
×
(
t2 − x2

c

)−√c
(y + 1)2

√
cc2

)
(
√
cx+ ct)

√
c.
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Similarity reductions for Case 4: F (U) = eαU

(i) For Lie operator Z1 = ∂/∂x, the formulation of the Lagrange equation can be
accomplished as follows:

dx

1
=

dy

0
=

dt

0
=

dU

0
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
θ(p, q), where p = t, q = y. By means of this transformation mechanism Eq. (2)
undergoes conversion into the (1 + 1) PDE outlined as follows:(

−αθ2q − θqq
)
eαθ + θpp = 0. (20)

Let us revisit our method to tackle Eq. (20) with following results:

ζp = c1p+ c2, ζq = c3q + c4, ρθ =
−2c1 + 2c3

α
. (21)

Case A. Under the stipulation that c2 = 1, c4 = 1, and rest constants are zero, we
obtain the characteristic equation from (21) as

dp

1
=

dq

1
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = −p + q. By
virtue of this transformation we can move on to present the simplified form of Eq. (20) as
follows: (

−ατ ′2 − τ ′′
)
eατ + τ ′′ = 0.

This gives

τ(s) =
−LambertW(−eα(−c1s−c2))

α
− c1s− c2,

which implies

θ(p, q) =
−LambertW(−eα(−c1(−p+q)−c2))

α
− c1(−p+ q)− c2.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) =
−LambertW(−eα(−c1(−t+y)−c2))

α
− c1(−t+ y)− c2.

(ii) For Lie operator Z14 = t∂/∂t − (2/α)∂/∂U , the formulation of the Lagrange
equation can be accomplished as follows:

dx

0
=

dy

0
=

dt

t
=

dU

−2/α
.
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Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
−(2/α) ln (t)+θ(p, q), where p = x, q = y. By means of this transformation mechanism
Eq. (2) undergoes conversion into the (1 + 1) PDE outlined as follows:

2− α
(
αθ2p + αθ2q + θpp + θqq

)
eαθ = 0. (22)

Let us revisit our method to tackle Eq. (22) with following results:

ζp =
α(f4(q − ip) + f6(q + ip)

2
− c2q +

c1
2
αp+ c4,

ζq = −
iα

2

(
−f6(q + ip) + f4(q − ip)

)
+ c2p+

c1
2
αq + c3,

ρθ = c1 +
(
f3(q − ip) + pf4(q − ip) + f5(q + ip) + f6(q + ip)p

)
e−αθ.

(23)

Case A. Under the stipulation that c2 = 1 and rest constants are zero, we obtain the
characteristic equation from (23) as

dp

−q
=

dq

p
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = p2 + q2. By
virtue of this transformation we can move on to present the simplified form of Eq. (22) as
follows:

2− 4α
(
αsτ ′

2
+ sτ ′′ + τ ′

)
eατ = 0.

This gives

τ(s) =
− ln 2 + ln (−2c2α ln (s) + 2c1α+ s)

α
,

which implies

θ(p, q) =
− ln 2 + ln (−2c2α ln (p2 + q2) + 2c1α+ p2 + q2)

α
.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = − 2

α
ln t+

− ln 2 + ln (−2c2α ln (x2 + y2) + 2c1α+ x2 + y2)

α
.

(iii) For Lie operator Z3 + Z14 = ∂/∂t + t∂/∂t − (2/α)∂/∂U , the formulation of
the Lagrange equation can be accomplished as follows:

dx

0
=

dy

0
=

dt

1 + t
=

dU

−2/α
.

Upon solving the Lagrange equation stated above, we attain the solution U(x, y, t) =
−(2/α) ln (1 + t) + θ(p, q), where p = x, q = y. By means of this transformation
mechanism Eq. (2) undergoes conversion into the (1 + 1) PDE outlined as follows:

2− α
(
αθ2p + αθ2q + θpp + θqq

)
eαθ = 0. (24)
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Let us revisit our method to tackle Eq. (24) with following results:

ζp =
α(f4(q − ip) + f6(q + ip)

2
− c2q +

c1
2
αp+ c4,

ζq = −
iα

2

(
−f6(q + ip) + f4(q − ip)

)
+ c2p+

c1
2
αq + c3,

ρθ = c1 +
(
f3(q − ip) + pf4(q − ip) + f5(q + ip) + f6(q + ip)p

)
e−αθ.

(25)

Case A. Under the stipulation that c2 = 1, c3 = 1, c4 = 1, and rest constants are
zero, we obtain the characteristic equation from (25) as

dp

−q + 1
=

dq

p+ 1
=

dθ

0
.

From this we obtain the similarity variables θ(p, q) = τ(s), where s = −q2/2− p2/2 +
q − p. By virtue of this transformation we can move on to present the simplified form of
Eq. (24) as follows:

2 + 2α
(
(s− 1)τ ′′ + τ ′

(
1 + α(s− 1)τ ′

))
eατ = 0.

This gives

τ(s) =
ln (−c2α ln (s− 1) + c1α− ln (s− 1)− s+ 1)

α
,

which implies

θ(p, q) =
1

α

(
− ln 2 + ln

(
−2c2α ln

(
−p2 − q2 − 2p+ 2q − 2

)
+ 2c2α ln 2 + 2c1α

+ p2 + q2 − 2 ln
(
−p2 − q2 − 2p+ 2q − 2

)
+ 2 ln 2 + 2p− 2q + 2

))
.

Thus, we can express the solution for Eq. (2) in the initial variables as

U(x, y, t) = − 2

α
ln(1 + t) +

1

α

(
− ln 2 + ln

(
−2c2α ln

(
−x2 − y2 − 2x+ 2y − 2

)
+ 2c2α ln 2 + 2c1α+ x2 + y2 − 2 ln

(
−x2 − y2 − 2x+ 2y − 2

)
+ 2 ln 2 + 2x− 2y + 2

))
.

4 Conservation laws for Eq. (2)(2)(2)

In the cited literature [11,12], Ibragimov’s seminal theorem focuses on the preserved flow
of differential equations. This theorem showcases notable versatility in scenarios, where
the count of equations corresponds to the number of dependent variables in the system.
We examine a PDE of kth order represented as

H = H(x, U, U1, U2, . . . , Up). (26)
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In the provided context, where U = U(x) and x = x(x1, x2, . . . , xm), the formal
Lagrangian for Eq. (26) being given, we can derive an adjoint equation as follows:

H? ≡ δ

δU
(wH), (27)

where the operator δ/δU is defined by

δ

δU
=

∂

∂U
+

∞∑
i=1

(−1)sDi1 · · · Dis
∂

∂Ui1···is
,

and the total derivative operator Di is given by

Di =
∂

∂xi
+ Ui

∂

∂U
+ Uij

∂

∂Uj
+ · · · .

Theorem 1. For any Lie point, Lie–Bäcklund, or nonlocal symmetry of Eq. (26) as
specified by

Z = ζi
∂

∂xi
+ ρ

∂

∂U
,

where L serves as a formal Lagrangian, the conserved vectors for Eq. (27) can be for-
mally defined as

F i = ζiL+ P

[
∂L
∂Ui
−Dj

(
∂L
∂Uij

)
+DjDk

(
∂L
∂Uijk

)
+ · · ·

]
+Dj(P )

[
∂L
∂Uij

−Dk
(

∂L
∂Uijk

)
+ · · ·

]
+DjDk(P )

[
∂L
∂Uijk

+ · · ·
]
· · · .

In this context, P is defined as
P = ρ− ζiUi,

where Di(F i) = 0.

Theorem 2. The adjoint equation for Eq. (2) when F (U) is arbitrary function, expressed
as follows:

H? = Utt − eαU (Uxx + Uyy)− αeαU
(
U2
x + U2

y

)
= 0,

where

L = w(x, y, t)
(
Utt − F (U)(Uxx + Uyy)− FU

(
U2
x + U2

y

))
.

Under the principles delineated in the Ibragimov theorem, each symmetry generator
corresponds to a conserved vector. Accordingly, we advance to compute the conserved
vectors using Theorem 1.
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(I) When examining the vector field Z1 = ∂/∂x and P = −Ux, the ensuing
conserved vectors are as follows:

F t1 = w(Ux − Uxx),
Fx1 = w

(
Utt − F (U)(Uxx + Uyy)− FU

(
U2
x + U2

y

))
− Ux(−2FUwUx + wxF (U) + wUxFU ) + wUxxF (U),

Fy1 = −Ux
(
−2wUyFU + wxF (U) + wwxFU

)
+ wUxyF (U).

Similarly, we can compute the conserved vectors for remaining symmetry generators.
Now we consider Case 2 when F (U) = aU + b, where a and b are constants.

Theorem 3. The adjoint equation for Eq. (2) when F (U) = aU + b, where a and b are
constants, expressed as follows:

H? = wtt − awxxU − aUwyy − bwxx − bwyy = 0,

where

L = w(x, y, t)
(
Utt − (aU + b)(Uxx + Uyy)− a(U2

x + U2
y )
)
.

Based on Ibragimov’s theorem (Theorem 1), we advance towards computing con-
served vectors in the following manner.

(II) When examining the vector field Z1 = ∂/∂x and P = −Ux, the ensuing
conserved vectors are as follows:

F t2 = w(Ux − Uxx),
Fx2 = w

(
Utt − (aU + b)(Uxx + Uyy)− a

(
U2
x + U2

y

))
− Ux(−2awUx + wx(aU + b) + awUx) + wUxx(aU + b)

− Ux
(
−2FUwUx + wxF (U) + wUxFU

)
+ wUxxF (U),

Fy2 = −Ux
(
−2awUy + wx(aU + b) + awU

)
+ wUxy(aU + b).

Similarly, we can compute the conserved vectors for remaining symmetry generators.
Now we consider Case 3 when F (U) = c (constant).

Theorem 4. The adjoint equation for Eq. (2) when F (U) = c, where c is a constant,
expressed as follows:

H? = Utt − cwxx − cwyy = 0,

where

L = w(x, y, t)
(
Utt − c(Uxx + Uyy)

)
.

Based on Ibragimov’s theorem (Theorem 1), we advance towards computing con-
served vectors in the following manner.
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(III) When examining the vector field Z1 = ∂/∂x and P = −Ux, the ensuing
conserved vectors are as follows:

F t3 = w(Ux − Uxx),
Fx3 = w

(
Utt − c(Uxx + Uyy)

)
− cwxUx + cwUxx,

Fy3 = −c(wxUx − wUxy).

Similarly, we can compute the conserved vectors for remaining symmetry generators.
Now we consider Case 4 when F (U) = eαU , where α is a constant.

Theorem 5. The adjoint equation for Eq. (2) when F(U) = eαU, where α is a constant,
expressed as follows:

H? = wtt − eαUwxx − eαUwyy = 0,

where

L = w(x, y, t)
(
Utt − eαU (Uxx + Uyy)− αeαU

(
U2
x + U2

y

))
.

Based on Ibragimov’s theorem (Theorem 1), we advance towards computing con-
served vectors in the following manner.

(IV) When examining the vector field Z1 = ∂/∂x and P = −Ux, the ensuing
conserved vectors are as follows:

F t4 = w(Ux − Uxx),
Fx4 = eαU

(
−αwU2

y + αwU2
x − αwU2

x − wUyy − wxUx + wUtt
)
,

Fy4 = eαU
(
2αwUxUy − αwU2

x + wUxy − wxUx
)
.

5 Discussion and conclusion

This paper undertook a comprehensive symmetry classification of the (2+1)-dimensional
nonlinear wave equation. It has been demonstrated that the equation admits a minimal
subalgebra of five dimensions. In certain intriguing scenarios, this algebra can be ex-
panded to encompass ten additional symmetries. Additionally, reductions of the analyzed
equation have been conducted, leading to the derivation of several exact solutions. More-
over, the formal Lagrangian has been provided for the majority of cases discussed in the
paper, while conservation laws have been formulated for select cases of interest. The
investigation presented herein sets the stage for further exploration into nonlinear wave
equations prevalent in mathematical physics and other scientific domains. Specifically,
the exploration of the (3 + 1) nonlinear wave equation could be a promising avenue for
future research.
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