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Eigenvalue problems for a k-Hessian-type equation*
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Abstract. In this work, we focus on the eigenvalue problem for a class of k-Hessian-type equations.
Under some suitable assumptions, we first determine the intervals of the parameter for the existence
of nontrivial radial solutions. To this aim, we apply the eigenvalue theory and Jensen inequality.
Finally, the behavior of the solutions with respect to the parameter is analyzed via Guo’s fixed point
theorem.
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1 Introduction

The study of the k-Hessian-type equations has an important sense in many geometric
problems, such as the k-Yamabe problems in conformal geometry [19] and conformal
invariant elliptic problems [14]. Furthermore, for the case k = N , the Monge–Ampère-
type equations arise in geometrical optics [12], meteorology [8], and optimal transporta-
tion [16].

In this paper, we focus on the following k-Hessian-type equation:

Sk
(
σ(D2u+ α|∇u|I)

)
= λb

(
|x|
)
ϕ(−u) in Ω,

u = 0 on ∂Ω,
(1)

where α > 0, |∇u| denotes the gradient of u, I stands for an identity matrix, λ is a positive
parameter, Ω is an open unit ball in RN with N < 2k (k ∈ N), ϕ and b satisfy

(H1) ϕ ∈ C([0,∞), [0,∞));
(H2) b ∈ C([0, 1], [0,∞)), and b 6≡ 0 on any subinterval of [0, 1].
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For an arbitrary N ×N real symmetric matrix M , Sk(σ(M)) is the k-Hessian-type
operator and denotes kth elementary symmetric function of eigenvalues of M , that is,

Sk(σ(M)) =
∑

16j1<···<jk6N

Λj1 · Λj2 · · ·Λjk ,

where σ(M) = (Λ1, Λ2, . . . , ΛN ) is the set of eigenvalues Λ1, Λ2, . . . , ΛN . For any C2

function u(x), if M is the Hessian matrix (D2u) of u, then it becomes the so-called
k-Hessian operator [3].

The main motivation to study (1) comes from the impressive development of theory
concerning the nonlinear k-Hessian-type equation. Such an equation can be considered
as an extension of the Laplace, Monge–Ampère, and k-Hessian equation. There are many
interesting results on the k-Hessian-type equations [1–5,13,20,21,23,24,26–32], starting
with the pioneering work of Caffarelli, Nirenberg, and Spruck [3].

On the k-Hessian problems

In 2017, Dai [5] studied the eigenvalue problem for the k-Hessian equation

Sk
(
σ
(
D2u

))
= λkϕ(−u) in Ω,

u = 0 on ∂Ω,
(2)

where λ > 0, Ω is an unit ball in RN with N > 1, and ϕ satisfies (H1) with ϕ(s) > 0 for
any s > 0 and ϕ0, ϕ∞ ∈ [0,∞]. Here

ϕ0 = lim
s→0+

ϕ(s)

sk
, ϕ∞ = lim

s→+∞

ϕ(s)

sk
.

He showed the existence, nonexistence, and multiplicity of radial k-admissible solutions
to (2) for λ belonging to different intervals via the bifurcation method.

In 2022, Zhang et al. [31] researched the following eigenvalue problem:

(−1)kS
1/k
k

(
σ
(
D2u

))
= λϕ

(
|x|, u

)
in Ω,

u = 0 on ∂Ω,
(3)

where λ > 0, Ω is a unit ball in RN with k 6 N < 2k, and ϕ ∈ [0, 1] × (0,+∞) →
(0,+∞) is nonincreasing in u > 0 and satisfies

0 <

1∫
0

sN−1ϕk
(
s, 1− s2

)
ds < +∞.

By constructing the upper and lower solutions and combining with Schauder’s fixed
point theorem, they proved that there exists λ∗ > 0 such that, for any λ ∈ (λ∗,+∞),
problem (3) admits at least one radial solution u satisfying

1− |x|2 6 u(|x|) 6 ρ
(
1− |x|(2k−N)/k

)
(4)

for some positive constant ρ.
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On the k-Hessian-type problems

In 2022, Zhang et al. [30] extended the results in [31] to the following eigenvalue problem:

−S1/k
k

(
σ
(
D2u+ λαI

))
= λϕ

(
|x|, u

)
in Ω,

u = 0 on ∂Ω,
(5)

where ϕ ∈ [0, 1] × (0,+∞) → (0,+∞) is nonincreasing in u > 0. They proved that
there exist two positive constants λ∗ and λ∗ such that, for any λ ∈ (λ∗, λ

∗), (5) admits at
least one radial solution u satisfying (4).

Recently, in [24], Yang et al. considered the k-Hessian-type system

Sk
(
σ
(
D2ui + α|∇ui|I

))
= ϕi

(
|x|,−u1,−u2, . . . ,−un

)
in Ω,

ui = 0 on ∂Ω
(6)

and obtained some existence results of radial solutions relying on fixed point index com-
putations.

However, to our knowledge, there are few studies on nonlinear eigenvalue problem
for the k-Hessian-type equation (1). The main aims of this paper are twofold. One is to
derive some new existence results of radial solutions for (1) with the help of the eigenvalue
theory. The other is to analyze the behavior of the radial solutions uλ with respect to the
parameter λ for (1) via Guo’s fixed point theorem.

The k-Hessian-type equations have important significance in nonlinear science. Many
optimal transport problems, geometric optics problems, etc. can be transformed into
solving k-Hessian differential models, which greatly promotes research and development
in related fields of economics and physics. The contributions of our paper are as follows.

1. Compared with the works [5, 30, 31], the augmented gradient term α|∇u|I is
considered.

2. We supplement the results on the asymptotic behavior of the radial solutions uλ
that depend on the parameter λ, unlike previous works [5, 24, 30, 31], which only
considered existence results.

3. The nonlinearity in (1) does not require monotonicity, unlike in [20,21,26,30,31].
4. Jensen inequality technique is used, which enables us to overcome the difficulties

caused by the complexity of the k-Hessian-type operator.

The rest of this paper is arranged as follows. In Section 2, we will show some pre-
liminaries. In particular, we introduce the fixed point theory and Jensen inequality. In
Section 3, we give the intervals of λ for the existence of negative radial solutions for the
k-Hessian-type equation (1) under some suitable assumptions on ϕ. Finally, in Section 4,
the behavior of nontrivial radial solution uλ with respect to the parameter λ are stated and
proved.

Remark 1. The general form of the k-Hessian-type equation (1) is as follows:

Sk
(
σ
((
D2u+M(x, u,Du)

))
= ϕ(x, u,Du) in Ω, (7)
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where Ω ⊂ RN is a domain, M is a N × N symmetric matrix function, ϕ is a scalar
valued function on Ω × R × RN . When M = 0, (7) is the standard k-Hessian equation.
Furthermore, it can be reduced to classical Poisson equation (k = 1) and the Monge–
Ampère equation (k = N ). When M 6= 0 and k = N , (7) is called the Monge–Ampère-
type equation.

The domain Ω plays important roles in many geometric problems. We know that
scholars search for suitable geometric forms of the domain Ω in order to obtain desired
results. For example, when Ω is a star-shaped domain, Tso [18] obtained a nonexistence
result of the Dirichlet problem for the case M = 0 and ϕ(x, u,Du) = ϕ(x,−u). When
(Ω, g) is a Riemannian manifold with the metric g, Guan [10] proved the existence result
of the Dirichlet problem for the case M = αug. On a closed Hermitian manifold (Ω, g),
Zhang [25] showed the existence of weak solution for the complex Hessian equation
of (7). In [6], Dinew, Pliś and Zhang consider a second-order a priori estimate for solutions
of the complex Hessian equations of (7) on a compact Kähler manifold. In [9], Gálvez and
Nelli studied the global behavior of solutions for det(D2u) = 0 in the finitely punctured
plane Ω ⊂ R2.

Remark 2. When k = 1, the problem in (1) becomes to the following linear Laplace
problem:

∆u+Nα|Du| = λb
(
|x|
)
ϕ(−u) in Ω,

u = 0 on ∂Ω,
(8)

where the nonlinearity ϕ satisfies (H1) with ϕ0, ϕ∞ ∈ [0,∞]. Here

ϕ0 = lim
s→0+

ϕ(s)

s
, ϕ∞ = lim

s→+∞

ϕ(s)

s
.

At this time, the nonlinearity ϕ can be regarded as a perturbation form of the linear
function f(s) = s, then the problem in (1) can be reformulated as the perturbation of
the linear counterpart problem.

Remark 3. The k-Hessian-type equations and Monge–Ampère-type equations can be
derived from the problems of light reflection and refraction in geometric optics [7,15,17,
22]. This type of problem involves the design of the shapes of reflective paraboloids and
refractive paraboloids. It can be specifically divided into far-field optics and near-field op-
tics. The description of light reflection in far-field optics can be considered as an optimal
transport problem with a cost function; please see [22]. The equation corresponding to its
problem has a form of (7). For the situation of light reflection in near-field optics, we take
the parallel light reflection problem [17] as an example. The corresponding equation is
the following nonlinear equation:

det

[
D2u− |Du|

2 − 1

2u
I

]
=

(1− |Du|2)N+1

(1 + |Du|2)(2u)N
f(x,Du), (9)

where u > 0, |Du| < 1. When |Du| � 1, the right-hand nonlinear term in (9) can be
approximated as 1/uN .
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Figure 1. Ray mapping based on geometric optics.

Next, we will analyze the following Monge–Ampère model:

−det
(
D2u

)
= γ

(
1− u2y

)
uxx + γ

(
1− u2x

)
uyy + 2γuxuyuxy

+ γ4d2
[
1− I1(x, y)I2(ξ, η)

]
, (10)

where γ =
√

1− |∇u|2/d, and d is the distance between two planes. In (10), the non-
linearity ϕ describes the complex physical relationship between phase and light intensity,
which cannot be simply represented and controlled by a linear term. This model is used
to study phase retrieval problem in geometric optics [15]. As shown in Fig. 1, assuming
that there exists a light field with a wavelength of λ transmitted along the z-axis. The light
intensity distribution in the plane z = 0 is I1(x, y), where (x, y) ∈ Σ1. The light intensity
distribution at the plane z = d is I2(ξ, η), where (ξ, η) ∈ Σ2.

The light satisfies the law of conservation of energy during propagation. From [7]:

I1(x, y) = I2(ξ, η)
∣∣J(x, y)

∣∣, (11)

where |J(x, y)| is the Jacobian determinant of coordinate transformation. The relationship
between u(x, y) and ray mapping T (x, y) = (ξ, η) is

T (x, y) = (x, y) + d
∇u√

1− |∇u|2
. (12)

The Monge–Ampère model (10) can be derived from Eqs. (11) and (12). Then we solve
model (10). The purpose of phase recovery is to calculate the phase distribution U(x, y)
at z = 0 based on the light intensity distribution of these two planes. Here U(x, y) =
ku(x, y), where k = 2π/λ is the wave number.

2 Preliminaries

In this section, we will present some useful preliminary results.

Lemma 1. (See [24].) u(x) = −v(t) is a radial solution for (1) if and only if v satisfies[
tN−keNαt

(
−v′(t)

)k]′
=

k

Ck−1N−1

eNαttN−1

(1 + αt)k−1
λb(t)ϕ

(
v(t)

)
, 0 < t < 1,

v′(0) = 0, v(1) = 0.

(13)
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Next, we will find a solution of the integral equation for (13)

v(t) = λ1/k
1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
v(τ)

)
dτ

)1/k

ds, t∈ [0, 1]. (14)

It is well known that X = C[0, 1] is a real Banach space endowed with the norm
‖v‖ = maxt∈[0,1] |v(t)|. Define the cone

P :=

{
v: v ∈ X, v > 0, min

t∈[1/4,3/4]
v(t) >

1

4
‖v‖
}

(15)

and the operator

Tv(t) :=

1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
v(τ)

)
dτ

)1/k

ds. (16)

Lemma 2. If (H1) and (H2) hold, then the operator T : X → X is completely continuous
and T (P ) ⊂ P .

The proof of Lemma 2 is similar to the proof of the paper [24], which is omitted here.
The following eigenvalue theory will be used to analyze the existence of solutions

for (14).

Lemma 3. (See [11].) Let X be an infinite-dimensional real Banach space and P ⊂ X
be a cone. If Ω ⊂ X is an open subset with θ ∈ Ω and T : P ∩ Ω → P is a completely
continuous operator with Tθ = θ satisfying

inf
v∈P∩∂Ω

Tv > 0,

then T admits a proper element in P ∩ ∂Ω related to a positive eigenvalue. In other
words, there are v0 ∈ P ∩ ∂Ω and λ0 so that Tv0 = λ0v0.

The following Guo’s fixed point theorem plays a major role in the study of the behav-
ior of the radial solutions uλ with respect to the parameter λ.

Lemma 4. (See [11].) Let X be a Banach space and P be a cone in X . Assume that
Ω1, Ω2 are open subsets of X with θ ∈ Ω1, Ω1 ⊂ Ω2, and T : P ∩ (Ω2 \ Ω1) → P is
a completely continuous operator such that one of the following two conditions

(i) ‖Tv‖ 6 ‖v‖, v ∈ P ∩ ∂Ω1 and ‖Tv‖ > ‖v‖, v ∈ P ∩ ∂Ω2;
(ii) ‖Tv‖ > ‖v‖, v ∈ P ∩ ∂Ω1, and ‖Tv‖ 6 ‖v‖, v ∈ P ∩ ∂Ω2

is satisfied. Then T admits a fixed point in P ∩ (Ω2 \Ω1).

Jensen integral inequality is presented as follows.

Lemma 5. (See [24].) If v ∈ C([α, β], [0,∞)), then for 0 < γ 6 1, one has( β∫
α

v(s) ds

)γ
> (β − α)γ−1

β∫
α

vγ(s) ds.

Nonlinear Anal. Model. Control, 30(1):58–71, 2025
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3 Existence results

Define

d1 =

3/4∫
1/4

b1/k(τ) dτ, d2 =

1∫
0

b(τ) dτ

and

L1 =

(
k

eNα(1 + α)k−1Ck−1N−1

)1/k

, L2 =

(
keNα

Ck−1N−1

)1/k

.

In this section, we will study the existence of the positive solutions for problem (14).

Theorem 1. If (H1) and (H2) are satisfied and ϕ∞ ∈ (0,+∞), then there exist three
positive constants β1, λ1, and λ2 such that, for any R > β1, Eq. (14) has at least one
solution vR satisfying ‖vR‖ = R in P for some λ belonging to [λ1, λ2].

Proof. In view of (14) and (16), we know that (14) admits a solution vR(t), which
corresponds to λ > 0 if and only if T admits a proper element vR, which corresponds to
the eigenvalue 1/λk. For ϕ∞ ∈ (0,+∞), there exist l2 > l1 > 0 and J1 > 0 so that
l1s

k < ϕ(s) < l2s
k for s > J1. Let β1 = 4J1 and

ΩR =
{
v: v ∈ X, ‖v‖ < R

}
.

Because R > β1, for any v ∈ P ∩ ∂ΩR, we can see that

min
t∈[1/4, 3/4]

v(t) >
1

4
‖v‖ =

1

4
R >

1

4
β1 = J1.

Thus, for any v ∈ P ∩ ∂ΩR and t ∈ [0, 1], we derive from Lemma 5 that

Tv(t) =

1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
v(τ)

)
dτ

)1/k

ds

>

(
k

Ck−1N−1

)1/k

×
1∫
t

(
sk−N

eNαs

)1/k

s1/k−1
s∫

0

(
eNαττN−1

(1 + ατ)k−1

)1/k

b1/k(τ)ϕ1/k
(
v(τ)

)
dτ ds

>

(
k

eNα(1 + α)k−1Ck−1N−1

)1/k
1∫
t

s∫
0

τ (N−1)/kb1/k(τ)ϕ1/k
(
v(τ)

)
dτ ds

= L1

1∫
t

s∫
0

τ (N−1)/kb1/k(τ)ϕ1/k
(
v(τ)

)
dτ ds
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> L1

1∫
3/4

3/4∫
1/4

τ (N−1)/kb1/k(τ)l
1/k
1 v(τ) dτ ds

> L1

1∫
3/4

3/4∫
1/4

τ (N−1)/kb1/k(τ)l
1/k
1

(
1

4
‖v‖
)

dτ ds

> L1

(
1

4

)(N−1)/k

l
1/k
1

1

16
‖v‖

3/4∫
1/4

b1/k(τ) dτ

= L1

(
1

4

)(N+2k−1)/k

l
1/k
1 d1‖v‖, (17)

which means that

inf
v∈H∩∂ΩR

Tv > L1

(
1

4

)(N+2k−1)/k

l
1/k
1 d1R > 0.

For any R > β1, by Lemma 3, we can know that T possesses a proper element vR ∈ P ,
which corresponds to the eigenvalue µR > 0. Moreover, one can see that vR satisfies
‖vR‖ = R. Let λR = 1/µkR. Therefore, we immediately have

TvR = µRvR = λ
−1/k
R vR. (18)

Based on the above proof, for any R > β1, problem (14) has a positive solution vR with
vR ∈ P ∩ ∂ΩR corresponding to λ = λR > 0. By (18), one has vR = λ

1/k
R TvR, that is,

vR(t) = λ
1/k
R

1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
vR(τ)

)
dτ

)1/k

ds

with ‖vR‖ = R. On the one hand, we derive

vR(t) = λ
1/k
R

1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
vR(τ)

)
dτ

)1/k

ds

6 λ
1/k
R

1∫
0

(
k

Ck−1N−1

sk−N

eNαs

1∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
vR(τ)

)
dτ

)1/k

ds

6 λ
1/k
R

(
keNα

Ck−1N−1

)1/k
1∫

0

(
sk−N

1∫
0

b(τ)ϕ
(
vR(τ)

)
dτ

)1/k

ds
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= λ
1/k
R L2

1∫
0

s(k−N)/k ds

( 1∫
0

b(τ)ϕ
(
vR(τ)

)
dτ

)1/k

6 λ
1/k
R L2

k

2k −N

( 1∫
0

b(τ)l2v
k
R(τ) dτ

)1/k

6 λ
1/k
R L2

k

2k −N

( 1∫
0

b(τ)l2‖vR‖k dτ

)1/k

6 (λRl2)1/kL2
k

2k −N
‖vR‖

( 1∫
0

b(τ) dτ

)1/k

= (λRl2d2)1/kL2
k

2k −N
‖vR‖ ∀t ∈ [0, 1], (19)

which means that

‖vR‖ = R 6 (λRl2d2)1/kL2
k

2k −N
‖vR‖.

Thus,

λR >
1

l2d2

(
2k −N
kL2

)k
= λ1.

On the other hand, we have

vR(t) = λ
1/k
R

1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
vR(τ)

)
dτ

)1/k

ds

> λ
1/k
R L1

(
1

4

)(N+2k−1)/k

l
1/k
1 d1‖vR‖, (20)

which shows that

‖vR‖ = R > λ
1/k
R L1

(
1

4

)(N+2k−1)/k

l
1/k
1 d1‖vR‖.

Consequently,

λR 6
4N+2k−1

l1dk1L
k
1

= λ2.

Thus, we have λR ∈ [λ1, λ2]. So, we complete the proof of Theorem 1.

Based on a similar analysis of Theorem 1, one has the following result.

Theorem 2. If (H1) and (H2) are satisfied and ϕ0 ∈ (0,+∞), then there exist three
positive constants β̂1, λ3, and λ4 such that, for any 0 < r < β̂1, Eq. (14) has at least one
solution vr satisfying ‖vr‖ = r in P for some λ belonging to [λ3, λ4].
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4 The dependence results

In this section, we consider the behavior of the solutions vλ with respect to the parame-
ter λ.

For v ∈ P , let us define T̂ : P → X as

T̂ v(t) = λ1/k
1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
v(τ)

)
dτ

)1/k

ds, (21)

where t ∈ [0, 1], and P is defined in (15). It is a standard matter that T̂ is completely
continuous.

Theorem 3. If (H1) and (H2) are satisfied and ϕ0 = 0, ϕ∞ =∞, then for every λ > 0,
Eq. (14) has at least one solution vλ satisfying limλ→0+ ‖vλ‖ =∞.

Proof. For ϕ0 = 0, there exists r > 0 so that

ϕ(s) 6
1

λd2

(
2k −N
kL2

)k
sk ∀ 0 6 s 6 r.

Therefore, for any v ∈ P ∩ ∂Ωr and t ∈ [0, 1], one has

T̂ v(t) = λ1/k
1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
v(τ)

)
dτ

)1/k

ds

6 λ1/k
1∫

0

(
k

Ck−1N−1

sk−N

eNαs

1∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
v(τ)

)
dτ

)1/k

ds

6 λ1/k
(
keNα

Ck−1N−1

)1/k
1∫

0

(
sk−N

1∫
0

b(τ)ϕ
(
v(τ)

)
dτ

)1/k

ds

= λ1/kL2

1∫
0

s(k−N)/k ds

( 1∫
0

b(τ)ϕ
(
v(τ)

)
dτ

)1/k

6 λ1/kL2
k

2k −N

( 1∫
0

b(τ)
1

λd2

(
2k −N
kL2

)k
vk(τ) dτ

)1/k

6 λ1/kL2
k

2k −N

( 1∫
0

b(τ)
1

λd2

(
2k −N
kL2

)k
‖v‖k dτ

)1/k

6 ‖v‖.

For ϕ∞ =∞, there exists R̂ > 0 so that ϕ(s) > εsk for all s > R̂, where ε satisfies

λ1/kL1

(
1

4

)(N+2k−1)/k

ε1/kd1 > 1.
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Set R > max{r, R̂}. Thereby, for any v ∈ P ∩ ∂ΩR, one deduces that

min
t∈[1/4,3/4]

v(t) >
1

4
‖v‖ > R̂.

Since 0 < 1/k 6 1, we obtain from Lemma 5 that

T̂ v(t) = λ1/k
1∫
t

(
k

Ck−1N−1

sk−N

eNαs

s∫
0

eNαττN−1

(1 + ατ)k−1
b(τ)ϕ

(
v(τ)

)
dτ

)1/k

ds

> λ1/k
(

k

Ck−1N−1

)1/k

×
1∫
t

(
sk−N

eNαs

)1/k

s1/k−1
s∫

0

(
eNαττN−1

(1 + ατ)k−1

)1/k

b1/k(τ)ϕ1/k
(
v(τ)

)
dτ ds

> λ1/k
(

k

eNα(1 + α)k−1Ck−1N−1

)1/k
1∫
t

s∫
0

τ (N−1)/kb1/k(τ)ϕ1/k
(
v(τ)

)
dτ ds

= λ1/kL1

1∫
t

s∫
0

τ (N−1)/kb1/k(τ)ϕ1/k
(
v(τ)

)
dτ ds

> λ1/kL1

1∫
3/4

3/4∫
1/4

τ (N−1)/kb1/k(τ)ε1/kv(τ) dτ ds

> λ1/kL1

1∫
3/4

3/4∫
1/4

τ (N−1)/kb1/k(τ)ε1/k
‖v‖
4

dτ ds

> λ1/kL1

(
1

4

)(N−1)/k

ε1/k
‖v‖
16

3/4∫
1/4

b1/k(τ) dτ

= λ1/kL1

(
1

4

)(N+2k−1)/k

ε1/kd1‖v‖ > ‖v‖.

By (i) of Lemma 4, T̂ has a fixed point v(t) ∈ P ∩ (ΩR \ Ωr). Thus, problem (14) has
a positive solution.

Here we claim that limλ→0+ ‖vλ‖ = ∞. In fact, assuming otherwise, there are
a constant ξ > 0 and a sequence λm → 0+ such that

‖vλm‖ 6 ξ (m = 1, 2, 3, . . . ).
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Moreover, the sequence {‖vλm‖} has a subsequence converging to a constant ζ (0 6
ζ 6 ξ). For convenience, let us suppose that {‖vλm‖} itself converges to ζ. When ζ > 0,
for sufficiently large m, one has ‖vλm‖ > ζ/2. Hence

1

λ
1/k
m

=
‖
∫ 1

t
( k

Ck−1
N−1

sk−N

eNαs

∫ s
0

eNαττN−1

(1+ατ)k−1 b(τ)ϕ
(
v(τ)

)
dτ)1/k ds‖

‖vλm‖

6
‖
∫ 1

0
( k

Ck−1
N−1

sk−N

eNαs

∫ 1

0
eNαττN−1

(1+ατ)k−1 b(τ)ϕ
(
v(τ)

)
dτ)1/k ds‖

‖vλm‖

6
(M1d2)1/kL2

k
2k−N

‖vλm‖
<

2(M1d2)1/kL2
k

2k−N
ζ

,

where M1 = max{ϕ(v), r < ‖v‖ < R}, which contradicts λm → 0+. When ζ = 0,
for sufficiently large m, one gets ‖vλm‖ → 0, and thus it follows from ϕ0 = 0 that there
exists δ > 0 so that for any ε,

ϕ(vλm) 6 εvkλm ∀ 0 6 vλm 6 δ.

Therefore, for vλm ∈ P ∩ ∂Ωδ and ‖vλm‖ = δ, we deduce that

1

λ
1/k
m

=
‖
∫ 1

t
( k

Ck−1
N−1

sk−N

eNαs

∫ s
0

eNαττN−1

(1+ατ)k−1 b(τ)ϕ
(
v(τ)

)
dτ)1/k ds‖

‖vλm‖

6
‖
∫ 1

0
( k

Ck−1
N−1

sk−N

eNαs

∫ 1

0
eNαττN−1

(1+ατ)k−1 b(τ)ϕ
(
v(τ)

)
dτ)1/k ds‖

‖vλm‖

6
(εd2)1/kL2

k
2k−N ‖vλm‖

‖vλm‖
= (εd2)1/kL2

k

2k −N
.

Due to the arbitrariness of ε, we can see that limm→+∞ λm = ∞, but this contradicts
λm → 0+.

Thus, one has limλ→0+ ‖vλ‖ =∞. So, we complete the proof of Theorem 3.

Based on a similar analysis of Theorem 3, we can deduce the following result.

Theorem 4. If (H1) and (H2) are satisfied and ϕ0 =∞, ϕ∞ = 0, then for every λ > 0,
Eq. (14) has at least one solution vλ satisfying limλ→0+ ‖vλ‖ = 0.

Remark 4. The dependence here refers to the dependence of the asymptotic behavior of
the solutions vλ on the parameter λ. Now we consider the nonlinearity ϕ(s) = sγ , γ > 0.
If γ > k, then we know from Theorem 3 that the solution vλ blows up as λ → 0+. On
the other hand, when γ < k, it follows from Theorem 4 that the solution vλ vanishes as
λ→ 0+.
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