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Abstract. Here local nonsimilar solution for hydromagnetic stretched flow of Reiner–Rivlin
material is constructed. Heat generation, radiation, and dissipation in thermal expression are studied.
Joule heating and chemical reaction of first order are under consideration. Entropy generation is
computed. Nonlinear system is derived by adequate transformations. Optimal homotopy analysis
technique computes the analysis. Attention is focused to achieve the results of concentration,
fluid flow, entropy rate, and temperature. In addition, the skin friction, solutal transport rate and
Nusselt number have been explained. Outcomes of magnetic field on velocity and entropy rate are
found opposite. Large approximation of fluid parameter improves the fluid flow. Larger estimation
of Brinkman number yields same results of entropy generation and temperature. Reduction in
concentration is noted through Schmidt number. Higher reaction variable correspond to reduce
concentration. Temperature and entropy generation through radiation variable has similar trend.
Material variable has similar results for rate of mass transport and coefficient of skin friction.
Radiation amplifies the thermal transport rate. Reverse effect for entropy rate and Bejan number
is detected for magnetic field.

Keywords: thermal radiation, Reiner–Rivlin fluid, entropy generation, Joule heating.

1 Introduction

Non-Newtonian fluids are important for applications in industrial, biological, mechan-
ical, and micromanufacturing engineering including oil exploration, drawing of plastic
films, emulsions food processing, manufacturing of paints, petroleum industries, clay
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coating, paper production, etc. [9, 31]. Existing literature ensures different models non-
Newtonian fluids through their diverse characteristics. Reiner–Rivlin material [24, 25]
is regarded to predict flow characteristics in various processes of geology and biology.
Therefore Abdal et al. [1] studied bioconvective flow on this topic. Tabassum and Mustafa
[27] examined heat transport in Reiner–Rivlin material. Flow by rotating disk is gener-
ated. Lv et al. [16] studied activation energy in Reiner–Rivlin nanomaterial flow sub-
ject to Cattaneo–Christov fluxes. Rashid and Mustafa [22] analyzed entropy optimized
flow of Reiner–Rivlin material considering dissipation and radiation. Khan et al. [12]
discussed features of homogeneous-heterogeneous reactions in magnetohydrodynamic
Reiner–Rivlin liquid flow.

Magnetohydrodynamic (MHD) flows have received attention in view of industrial,
physiological, and pharmaceutical processes such as energy conversion, magnetic reso-
nance imaging (MRI), MHD thrusters, hyperthermia, plasma stability predictor, magnetic
drug targeting, MHD generators, cancer therapy, etc. [26, 33, 34]. Radiation for mag-
netohydrodynamic nanoliquid flow by porous wall is studied in Amar and Kishan [2].
Kalpana et al. [11] addressed random and thermophoresis diffusions for hydromagnetic
unsteady flow of nanoliquid in a wavy channel. Manzoor et al. [18] studied MHD flow by
an oscillating porous wall. Ullah et al. [28] examined Ohmic heating for hydromagnetic
flow of hybrid nanoliquid. Slip feature in MHD flow involving nanoliquid is considered
by Vinita and Poply [30]. Madhu et al. [17] explored radiation in unsteady magnetized
flow of Maxwell nanomaterial. Entropy for hydromagnetic dissipative flow of nanoliquid
is examined in Govindaraju et al. [8]. MHD convective flow of nanomaterial in presence
of heat generation is presented in Oudina et al. [19]. Yasir et al. [32] addressed radiative
magnetohydrodynamic flow of hybrid nanomaterial.

Initially, Bejan [3, 4] estimated minimization procedure for studying thermodynam-
ical system irreversibility in heat procedure with entropy production. Reedy et al. [23]
discussed entropy for radiative flow of hydromagnetic Carreau fluid. Entropy generated
flow of nanoliquid is presented in Buonomo et al. [6]. Hayat et al. [10] considered the
entropy for modified Darcy–Forchheimer flow of Carreau liquid. Peristalsis in view of
entropy generation and homogenous and heterogeneous reactions is examined by Vaidya
et al. [29]. Chen [7] explored the irreversibility in rotating convective flow. Mondal and
Mahapatra [20] examined thermal and solutal transportation analyses for convective nano-
material flow with entropy rate inside a trapezoidal cavity.

It is noticed from existing information that entropy optimized flow of Reiner–Rivlin
material is not much attention. Hence, the purpose of this communication is to model and
simulate stretched flow on the title with radiation, heat generation, chemical reaction, and
Ohmic heating. Chemically reactive flow with first order is taken. Adequate transforma-
tions are employed. Optimal homotopy analysis method (OHAM) leads to development
of approximate solutions. The physical quantities under consideration are analyzed.

2 Modeling
MHD steady and stretched flow for Reiner–Rivlin material is explored. Radiation, Joule
heating, heat generation, and entropy generation are present. Flow is subject to isothermal
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Figure 1. Flow sketch.

binary reaction. Magnetic field of strength B0 is exerted. Absence of induced magnetic
and electric fields are ensured. Stretching velocity is u = uw = ax (uw > 0 being the
stretching rate). Flow description is given in Fig. 1; see [13].

Boundary layer two-dimensional flow is governed by [13]
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with conditions [13]

u = uw(x) = ax, v = 0, T = Tw, C = Cw at y = 0,

u→ 0, T → T∞, C → C∞ as y →∞.

In above expression, (x, y) indicates the Cartesian coordinates, ρ the density, (u, v)
the velocity components, µc cross viscosity, σ the electrical conductivity, µ the dynamic
viscosity, T the temperature, k the thermal conductivity, ν kinematic viscosity, Tw wall
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temperature, Q0 heat source coefficient, cp specific heat, σ∗ Stefan–Boltzman constant,
T∞ ambient temperature, C concentration, k∗ the mean absorption coefficient, DB mass
diffusivity, Cw wall concentration, l reference length kr reaction rate, and C∞ ambient
concentration.

Consider [13]

u = ax
∂f(ξ, η)

∂η
, v = −
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(4)

Here K = µca/µ denotes Reiner–Rivlin fluid parameter, M = σB2
0/(aρ) the magnetic

variable, Pr = ν/α the Prandtl number, Rd = 16σ∗T 3
∞/(3k

∗kf ) the radiation variable,
Ec = a2l2/(cp(Tw − T∞)) Eckert number, Sc = ν/DB the Schmidt number, Q =
Q0/(aρcp) the heat generation variable, Br = PrEc the Brinkman number, and γ =
kr/a the reaction variable.
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3 Quantities of interest

3.1 Skin friction coefficient

Its definition is

Cfx =
τxy|y=0

ρu2w
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Nondimensional form is CfxRe
1/2
x = f ′′(0).

3.2 Nusselt number

Its definition is expressed by
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Here heat flux qw satisfies
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Above two expressions lead to
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Above expression can be expressed as follows:
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Here R characterizes the gas constant, NG = SGνT∞/(ka(Tw − T∞)) the entropy rate,
α1 = (Tw − T∞)/T∞ heat ratio parameter, L = RDB(Cw − C∞)/k the diffusion
parameter, α2 = (Cw − C∞)/C∞ the solutal ratio parameter, and Bejan number Be
obeys
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5 Solution methodology

5.1 Local-similar solution

We consider ∂(·)/∂ξ = 0 and ∂(·)/∂η for prime regarding such solutions through
Eqs. (1)–(4) and obtain

f ′′′ + ff ′′ − f ′2 + 2K
(
f ′′2 + f ′f ′′′

)
−Mf ′ = 0,

(1 +Rd)θ′′ + Pr fθ′ + PrEc ξ2f ′′2 +MPrEc ξ2f ′2 + PrQθ = 0,

φ′′ + Sc fφ′ − Sc γφ = 0

with

f ′(ξ, 0) = 1, f(ξ, 0) = 0, θ(ξ, 0) = 1, φ(ξ, 0) = 1,

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

5.2 Local nonsimilar solution

For local nonsimilar solutions, we consider ∂f/∂ξ = p, ∂2f/∂ξ∂η = ∂f ′/∂ξ = p′,
∂θ/∂ξ = q, ∂2θ/∂ξ∂η = ∂θ′/∂ξ = q′, ∂φ/∂ξ = g, ∂2φ/∂ξ∂η = ∂φ′/∂ξ = g′.
Denoting ∂(·)/∂η by prime in Eqs. (1)–(4), we thus have

f ′′′ + ff ′′ − f ′2 + ξpf ′′ − ξp′f ′ + 2K
(
f ′′2+ ξp′′f ′′+ f ′f ′′′+ ξp′f ′′′

)
−Mf ′ = 0,

(1 +Rd)θ′′ + Pr fθ′ − Pr ξqθ′ + Pr ξpf ′ +MPrEc ξ2f ′2 + PrQθ = 0,

φ′′ + Sc fφ′ + Sc ξpφ′ − Sc ξgf ′ − Sc γφ = 0
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with

f ′(ξ, 0) = 1, f(ξ, 0) = −ξp(ξ, 0), θ(ξ, 0) = 1, φ(ξ, 0) = 1,

f ′(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.

Taking differentiation (w.r.t. ξ) of above expressions and neglecting the terms containing
∂p(ξ, η)/∂ξ, ∂2p(ξ, η)/∂η∂ξ, ∂q(ξ, η)/∂ξ, ∂2q(ξ, η)/∂η∂ξ, ∂h(ξ, η)/∂ξ, ∂2h(ξ, η)/
∂η∂ξ, ∂g(ξ, η)/∂ξ and ∂2g(ξ, η), ∂η∂ξ, we get
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with
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The linear operators and initial approximations required for OHAM [14,15] solutions are
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Here ai, i = 0, 1, 2, . . . , 6, signify arbitrary constants, ~f , ~θ, and ~φ are auxiliary
variables, and p∗ ∈ [0, 1] indicates an embedding parameter.

5.3 Zeroth-order deformation problem

We have
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5.4 Problems at mth order
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6 Convergence

Initially, OHAM is given by Liao [14, 15]. The mathematical expressions for OHAM are
given as

εfm =
1

K + 1

K∑
i=0

[
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,
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m∑
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m∑
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.

Total residual error is given by [15]

εtm = εfm + εθm + εφm.

The total and individual averaged squared error have been given through Fig. 2 and
Table 1.

Total residual error

5 10 15 20

m

2´ 10
-4

5´ 10
-4

0.001

0.002

error

Figure 2. Total residual error.

Table 1. Averaged squared residual errors individually.

m εmf εmθ εmφ

2 0.000129351 0.00268208 0.00111362
6 1.31098 · 10−6 0.000380502 0.0000686456

10 3.00317 · 10−8 0.000198497 0.0000178514
14 6.86171 · 10−10 0.000134067 6.05838 · 10−6

18 2.46517 · 10−11 0.000103795 2.37013 · 10−6

20 4.85944 · 10−12 0.0000945817 1.53811 · 10−6
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7 Comparison of results

Table 2 is prepared for comparison with analysis of studies [5, 21]. The results agree in
reasonable agreement.

Table 2. Comparative study for Nusselt number Nux.

Pr 1.0 2.0 3.0

Bidin and Nazar [5] Keller-box method 0.9547 1.4714 1.8961
Mukhopadhyay [21] Shooting method 0.9547 1.4714 1.8961
Present results OHAM method 0.954563 1.471035 1.896953

8 Graphical analysis

This section arranges discussion for velocity, concentration, thermal field, Nusselt num-
ber, entropy rate, and Sherwood number.

8.1 Velocity

Fig. 3 describes magnetic field effect on f ′(η). Physically, higher M leads to amplify
resistive force. As a result, the decay in velocity is guaranteed. Fig. 4 certifies the role
of Reiner–Rivlin fluid parameter on velocity. Clearly, the velocity amplified for larger
Reiner–Rivlin fluid variable. Physically, larger estimation of K1 corresponds to viscous
force decay. Ultimately, the velocity is enhanced.

8.2 Temperature

Fig. 5 portrays the influence of temperature for radiation. Physically, higher radiation
leads to decay of the mean absorption coefficient. This effectively transfers more heat to
the fluid. As a result, temperature is boosted. Influence of heat generation variable upon
temperature is sketched through Fig. 6. Larger approximation of heat generation vari-
able corresponds to an increase in temperature. Fig. 7 elucidates the influence of Br on

Figure 3. f ′(η) against M . Figure 4. f ′(η) against K1.
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Figure 5. θ(η) versus Rd. Figure 6. θ(η) versus Q.

Figure 7. θ(η) versus Br . Figure 8. θ(η) versus M .

temperature. Physically, higher estimation of Brinkman number corresponds to enhance-
ment of kinetic energy in fluid flow system. Thermal field is augmented. Fig. 8 is devel-
oped in order to recognize the temperature againstM . Clearly, higherM rises the Lorentz
force in which collisions among the fluid particles increase and thermal field is boosted.

8.3 Concentration

Fig. 9 depicts variation of (φ(η)) for γ. Physically, higher γ corresponds to enhancement
of solute molecules chemical reaction. As a result, concentration decay is guaranteed.
Fig. 10 is sketched to show Sc outcome for concentration. Higher Sc decay mass diffu-
sivity, and therefore φ(η) diminished.

8.4 Entropy generation

Consequence of magnetic variable upon entropy rateNG(η) is exposed in Fig. 11. Clearly,
the larger M , the more resistive force. It yields disorder in system and so an increase for
entropy rate occurs. Inspection of entropy generation in view of radiation Rd is evaluated
in Fig. 12. Physically, higher radiation reduces the mean absorption coefficient. Disorder

Nonlinear Anal. Model. Control, 30(1):23–39, 2025
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Figure 9. φ(η) against γ. Figure 10. φ(η) against Sc .

Figure 11. NG(η) agaisnt M . Figure 12. NG(η) agaisnt Rd.

Figure 13. NG(η) agaisnt L. Figure 14. NG(η) agaisnt Br .

in system increases, and entropy generation enhances. Fig. 13 explains that increasing
values of diffusion parameter boost up the entropy optimization. Outcome of Br on en-
tropy rate is portrayed in Fig. 14. Viscous force is enhanced through higher Br . Disorder
in system enhanced, and thus entropy generation increased.
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Figure 15. Be against M . Figure 16. Be against Rd.

Figure 17. Be against L. Figure 18. Be against Br .

8.5 Bejan number

Fig. 15 describes magnetic variable impact on Be . Larger approximation of magnetic field
reduces Be . Fig. 16 shows influence for Be against radiation variable. Physically, higher
radiation variable gives the rise to Be . An augmentation of Bejan number occurs against
diffusion parameter; see Fig. 17. Fig. 18 certifies the role of Br on Bejan number. Here
one can find that Bejan number decreased for larger Brinkman Br number.

8.6 Interesting quantities

Tables 3–5 comprise physical features of influential variables on physical quantities
CfxRe

1/2
x , NuxRe

−1/2
x , ShxRe

−1/2
x .

8.6.1 Rate of skin friction

Table 3 is designed to show the influence of K and M on CfxRe
1/2
x . Clearly, CfxRe

1/2
x

decays through the fluid parameterK. An improvement in the velocity gradientCfxRe
1/2
x

is seen for the magnetic variable M .
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Table 3. Skin friction rate results.

k M CfxRe
1/2
x

0.1 0.5 0.935649
0.4 0.732758
0.7 0.620501
1.0 0.547243
0.1 0.5 1.09056

1.0 1.25795
1.5 1.40562
2.0 1.53920

Table 4. Thermal transport rate results.

Rd M Q NuxRe
−1/2
x

0.5 0.5 0.1 1.86434
1.0 2.34658
2.5 2.69795
3.5 2.97359
1.0 0.5 0.1 1.51156

1.0 1.69384
1.5 1.89645
2.0 2.12750

0.1 0.5 0.2 1.80955
0.5 1.44613
0.8 1.01468
1.1 0.468457

Table 5. Mass transport rate results.

K Sc γ ShxRe
−1/2
x

0.2 0.5 0.5 0.643443
0.4 0.650780
0.6 0.656835
0.8 0.666315
0.1 0.5 0.5 0.628797

1.5 0.921151
1.5 1.15058
2.0 1.34559

0.1 0.5 0.1 0.425860
0.4 0.584966
0.7 0.778285
1.3 0.901772

8.6.2 Rate of heat transfer

The value of the expression NuxRe
−1/2
x for emerging variables is organized in Table 4.

Here an increasing behavior of NuxRe
−1/2
x for Rd and M is noticed. Further, the heat

transport rate acts as decaying function of heat generation variable.

8.6.3 Rate of mass transfer

The analysis of ShxRe
−1/2
x is organized through Table 5. Clearly, it is found that higher

reaction variable γ enhances ShxRe
−1/2
x . A reverse impact holds for gradient of concen-

tration through Schmidt number and Reiner–Rivlin fluid variable.

9 Conclusions

Main points of present study are included below.

• Intensifying Reiner–Rivlin liquid variable leads to amplify the velocity, while re-
verse impact holds for Sherwood number.

• Velocity field declines for higher magnetic variable.
• Influences of heat generation and radiation on thermal field are similar.
• Temperature and entropy rate are qualitatively similar for Brinkman number.
• Concentration declines for reaction variable.

https://www.journals.vu.lt/nonlinear-analysis
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• Higher Schmidt number leads to decay of concentration.
• Amplified version of radiation intensifies entropy optimization.
• Entropy generation enlarges with diffusion variable enhancement.
• Similar characteristics for drag force and mass transport rate are detected for liquid

parameter.
• Nusselt number through radiation is enhanced.
• Bejan number and entropy rate through magnetic field are enhanced.
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