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Abstract. With application point of view, Gopal et al. [D. Gopal, W. Sintunavarat, A.S. Ranadive,
S. Shukla, The investigation of k-fuzzy metric spaces with the first contraction principle in such
spaces, Soft Comput., 27:11081–11089, 2023] generalized the conceptions of a fuzzy metric space
and introduced the definition of k-fuzzy metric space. Here a fuzzy set defined in k-fuzzy metric
space is a membership function FY : X × X × (0,+∞)k → [0, 1], that is, the fuzzy distance
between two points of the set depends on more than one parameter, and then also introduced first
contraction principle in this space. In this sequel, we extend the work on k-fuzzy metric spaces
by generalizing Banach contraction principle by introducing various type of inequalities. Here we
introduce Tirado-type k-fuzzy contraction condition and prove fixed point theorem for Tirado-type
contractive mapping. We also discuss the k-fuzzy ψ-contractive mapping, where ψ ∈ Ψ , and
Ψ is a class of mappings defined from ψ : [0, 1] → [0, 1] that has certain properties, and also
obtained fixed point for such class of mappings. Later, we define Ćirić-type contraction inequalities
to prove fixed point results by restricting ourselves on l-natural property of the fuzzy space to ensure
the existence of fixed point. Between all results, a set of supportive examples are also produced
to validate the results. In application section, we discuss the solutions of Volterra-type integral
equations and second-order nonlinear ordinary differential equation.
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1 Introduction

The fuzzy set theory was discovered first by Zadeh [19] in 1965. In his seminal paper,
Zadeh generalized the crisp sets into fuzzy sets by defining a membership function from
a nonempty set X to [0, 1] called a fuzzy set. Later, in 1975, Kramosil and Michálek [7]
launched the fuzzy metric space by replacing the crisp distance between two points with
a fuzzy distance between two points. The measurement of the fuzzy distance between
two points is defined as the degree of the nearness of points with respect to a parameter
t ∈ (0,∞) belonging to the [0, 1]. Later, George and Veeramani [2] improved the defi-
nition of fuzzy metric space given by Kramoshil and Michálek [7] and proved that fuzzy
metric space has a Hausdorff topology. In 1988, Grabiec [5] was the first person who
introduced fixed point theory involving fuzzy sets and gave the first contraction principle
and Edelstein contraction theorem in fuzzy metric space in the sense of George and
Veeramani [2]; see also [6,9,12,16–18]. Many author have research in probabilistic metric
space like Sherwood et al. [15], Gopal et al. [3], and Sehgal et al. [14]

Very recently, an innovative new space was invented by Gopal et al. [4] from the
application point of view known as k-fuzzy metric spaces, where they investigated the
first contraction principle for this space. In fuzzy metric space, we prefer the measurement
of the fuzzy distance between two points by the degree of the nearness of points with
respect to a parameter t ∈ (0,+∞). The theory of k-fuzzy metric space is inspired by this
concept of measuring the fuzzy distance between two points depending on more than one
parameter t1, t2, . . . , tk ∈ (0,+∞), those parameters may be time, type of fuel, weather,
etc. Gopal et al. [4] defined a fuzzy set from X 2 × (0,+∞)k to [0, 1] and introduced the
definition of a k-fuzzy metric space with supportive examples. They restrict themselves
on a mathematical property known as l-natural property of k-fuzzy metric spaces to obtain
the fixed point theorem and also discuss some other topological properties of such spaces.
They defined an open ball with center at x ∈ X and radius ε ∈ (0, 1) with respect to
parameters t1, t2, . . . , tk ∈ (0,+∞) and defined open set, closed set depending on the
concepts of open balls and also proved that “every open ball in a k-fuzzy metric space is
an open set”. According to a few more results, k-fuzzy metric spaces have a topology in
X and have a local base at a pointX with the first countable topology. Further, it is proved
that “every k-fuzzy metric space is Hausdorff”. Later, given the definition of a convergent
sequence, Cauchy sequence, and completeness property of the spaces, in the main section,
they defined the fuzzy first contraction in k-fuzzy metric space.

2 Preliminaries

In this part, we write some fundamental ideas, which will be essential to accommodate
major theorems.

Definition 1. (See [13].) A mapping � : [0, 1] × [0, 1] → [0, 1] is called a continuous
triangular norm (t-norm) if � satisfies the following assertions:

1. � is commutative and associative, that is, e � f = f � e and e � (f � g) = (e � f) � g
for all e, f, g ∈ [0, 1];
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2. � is a continuous map;
3. 1 � e = e for all e ∈ [0, 1];
4. e � f 6 g � h whenever e 6 g and f 6 h for all e, f, g, h ∈ [0, 1].

Some examples of continuous t-norm are �p product e�p f = e ·f , �m standard mini-
mum e �m f = min{e, f}, �L Łukasiewicz maximum e �L f = max{e+ f − 1, 0}.

Definition 2. (See [2].) A fuzzy metric space is an ordered triple (X ,FY , �), where X is
a nonempty set, � is a continuous t-norm, and FY is a fuzzy set defined on X × X ×
(0,+∞) to [0, 1] satisfying the following assertions for all η, ζ, κ ∈ X and r, s > 0:

1. FY(η, ζ, r) > 0;
2. FY(η, ζ, r) = 1 if and only if η = ζ;
3. FY(η, ζ, r) = FY(ζ, η, r);
4. FY(η, κ, r + s) > FY(η, ζ, r) � FY(ζ, κ, s);
5. FY(η, ζ, ·) : (0,∞)→ [0, 1] is continuous mapping.

Definition 3. (See [2].) A space (X ,FY , �) is called a natural fuzzy metric space if and
only if

lim
r→+∞

FY(η, ζ, r) = 1

for all η, ζ ∈ X .

The notation of k-fuzzy metric spaces, where k ∈ {1, 2, 3, . . . }, is an extension and
generalization of the concepts of fuzzy metric space in the sense of George and Veeramani
(1994). The membership degree of nearness between two points is depending on the
number of parameters k. Now we present introduced idea of k-fuzzy metric by Gopal
et al. [4].

Definition 4. (See [4].) Let X be a nonempty set, � be a continuous t-norm, k be
a positive integer, and FY be a set on X 2 × (0,+∞)k. An ordered triple (X ,FY , �)
is called a k-fuzzy metric space if the following conditions are satisfied for all η, ζ ∈ X
and r1, r2, . . . , rk > 0:

1. FY(η, ζ, r1, r2, . . . , rk) > 0;
2. FY(η, ζ, r1, r2, . . . , rk) = 1 if and only if η = ζ;
3. FY(η, ζ, r1, r2, . . . , rk) = FY(ζ, η, r1, r2, . . . , rk);
4. For any l ∈ {1, 2, 3, . . . , k},

FY(η, ζ, r1, r2, . . . , rl−1, t, rl+1, . . . , rk−1, rk)

� FY(ζ, κ, r1, r2, . . . , rl−1, s, rl+1, . . . , rk−1, rk)

6 FY(η, κ, r1, r2, . . . , rl−1, t+ s, rl+1, . . . , rk−1, rk);

5. FY(η, ζ, ·) : (0,+∞)k → [0, 1] is a continuous mapping.

Remark 1. k-fuzzy metric space turns into a fuzzy metric space by putting k = 1.
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With the application points, Gopal et al. [4] illustrated a few examples of k-fuzzy
metric spaces with take care of the physical behaviours of the entities. Let us now discuss
some mathematical formulas of k-fuzzy metric as in the form of examples of k-fuzzy
metric spaces.

Example 1. (See [4].) Let (X , ρ) be a metric space, � be the product (minimum) t-norm,
w > 0 and k be a positive integer. Define a fuzzy set FY on X 2 × (0,+∞)k by

FY(η, ζ, r1, r2, r3, . . . , rk) =
wr1r2 · · · rk

wr1r2 · · · rk + ρ(η, ζ)

for all η, ζ ∈ X and r1, r2, . . . , rk > 0. Then (X ,FY , �) is a k-fuzzy metric space.

Example 2. (See [4].) Let (X , ρ) be a metric space, � be the product (minimum) t-norm,
w > 0 and k be a positive integer. Define a fuzzy set FY on X 2 × (0,+∞)k by

FY(η, ζ, r1, r2, r3, . . . , rk) = w

[
w +

(
k∑
i=1

1

ri

)
ρ(η, ζ)

]−1

for all η, ζ ∈ X and r1, r2, . . . , rk > 0. Then (X ,FY , �) is a k-fuzzy metric space.

In their research article, Gopal et al. [4] restricted themselves with the l-natural math-
ematical property like natural fuzzy metric space.

Definition 5. (See [4].) (X ,FY , �) is said to be l-natural k-fuzzy metric space if there
exists l ∈ {1, 2, . . . , k} such that

lim
rl→+∞

FY(η, ζ, r1, r2, . . . , rl, . . . , rk) = 1

for all η, ζ ∈ X .

In k-fuzzy metric space, l-naturalness helps for the existence of fixed point in first
contraction principle. Assumption of l-natural property of the space (X ,FY , �) cannot
be replaced by m-natural property with m 6= l. In coming part of this note, we usually
writeFY(η, ζ, rk1 ) in the place ofFY(η, ζ, r1, r2, . . . , rk), where η, ζ ∈ X and r1, r2, . . . ,
rk > 0. The following proposition shows the effect of degree of nearness between two
points with respect to parameter relation.

Proposition 1. (See [4].) Let (X ,FY , �) be a k-fuzzy metric space, r, r1, r2, . . . , rk > 0.
Suppose that rl < r for some l ∈ {1, 2, . . . , k}. Then

FY
(
η, ζ, rk1

)
6 FY(η, ζ, r1, . . . , rl−1, r, rl+1, . . . , rk)

for all η, ζ ∈ X .

Now we recall the following analytical concepts of the convergent sequence, Cauchy
sequence, completeness property of this space.

https://www.journals.vu.lt/nonlinear-analysis
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Definition 6. (See [4].) Let (X ,FY , �) be a k-fuzzy metric space. A sequence {βn} in
X is said to be convergent and converges to β ∈ X if and only if for every real ε ∈ (0, 1),
there exists n0 ∈ N such that

FY
(
βn, β, r

k
1

)
> 1− ε

for all n > n0 and r1, r2, . . . , rk > 0.

Lemma 1. (See [4].) Let (X ,FY , �) be a k-fuzzy metric space. A sequence {βn} in X
converges to β ∈ X if and only if

lim
n→+∞

FY
(
βn, β, r

k
1

)
= 1

for all r1, r2, . . . , rk > 0.

In fuzzy metric space, there are two distinct notations of the Cauchy sequences and
completeness known as G-Cauchy sequence, G-completeness (Grabic) and M -Cauchy
sequence, M -completeness (George and Veeramani). It is well known that definitions
of completeness given by George and Veeramani is more appropriate than the Grabic
definition. These definitions are also generalized with the following manner.

Definition 7. (See [4].) Let (X ,FY , �) be a k-fuzzy metric space, and let {βn} be a se-
quence in X .

1. A sequence {βn} is called an M -Cauchy sequence if for every ε ∈ (0, 1), there
exists n0 ∈ N such that for all n,m > n0 and r1, r2, . . . , rk > 0,

FY
(
βn, βm, r

k
1

)
> 1− ε.

2. A sequence {xn} is called a G-Cauchy sequence if for all r1, r2, . . . , rk > 0 and
p > 0,

lim
n→∞

FY
(
βn, βn+p, r

k
1

)
= 1.

Definition 8. (See [4].) Let (X ,FY , �) be a k-fuzzy metric space.

1. (X ,FY , �) is said to be M -complete if every M -Cauchy sequence in X converges
to some β ∈ X .

2. (X ,FY , �) is said to be G-complete if every G-Cauchy sequence in X converges
to some β ∈ X .

Remark 2. (See [4].) For k = 1, the M -completeness and G-completeness of a k-fuzzy
metric space is equivalent to the M -completeness and G-completeness of a fuzzy metric
space as defined by George and Veeramani and Grabic, respectively.

Theorem 1. (See [4].) Let (X ,FY , �) be a G-complete k-fuzzy metric space, and let P
be a self-mapping satisfying the following condition:

FY1/λ
l

(
Pη,Pζ, rk1

)
> FY

(
η, ζ, rk1

)
for all η, ζ ∈ X and r1, r2, . . . , rk > 0, where l ∈ {1, 2, . . . , k}, and λ ∈ (0, 1) is
a constant. Suppose that (X ,FY , �) is an l-natural k-fuzzy metric space. Then P has
a unique fixed point.

Nonlinear Anal. Model. Control, 30(1):1–22, 2025
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3 Main results

In this main part, we are going to extend and establish many contractive inequality in the
setting of k-fuzzy metric spaces. For the easiness, l ∈ {1, 2, . . . , k}, a > 0, η, ζ ∈ X ,
and r1, r2, . . . , rk > 0, we writeFYal (η, ζ, rk1 ) in the place ofFY(η, ζ, r1, . . . , rl−1, rl/a,
rl+1, . . . , rk), where (X ,FY , �) is a k-fuzzy metric space. With the inspiration of this [4],
we extend this idea of l-naturalness, which is depending on more then one parameter in
the following manners called as generalized natural property of a k-fuzzy metric space.

Definition 9. (X ,FY , �) is said to be generalized natural property of a k-fuzzy metric
space if there exist one or more than one parameter(s) li ∈ {1, 2, . . . , k}, where i =
1, 2, . . . ,m, m 6 k, such that for all η, ζ ∈ X ,

lim
rl1 ,rl2 ,...,rlm→+∞

FY(η, ζ, r1, r2, . . . , rli , . . . , rk) = 1.

We can see an example of generalized naturalness of k-fuzzy metric space.

Example 3. (See [4].) Let X = Rk, where k is a positive integer, w > 0, and let � be the
product t-norm. Define a fuzzy set FY on X 2 × (0,+∞)k by

lim
r1,r2,...,rk−1→+∞

FY(η, ζ, r1, r2, r3, . . . , rk)

= lim
r1,r2,...,rk−1→+∞

w

[
w +

k−1∑
i=1

|ηi − ζi|
ri

]−1
= 1

for all η = (η1, η2, . . . , ηk−1), ζ = (ζ1, ζ2, . . . , ζk−1) ∈ X . Then (X ,FY , �) has a gen-
eralized natural property of k-fuzzy metric space.

Remark 3. If we put m = 1 in Definition 9, the space reduces into 1-natural k-fuzzy
metric space.

We start generalizing Tirado-type contraction principle in this space.

Definition 10. Let (X ,FY , �) be a k-fuzzy metric space. A mapping P : X → X is
called a Tirado-type k-fuzzy contraction mapping if

1−FY
(
Pη,Pζ, rk1

)
6 α

(
1−FY

(
η, ζ, rk1

))
for all η, ζ ∈ X and r1, r2, . . . , rk > 0, where η 6= ζ, α ∈ (0, 1) is a constant.

Now we establish fixed point result using Tirado-type k-fuzzy contraction principle.

Theorem 2. LetP : X → X be a Tirado-type k-fuzzy contraction mapping and (X ,FY , �)
be a G-complete k-fuzzy metric space. Suppose that (X ,FY , �) is a k-fuzzy metric space.
Then P has a unique fixed point.

Proof. Let η0 ∈ X be any arbitrary point. Define a sequence {ηn} by Picard iteration
method ηn = Pηn−1 for all n ∈ N∪{0}. We must show that this sequence is a G-Cauchy

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On k-fuzzy metric spaces with applications 7

sequence. For any n ∈ N ∪ {0}, we have

1−FY
(
ηn, ηn+1, r

k
1

)
6 α

(
1−FY

(
ηn−1, ηn, r

k
1

))
.

By repeating in this manner, we obtain

1−FY
(
ηn, ηn+1, r

k
1

)
6 αn

(
1−FY

(
η0, η1, r

k
1

))
(1)

for all n ∈ N. Taking limit as n tends to +∞ and since α ∈ (0, 1), we conclude by (1),

lim
n→+∞

(
1−FY

(
ηn, ηn+1, r

k
1

))
6 lim
n→+∞

αn
(
1−FY

(
η0, η1, r

k
1

))
,

that is,
lim

n→+∞
FY
(
ηn, ηn+1, r

k
1

)
= 1 (2)

for all r1, r2, r3, . . . , rk > 0. For each n ∈ N and p > 0,

FY
(
ηn, ηn+p, r

k
1

)
> FY

(
ηn, ηn+1, r1, r2, . . . ,

rl
2
, . . . , rk

)
� FY

(
ηn+1, ηn+p, r1, r2, . . . ,

rl
2
, . . . , rk

)
,

FY
(
ηn, ηn+p, r

k
1

)
> FY2

l

(
ηn, ηn+1, r

k
1

)
� FY22

l

(
ηn+1, ηn+2, r

k
1

)
� · · · � FY2p−1

l

(
ηn+p−2, ηn+p−1, r

k
1

)
� FY2p

l

(
ηn+p−1, ηn+p, r

k
1

)
(3)

for all r1, r2, . . . , rk > 0. Letting limit as n→ +∞ and by using (2), we have

lim
n→+∞

FYal
(
ηn, ηn+1, r

k
1

)
= 1

for all r1, r2, . . . , rk > 0 and a > 0. Inequality (3) yields

lim
n→+∞

FY
(
ηn, ηn+p, r

k
1

)
> 1 � 1 � 1 � · · · � 1 = 1

for all r1, r2, . . . , rk > 0 and p > 0. Thus, the sequence {ηn} is a G-Cauchy sequence
in X . Since the space (X ,FY , �) is a G-complete, there exists u ∈ X such that the
sequence {ηn} converges to u, that is,

lim
n→+∞

FY
(
ηn, u, r

k
1

)
= 1 (4)

for all r1, r2, . . . , rk > 0. Now we must prove that u is a fixed point for a self-map P .

1−FY
(
ηn+1,Pu, rk1

)
= 1−FY

(
Pηn,Pu, rk1

)
6 α

(
1−FY

(
ηn, u, r

k
1

))
.

Letting limit as n→ +∞ and by using (4),

lim
n→+∞

(
1−FY

(
ηn+1,Pu, rk1

))
= 0,

Nonlinear Anal. Model. Control, 30(1):1–22, 2025
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that is,
FY
(
ηn+1,Pu, rk1

)
= 1 (5)

for all r1, r2, . . . , rk > 0. For any n ∈ N, we have

FY
(
u,Pu, rk1

)
> FY2

l

(
u, ηn+1, r

k
1

)
� FY2

l

(
ηn+1,Pu, rk1

)
.

Letting limit as n→ +∞ and using together (4) and (5), we have

FY
(
u,Pu, rk1

)
= 1

for all r1, r2, . . . , rk > 0. This implies Pu = u, that is, u is a fixed point of P .
For the uniqueness, suppose that v is another fixed point of P such that u 6= v. Then

there exist r1, r2, . . . , rk > 0 such that

FY
(
u, v, rk1

)
< 1,

that is,

1−FY
(
u, v, rk1

)
> 0.

Now

k
(
1−FY

(
u, v, rk1

))
> 1−FY

(
Pu,Pv, rk1

)
= 1−FY

(
u, v, rk1

)
,

which implies that k > 1, which is a contradiction. Therefore, we must have u = v, that
is, fixed point of P is unique.

For the existence of the fixed point, we are going to discuss the following example
with generalized natural property of space for Tirado-type k-fuzzy contraction principle.

Example 4. Consider X = [0, 1]2 with a usual metric (X , ρ). � is the product t-norm,
w > 0, and k ∈ Z+. Define a membership function FY : X 2 × (0,+∞)k → [0, 1] by

FY(η, ζ, r1, r2, r3) =
w

w + ρ(η, ζ)( 1
r1

+ 1
r2
)

for all η = (η1, η2), ζ = (ζ1, ζ2) ∈ X and r1, r2, r3 ∈ (0,+∞). Then (X ,FY , �) is
a G-complete 3-fuzzy metric space.

In addition,
lim

r1,r2→+∞
FY(η, ζ, r1, r2, r3) = 1

for all η, ζ ∈ X , r3 > 0, and the space (X ,FY , �) is a generalized natural 3-fuzzy metric
space.

Define a mapping P : X → X by

P(η1, η2) =
(
η1
2
,
η2
2

)
for all (η1, η2) ∈ X .

https://www.journals.vu.lt/nonlinear-analysis
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Consider η = (η1, η2), ζ = (ζ1, ζ2) ∈ X and r1, r2 > 0. We get

α
(
1−FY(η, ζ, r1, r2, r3)

)
= α

(
1− w

w + (|η1 − ζ1|+ |η2 − ζ2|)( 1
r1

+ 1
r2
)

)
= α

(
1− wr1r2

wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

)
= α

(
(|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

)
.

If

α ∈
(
wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

2wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)
, 1

)
,

α
(
1−FY(η, ζ, r1, r2, r3)

)
>

(
wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

2wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

)
×
(

(|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

)
=

(|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

2wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

=
2wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)− 2wr1r2

2wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

= 1− 2wr1r2
2wr1r2 + (|η1 − ζ1|+ |η2 − ζ2|)(r1 + r2)

= 1− w

w + ( |η1−ζ1|2 + |η2−ζ2|2 )( 1
r1

+ 1
r2
)

= 1−FY(Pη,Pζ, r1, r2, r3).

Thus, P is a Tirado-type k-fuzzy contraction mapping. Therefore, (0, 0) is a unique fixed
point of self-map P .

Example 5. Consider X = [0, 1] with a usual metric (X , ρ). � is the product t-norm,
w>1, and k∈Z+. Define a membership function FY :X 2×(0,+∞)k→ [0, 1] by

FY(η, ζ, r1, r2, r3) =
wr1r2

wr1r2 + ρ(η, ζ)

for all η, ζ ∈ X and r1, r2, r3 > 0. Then (X ,FY , �) is a G-complete 3-fuzzy metric
space.

In addition,
lim

r1,r2→+∞
FY(η, ζ, r1, r2, r3) = 1

for all η, ζ ∈ X , and the space (X ,FY , �) is a generalized natural 3-fuzzy metric space.
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Figure 1. Red colour defined by L.H.S., and yellow colour defined by R.H.S. in Eq. (6).

Define a mapping P : X → X by

P(η) =

{
η2

4 if η 6= 0,

0 if η = 0

for all η, ζ ∈ X . Here P is not continuous. We consider two cases:

1. If η 6= 0 and ζ 6= 0, then for α = 1/2,[
1−FY(Pη,Pζ, r1, r2)

]
=

[
1−FY

(
η2

4
,
ζ2

4
, r1, r2

)]
=

[
1− wr1r2

wr1r2 + |η
2

4 −
ζ2

4 |

]
=

[
1− wr1r2

wr1r2 +
1
4 |η − ζ|

]
6

1

2

[
1− wr1r2

wr1r2 + |η − ζ|

]
= α

[
1−FY(η, ζ, r1, r2)

]
. (6)

2. If η 6= 0 and ζ = 0, then for α = 1/2,[
1−FY(Pη,Pζ, r1, r2)

]
=

[
1−FY

(
η2

4
, 0, r1, r2

)]
=

[
1− wr1r2

wr1r2 + |η
2

4 − 0|

]
6

1

2

[
1− wr1r2

wr1r2 + |η − 0|

]
= α

[
1−FY(η, ζ, r1, r2)

]
. (7)

Thus, P is a Tirado-type k-fuzzy contraction mapping for w · r1 · r2 > 1. Hence 0 is
a unique fixed point of self-map P .

Let Ψ be the class of all mapping ψ : [0, 1] → [0, 1] such that ψ is continuous,
nondecreasing and ψ(t) > t for all t ∈ (0, 1). Using this class of mapping, Mihet [8]
defined a fuzzy ψ-contractive mapping. Now we extend this idea in k-fuzzy ψ-contractive
mapping in this space and state fixed point theorem without using natural property in the
following manner:

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On k-fuzzy metric spaces with applications 11

Figure 2. Red colour defined by L.H.S., and yellow colour defined by R.H.S. in Eq. (7).

Definition 11. A self-map P : X → X is called a k-fuzzy ψ-contractive mapping if P
satisfies the following inequality:

FY
(
η, ζ, rk1

)
> 0 =⇒ FY

(
Pη,Pζ, rk1

)
> ψ

(
FY
(
η, ζ, rk1

))
for all r1, r2, . . . , rk > 0 and ψ ∈ Ψ .

Theorem 3. Let (X ,FY , �) be an G-complete k-fuzzy metric space and P : X → X be
a k-fuzzy ψ-contractive mapping. If there exists η0 ∈ X such that FY(η0,Pη0, rk1 ) > 0
for all r1, r2, . . . , rk > 0, then P has a fixed point.

Proof. Let η0 ∈ X be any arbitrary point. Define a sequence {ηn} by Picard itera-
tion method ηn = Pηn−1 for all n ∈ N ∪ {0}. Then for any η0 ∈ X such that
FY(η0,Pη0, rk1 ) > 0 for all r1, r2, . . . , rk > 0, we have

FY
(
η1, η2, r

k
1

)
= FY

(
Pη0,Pη1, rk1

)
> ψ

(
FY
(
η0, η1, r

k
1

))
> FY

(
η0, η1, r

k
1

)
for all r1, r2, . . . , rk > 0 and

FY
(
η2, η3, r

k
1

)
= FY

(
Pη1,Pη2, rk1

)
> ψ

(
FY
(
η1, η2, r

k
1

))
> FY

(
η1, η2, r

k
1

)
for all r1, r2, . . . , rk > 0. Inductively, we obtain

FY
(
ηn+1, ηn+2, r

k
1

)
> FY

(
ηn, ηn+1, r

k
1

)
for all r1, r2, . . . , rk > 0. Thus, sequence {FY(ηn, ηn+1, r

k
1 )}n∈N is a nondecreasing

sequence of number in (0, 1]. Consider

lim
n→+∞

FY
(
ηn, ηn+1, r

k
1

)
= l,

where l ∈ (0, 1], for any fixed tl > 0, r1, r2, . . . , rk > 0.
Now again starting from FY(η0,Pη0, rk1 ) > 0,

FY
(
ηn, ηn+1, r

k
1

)
> ψ

(
FY
(
ηn−1, ηn, r

k
1

))
> FY

(
ηn−1, ηn, r

k
1

)
Nonlinear Anal. Model. Control, 30(1):1–22, 2025
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for all r1, r2, . . . , rk > 0. Letting limit as n → +∞ and since ψ is continuous, we get
l > ψ(l) > l, which is a contradiction. This implies l = 1, and thus

lim
n→+∞

FY
(
ηn, ηn+1, r

k
1

)
= 1 (8)

for all r1, r2, . . . , rk > 0.
Next, we must show that {ηn} is a G-Cauchy sequence. Take on the a contrary that

{ηn} is not a G-Cauchy sequence. Then there is ε ∈ (0, 1) such that for each s ∈ N, there
exist m(s), n(s) ∈ N with m(s) > n(s) > s and

FY
(
ηm(s), ηn(s), r

k
1

)
6 1− ε (9)

for all r1, r2, . . . , rk > 0. Let, for each s, m(s) be the least integer exceeding n(s)
satisfying the above property, that is,

FY
(
ηm(s)−1, ηn(s), r

k
1

)
> 1− ε. (10)

Using (9), then applying property of triangular inequality and using (10),

1− ε > FY
(
ηm(s), ηn(s), r

k
1

)
> FY2

l

(
ηm(s)−1, ηn(s), r

k
1

)
� FY2

l

(
ηm(s)−1, ηm(s), r

k
1

)
> (1− ε) � FY2

l

(
ηm(s)−1, ηm(s), r

k
1

)
.

Taking limit as s→ +∞, it follows that

lim
s→+∞

FY
(
ηm(s), ηn(s), r

k
1

)
= 1− ε (11)

for all r1, r2, . . . , rk > 0. Now

FY
(
ηm(s), ηn(s), r

k
1

)
> FY2

l

(
ηm(s), ηm(s)+1, r

k
1

)
� FY2

l

(
ηm(s)+1, ηn(s), r

k
1

)
> FY2

l

(
ηm(s), ηm(s)+1, r

k
1

)
� FY22

l

(
ηm(s)+1, ηn(s)+1, r

k
1

)
� FY22

l

(
ηn(s)+1, ηn(s), r

k
1

)
> FY2

l

(
ηm(s), ηm(s)+1, r

k
1

)
� ψ
(
FY22

l

(
ηm(s), ηn(s), r

k
1

))
� FY22

l

(
ηn(s)+1, ηn(s), r

k
1

)
.

Letting limit as s→ +∞ and using (8), (11), we get

1− ε > 1 � ψ(1− ε) � 1 > 1− ε,

which is a contradiction. Thus, {ηn} is a Cauchy sequence. Therefore,

lim
s→+∞

FY
(
ηm(s), ηn(s), r

k
1

)
= 1

https://www.journals.vu.lt/nonlinear-analysis
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for all r1, r2, . . . , rk > 0. Since the k-fuzzy metric space (X ,FY , �) is complete, so that
Cauchy sequence {ηn} is convergent at u in X such that

lim
n→+∞

FY
(
ηn, u, r

k
1

)
= 1

for all r1, r2, . . . , rk > 0. Next, we must prove that P has fixed point u ∈ X . Suppose
that Pu 6= u, so that FY(u,Pu, rk1 ) > 0 for all r1, r2, . . . , rk > 0. Without loss of
generality, for all n ∈ N,

FY
(
ηn,Pu, rk1

)
> 0

=⇒ FY
(
Pηn,Pu, rk1

)
> ψ

(
FY
(
ηn, u, r

k
1

))
> FY

(
ηn, u, r

k
1

)
.

Letting limit as n → +∞, we get FY(u,Pu, rk1 ) > 1, which is a contradiction. There-
fore, FY(u,Pu, rk1 ) = 1 for all r1, r2, . . . , rk ∈ (0, 1). Thus, u is a fixed point for
a self-map P . Next, we must show that fixed point is unique. Suppose v is another fixed
point of self-map Q such that u 6= v, that is, FY(u, v, rk1 ) > 0. This implies that

FY
(
u, v, rk1

)
= FY

(
Pu,Pv, rk1

)
> ψ

(
FY(u, v, rk1

))
> FY

(
u, v, rk1

)
for all r1, r2, . . . , rk ∈ (0, 1), which is a contradiction. Therefore, fixed point of Q is
unique.

The following example satisfies the above theorem.

Example 6. Let X = [0, 1] and (X , ρ) be a usual fuzzy metric space, and let � be the
product t-norm, w > 0, and k = 2. Define the fuzzy set FY on X 2 × (0,+∞)k by

FY(η, ζ, r1, r2, r3) = exp

{
−2ρ(η, ζ)

(
1

r1
+

1

r2

)}
for all η, ζ ∈ X and r1, r2, r3 > 0. Then (X ,FY , �) is a G-complete 2-fuzzy metric
space. Define a self-map P : X → X by Pη = η/4 for all η ∈ X . Take ψ(t) =

√
t > t

for all t ∈ (0, 1).

FY(Pη,Pζ, r1, r2, r3)

= FY
(
η

4
,
ζ

4
, r1, r2, r3

)
= exp

{
−2ρ

(
η

4
,
ζ

4

)(
1

r1
+

1

r2

)}
= exp

{
−|η − ζ|

2

(
1

r1
+

1

r2

)}
> exp

{
−|η − ζ|

(
1

r1
+

1

r2

)}
=

[
exp

{
−2|η − ζ|

(
1

r1
+

1

r2

)}]1/2
=
[
FY(η, ζ, r1, r2, r3)

]1/2
= ψ

(
FY(η, ζ, r1, r2, r3)

)
.

Thus, Q is a 2-fuzzy ψ-contractive mapping with respect to ψ(t) =
√
t. The point η = 0

is the fixed point for self-map P .

The following example is a discontinuous function.
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Example 7. Let X = [0, 1] and (X , ρ) be a usual fuzzy metric space, � be the product
t-norm, w > 0, and k = 2. Define the fuzzy set FY on X 2 × (0,+∞)k by

FY(η, ζ, r1, r2, r3) =
w

w + ρ(η, ζ)( 1
r1

+ 1
r2
)

for all η, ζ ∈ X and r1, r2, r3 > 0. Then (X ,FY , �) is a G-complete 2-fuzzy metric
space. Define a self-map P : X → X by

Pη =

{
1
4η if η ∈ [0, 1),
1
5 if η = 1

for all η ∈ X . Here P is not continuous at the point η = 1. Take ψ(t) =
√
t > t for all

t ∈ (0, 1).

1. If η ∈ [0, 1) and ζ ∈ [0, 1), then

FY(Pη,Pζ, r1, r2, r3)

=
w

w + | 14η −
1
4ζ|(

1
r1

+ 1
r2
)
> ψ

(
w

w + |η − ζ|( 1
r1

+ 1
r2
)

)
= ψ

(
FY(η, ζ, r1, r2, r3)

)
. (12)

2. If η ∈ [0, 1) and ζ = 1, then

FY(Pη,Pζ, r1, r2, r3)

=
w

w + | 14η −
1
5 |(

1
r1

+ 1
r2
)
> ψ

(
w

w + |η − 1|( 1
r1

+ 1
r2
)

)
= FY(η, ζ, r1, r2, r3). (13)

3. If η = 1 and ζ = 1, then the contraction condition is obviously satisfied. Hence,
P is a 2-fuzzy ψ-contractive mapping with respect to ψ(t) =

√
t > t, and the

point η = 0 is the fixed point for the self-map.

Figure 3. Red colour defined by L.H.S., and yellow colour defined by R.H.S. in Eq. (12).
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Figure 4. Red colour defined by L.H.S., and yellow colour defined by R.H.S. in Eq. (13).

Theorem 4. Let (X ,FY , �) be a G-complete l-natural k-fuzzy metric space with � as
minimum t-norm. Let P : X → X be a self-mapping satisfying

FY1/λ
l

(
Pη,Pζ, rk1

)
> min

{
FY
(
η, ζ, rk1

)
,FY

(
η,Pη, rk1

)
,FY

(
ζ,Pζ, rk1

)
,

FY1/2
l

(
η,Pζ, rk1

)
� FY1/2

l

(
ζ,Pη, rk1

)}
(14)

for all η, ζ ∈ X and r1, r2, . . . , rk > 0, where l ∈ {1, 2, . . . , k}, and λ ∈ (0, 1) is
a constant. Suppose that (X ,FY , �) is an l-natural k-fuzzy metric space. Then P has
a unique fixed point.

Proof. First, we will show that if a fixed point of P exists, then it is unique. Suppose that
u and v are fixed points of P . Using (14), we have

FY
(
u, v, rk1

)
= FY

(
Pu,Pv, rk1

)
> min

{
FYλl

(
u, v, rk1

)
,FYλl

(
u,Pv, rk1

)
,FYλl

(
v,Pv, rk1

)
,

FYλ/2l

(
u,Pv, rk1

)
� FYλ/2l

(
v,Pu, rk1

)}
= min

{
FYλl

(
u, v, rk1

)
,FYλl

(
u, v, rk1

)
,FYλl

(
v, v, rk1

)
,

FYλ/2l

(
u, v, rk1

)
� FYλ/2l

(
v, u, rk1

)}
= min

{
FYλl

(
u, v, rk1

)
, 1, 1,(

FYλl
(
u, u, rk1

)
� FYλl

(
u, v, rk1

))
� FYλl

(
v, v, rk1

)
� FYλl

(
v, u, rk1

)}
= FYλl

(
u, v, rk1

)
.

By repeating this process, we obtain

FY
(
u, v, rk1

)
> FYλl

n(
u, v, rk1

)
for all n ∈ N. Note that, if {an} be any sequence such that an > 0 and limn→∞ an = 0,
then since (X ,FY , �) is l-natural, we have

lim
n→+∞

FYanl
(
u, v, rk1

)
= 1 (15)
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for all r1, r2, . . . , rk > 0. By using (15), we obtain

FY
(
u, v, rk1

)
= 1

for all r1, r2, . . . , rk > 0, that is, u = v. Therefore, the fixed point of P is unique. To
obtain a fixed point for P , we choose any arbitrary point η0 ∈ X and construct an iterative
Picard sequence {ηn} by ηn = Pηn−1 for all n ∈ N0:

FY
(
ηn, ηn+1, r

k
1

)
= FY

(
Pηn−1,Pηn, rk1

)
> min

{
FYλl

(
ηn−1, ηn, r

k
1

)
,FYλl

(
ηn−1, ηn, r

k
1

)
,

FYλl
(
ηn−1, ηn, r

k
1

)
,FYλ/2l

(
ηn−1, ηn+1, r

k
1

)
� FYλ/2l

(
ηn, ηn, r

k
1

)}
= min

{
FYλl

(
ηn−1, ηn, r

k
1

)
,FYλl

(
ηn−1, ηn, r

k
1

)
,FYλl

(
ηn−1, ηn, r

k
1

)
,

FYλl
(
ηn−1, ηn, r

k
1

)
� FYλl

(
ηn, ηn+1, r

k
1

)
� 1
}
.

If
min

{
FYλl

(
ηn−1, ηn, r

k
1

)
,FYλl

(
ηn, ηn+1, r

k
1

)}
= FYλl

(
ηn, ηn+1, r

k
1

)
,

nothing will be proved, so that

min
(
FYλl

(
ηn−1, ηn, r

k
1

)
,FYλl

(
ηn, ηn+1, r

k
1

))
= FYλl

(
ηn−1, ηn, r

k
1

)
.

Therefore,

FY
(
ηn, ηn+1, r

k
1

)
> FYλl

(
ηn−1, ηn, r

k
1

)
.

By repeating this process, we obtain

FY
(
ηn, ηn+1, r

k
1

)
> FYλl

n(
η0, η1, r

k
1

)
(16)

for all n ∈ N. Now for each n ∈ N, p > 0, and r1, r2, . . . , rk > 0, we have

FY
(
ηn, ηn+p, r

k
1

)
> FY2

l

(
ηn, ηn+1, r

k
1

)
� FY2

l

(
ηn+1, ηn+p, r

k
1

)
> FY2

l

(
ηn, ηn+1, r

k
1

)
� FY22

l

(
ηn+1, ηn+2, r

k
1

)
� FY22

l

(
ηn+2, ηn+p, r

k
1

)
> FY2

l

(
ηn, ηn+1, r

k
1

)
� FY22

l

(
ηn+1, ηn+2, r

k
1

)
� · · · � FY2p−1

l

(
ηn+p−2, ηn+p−1, r

k
1

)
� FY2p

l

(
ηn+p−1, ηn+p, r

k
1

)
.

By using (16), we obtain

FY
(
ηn, ηn+p, r

k
1

)
> FY2λn

l

(
η0, η1r

k
1

)
� FY22λn+1

l

(
η0, η1, r

k
1

)
� · · · � FY2p−1λn+p−2

l

(
η0, η1, r

k
1

)
� FY2pλn+p−1

l

(
η0, η1, r

k
1

)
.
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Since (X ,FY , �) is l-natural, it follows from the above inequality that

lim
n→+∞

FY
(
ηn, ηn+1, r

k
1

)
= 1.

Therefore, {ηn} is a G-Cauchy sequence. By the G-completeness of (X ,FY , �) there
exists u ∈ X such that

lim
n→+∞

FY
(
ηn, u, r

k
1

)
= 1 (17)

for all r1, r2, . . . , rk > 0.
Now, we must shows that u is a fixed point of P . Since P is continuous map, we have

FY
(
u,Pu, rk1

)
> FY2

l

(
u, ηn, r

k
1

)
� FY2

l

(
ηn,Pu, rk1

)
= FY2

l

(
u, ηn, r

k
1

)
� FY2

l

(
Pηn−1,Pu, rk1

)
> FY2

l

(
u, ηn, r

k
1

)
� FY2λ

l

(
ηn−1, u, r

k
1

)
.

By using (17) in above inequality, we obtain

FY
(
u,Pu, rk1

)
= 1

for all r1, r2, . . . , rk > 0, that is, Pu = u. Thus, u is the unique fixed point of P .

Theorem 5. Let (X ,FY , �) be a G-complete l-natural k-fuzzy metric space with � as
minimum t-norm. Let P : X → X be a self-mapping satisfying

FY1/λ
l

(
Pη,Pζ, rk1

)
> min

{
FY
(
η, ζ, rk1

)
,FY

(
η,Pη, rk1

)
,FY

(
ζ,Pζ, rk1

)}
for all η, ζ ∈ X and r1, r2, . . . , rk > 0, where l ∈ {1, 2, . . . , k}, and λ ∈ (0, 1) is
a constant. Suppose that (X ,FY , �) is an l-natural k-fuzzy metric space. Then P has
a unique fixed point.

Proof. We can follow the procedure similar to that of Theorem 4.

4 Applications

4.1 Application to nonlinear Volterra integral equations

We will prove the existence and uniqueness of a solution for the given integral equation
of Volterra kind

κ(t) = g(t) +

a∫
0

h(t, s) · f
(
t, s, κ(s)

)
ds, t ∈ [0, a], (18)

where a > 0, f : [0, a]× [0, a]× R→ R, and h : [0, a]× [0, a]→ R.
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Let X = C([0, a],R) be the set of all continuous functions g : [0, a] → R. It is well
known that X , equipped with Bioielecki’s norm

‖κ‖ = sup
t∈[0,a]

e−t
∣∣κ(t)∣∣,

is a Banach space. Thus, X , endowed with the distance associated with Bielecki’s norm

ρ(κ, γ) = sup
t∈[0,a]

e−t
∣∣κ(t)− γ(t)∣∣

for all κ, γ ∈ X , is a complete metric space.
Define G-complete k-fuzzy metric space FY : X × X × [0,+∞]→ [0, 1] by

FY
(
η, ζ, rk1

)
= e−ρ(η,ζ)

k∑
i=1

1

ri

for all η, ζ ∈ X and r1, r2, . . . , rk > 0.

Theorem 6. Suppose that the following conditions hold:

(i) For all t, s ∈ [0, a], κ, γ ∈ X ,∣∣f(t, s, κ(s))− f(t, s, γ(s))∣∣ < |κ(s)− γ(s)|
2

.

(ii) For all t, s ∈ [0, a],

sup
t∈[0,a]

a∫
0

∣∣h(t, s)∣∣ds 6 1

a
.

Then the integral equation (18) has a unique solution in X .

Proof. Let the mapping L : X → X be the integral operator defined by

L
(
κ(t)

)
= g(t) +

a∫
0

h(t, s) · f
(
t, s, κ(s)

)
ds,

for κ ∈ X and t, s ∈ [0, a].
Consider ψ(t) =

√
t > t for all t ∈ (0, 1) such that ψ ∈ Ψ . Now

FY
(
Lκ,Lγ, rk1

)
= FY

(
Lκ,Lγ, r1, r2, . . . , r1, . . . , rk

)
= exp

{
−ρ(Lκ,Lγ)

k∑
i=1

(
1

ri

)}

= exp

{
− sup
t∈[0,a]

{∣∣∣∣∣
a∫

0

h(t, s) · f
(
t, s, κ(s)

)
ds−

a∫
0

h(t, s) · f
(
t, s, γ(s)

)
ds

∣∣∣∣∣
}

×
k∑
i=1

(
1

ri

)}
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= exp

{
− sup
t∈[0,a]

{ a∫
0

∣∣h(t, s)∣∣ds a∫
0

∣∣f(t, s, κ(s))− f(t, s, γ(s))∣∣ds} k∑
i=1

(
1

ri

)}

> exp

{
− sup
t∈[0,a]

{
1

a
·
a∫

0

|κ(s)− γ(s)|
2

ds

}
k∑
i=1

(
1

ri

)}

=

(
exp

{
− sup
t∈[0,a]

∣∣κ(s)− γ(s)∣∣ k∑
i=1

(
1

ri

)})1/2

=
(
FY
(
κ, γ, rk1

))1/2
= ψ

(
FY
(
κ, γ, rk1

))
.

Since all assertions of Theorem 3 are satisfied, the map L has unique fixed point. This
means that the integral equation (18) has a solution.

4.2 Application to second-order differential equations

Now we discuss the existence and uniqueness of solutions of the boundary value problem
for the second-order differential equation

− d2κ

dt2
= f

(
t, κ(t)

)
, t ∈ I, (19)

with boundary conditions κ(0)=κ(1)=0, where I=[0, 1] and f : I×R→R is a continu-
ous function.

Let X = C(I,R) be the space of all continuous function κ : I→ R. It is well known
that X , endowed with

σ∞(η, ζ) = sup
t∈[0,1]

∣∣η(t)− ζ(t)∣∣
for all η, ζ ∈ X , is a complete metric space. Let us define fuzzy setFY onX 2×(0,+∞)2

by

FY(η, ζ, r1, r2) = exp
σ∞(η, ζ)

r1

for all η, ζ ∈ X and r1, r2 > 0. Then (X ,FY , �) is a G-complete 2-fuzzy metric space
(k = 2). Moreover,

lim
r1→+∞

FY(η, ζ, r1, r2) = 1

for all η, ζ ∈ X , that is, (X ,FY , �) is a l-natural 2-fuzzy metric space.

Theorem 7. Suppose that the following condition holds for all z, w ∈ R and for all r ∈ I:∣∣f(r, z)− f(r, w)∣∣ < |z − w|.
Then problem (19) has a unique solution in η∗ ∈ C(I,R).
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Proof. It is well known that problem (19) is equivalent to the following integral equation:

η(t) =

1∫
0

G(t, r)f
(
r, η(r)

)
dr

for all t ∈ I, where G is Green function associated to problem (19) and given by

G(t, r) =

{
t(1− r) for 0 6 t 6 r 6 1,

r(1− t) for 0 6 r 6 t 6 1.

The η ∈ C(I,R) is a solution of equation (19) if and only if η ∈ C(I,R) is a solution of
the integral equation (19). Now we can define a mapping L : X → X as follows:

Lη(t) =

1∫
0

G(t, r)f
(
r, η(r)

)
dr

for all t ∈ I and η ∈ X . Let η, ζ ∈ X such that Lη 6= Lζ,

∣∣Lη(t)− Lζ(t)
∣∣ = ∣∣∣∣∣

t∫
0

G(t, r)f
(
r, η(r)

)
dr −

t∫
0

G(t, r)f
(
r, ζ(r)

)
dr

∣∣∣∣∣
=

t∫
0

G(t, r)
∣∣f(r, η(r))− f(r, ζ(r))∣∣dr

6
∣∣η(r)− ζ(r)∣∣ 1∫

0

G(t, r) dr.

Since supt∈[0,1]
∫ 1

0
G(t, r) dr = 1/8,

sup
t∈[0,1]

∣∣Lη(t)− Lζ(t)
∣∣ 6 1

8
sup
t∈[0,1]

∣∣η(r)− ζ(r)∣∣
=⇒ σ∞(Lη,Lζ) 6

1

8
σ∞(η, ζ) =⇒ − σ∞(η, ζ)

r1
6 −σ∞(Lη,Lζ)

1
8r1

=⇒ exp

{
−
(
σ∞(η, ζ)

r1

)}
6 exp

{
−
(
σ∞(Lη,Lζ)

1
8r1

)}
.

Choose λ = 1/8 ∈ (0, 1), then

exp

{
−
(
σ∞(η, ζ)

r1

)}
6 exp

{
−
(
σ∞(Lη,Lζ)

λr1

)}
=⇒ FY(η, ζ, r1, r2) 6 FY1/λ

1 (Lη,Lζ, r1, r2).

Therefore, L has unique fixed point η∗ ∈ X . Thus, problem (19) has a unique solution
η∗ ∈ C(I,R).
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5 Conclusion and future scope

The motivational new fuzzy metric space invented by Gopal [4], they have proved Ba-
nach contraction principle with the concern of k-fuzzy metric space with the restricted
property l-naturalness of the space. In this article, we have generalized some more famed
contraction like Tirado-type, Mihet-type, and few more in terms of k-fuzzy metric spaces.
While preparing the example of such theorems, we saw that the space is not natural,
we need to consider more than one parameter tending to infinity, only then we will get
FY(η, ζ, r1, r2, r3) tends to 1.

Further, researchers may go with this direction to define some other concepts of
k-fuzzy metric space or may define new definition of fuzzy spaces. Moreover, we can
prepare more theorems in Suzuki-type contraction like Chandra et al. [1], Patel et al. [10],
and also calculate best proximity point for this space like Patel et al. [11].
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