
Nonlinear Analysis: Modelling and Control, Vol. 30, No. 2, 157–175
https://doi.org/10.15388/namc.2025.30.38319

Press

Analysis of exponential stability and L1-gain
performance of positive switched impulsive systems
with all unstable subsystems*

Xiukun Zhang , Yuangong Sun1 , Xingao Zhu

School of Mathematical Sciences, University of Jinan,
Jinan 250022, Shandong, China
zhangxiukun1007@163.com; sunyuangong@163.com
zhuxingao2021@163.com

Received: April 29, 2024 / Revised: November 21, 2024 / Published online: January 2, 2025

Abstract. This article investigates the exponential stability and L1-gain performance of time-
varying positive switched impulsive systems even when all modes are unstable. By employing the
discretized switched copositive Lyapunov function approach and the analytical method developed
for positive systems, we derive a sufficient condition to ensure the exponential stability for
such systems. An algorithm for computing the stability region of admissible dwell time is also
introduced. Furthermore, building on this stability result, the L1-gain performance of positive
switched impulsive systems is further studied. Finally, numerical examples are presented to
demonstrate the validity of our results.

Keywords: positive system, switched system, exponential stability, L1-gain, mode-dependent
interval dwell time.

1 Introduction

Switched systems, a specialized category of dynamical system, consist of a collection
of continuous or discrete dynamic subsystems that switch among themselves based on
a switching signal [12]. A positive switched system is a subset of switched systems
characterized by nonnegative state variables and outputs, provided that both the initial
conditions and inputs are nonnegative [4]. In recent years, scholarly interest in positive
switched systems has surged, driven by their wide application in areas such as chemical
reaction networks [1], power electronics [10], congestion control [22], formation flying
[39], and so on. The theoretical analysis of positive switched system, especially, the
stability of positive switched system, has been developed rapidly [14, 21, 23, 36].
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Impulsive systems, characterized by instantaneous discrete-time state jumps, have
experienced significant advancements over the past few decades, particularly, in the area
of stability problems [6,11,15]. It is worth noting that the impulsive phenomenon does not
always adversely impact system stability, rather, it can sometimes be exploited to achieve
stability. The impulsive system has also garnered considerable research interest due to
its wide applications in various fields, including biological systems [25], network control
systems [7], robotics [3], and multiagent systems [30].

The stability of switched systems, a fundamental property of dynamic systems, has
garnered significant attention. To analyze the stability of switched systems with given
switching signals, the dwell-time method and the multiple Lyapunov functions approach
are commonly used. Numerous classical works have focused on the stability of switched
systems when all modes are stable [19, 27, 32, 38]. Additionally, there has been a wealth
of results dedicated to the stability analysis of systems that incorporate both stable and
unstable subsystems [5, 18, 26, 31, 33]. The primary concept is that the decay of states
within stable subsystems counteracts the growth of the Lyapunov function in unstable
subsystems, thus maintaining overall system stability. Consequently, in most existing
works, it is often assumed that at least one subsystem within the switched system is
asymptotically stable. Designing appropriate switching signals to guarantee stability be-
comes more challenging when all modes are unstable. The application of a discretized
Lyapunov function in [8,16,28,29,34] provides stability conditions for switched systems
with all unstable subsystems. Among these works, sufficient criteria were introduced
in [28] to guarantee the asymptotic stability of the positive switched systems even when
all subsystems are unstable. Furthermore, by constructing a new discretized copositive
Lyapunov–Krasovskii function, stability conditions for positive switched linear delay
systems were provided in [34]. With the assistance of a discretized Lyapunov function
and analytical methods in positive systems, exponential stability criteria were derived for
the positive switched impulsive systems in [8].

It is noteworthy that L1-gain [28,37], L2-gain [13,35], and H∞ performance [20] are
typically used to analyze input-output performance. Some common performance indica-
tors, such as theH∞ norm, which relies on theL2 signal space [9], fail to naturally capture
specific characteristics of actual physical systems. Moreover, the 1-norm represents the
sum of the values of the components [2]. Consequently, the L1-gain has been introduced
and subsequently employed for input-output performance analysis in the study of positive
systems, which has been proven to provide a more effective description. For instance,
when measuring the population of species, we often use the 1-norm to determine the total
number. Therefore, it is necessary to use L1-gain to evaluate input-output performance of
positive switched systems, and numerous significant results have been developed in exist-
ing research [17, 24]. Given that prior works have not explored the L1-gain performance
analysis of positive switched impulsive systems, further investigation is warranted. Our
research encounters greater challenges due to the mixed characteristics exhibited by the
positive switched impulsive systems.

Compared to previous studies [8,28], this article offers three contributions. Firstly, we
introduce a novel analytical approach to establish less restrictive sufficient conditions for
the exponential stability of time-varying positive switched impulsive system. Secondly,
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based on stability theory, we propose an algorithm to compute the stability region of
admissible dwell time. For specific details, please refer to Algorithm 1. Finally, we utilize
a different analytical approach than that used in [28] to address the L1-gain performance
for positive switched impulsive system.

The structure of this article is as follows. The problem formulation is introduced in
Section 1. In Section 3, the new criterion for the exponential stability of positive switched
impulsive system is presented. Besides, an algorithm for determining the stability region
is proposed. The L1-gain performance for the positive switched impulsive system is fur-
ther analyzed in Section 4. In Section 5, numerical examples demonstrate the effectiveness
of our main results. Section 6 summarizes this article.

2 Problem formulation

Notations. In the following discussion, N represents the set of natural numbers. Rn (Rn+)
denotes the set of n-dimensional (positive) real vectors, and Rn×n is the space of n × n
real matrices. For a vector x ∈ Rn, the notation xl refers to the lth component of x, the
notation x ≺ 0 means xl < 0 for 1 6 l 6 n, and its 1-norm is defined as ‖x‖ = Σnk=1|xk|.
Consider a piecewise continuous function ρ(t) defined on [0,∞). ρ(t+), ρ(t−) are the
right and left limits of ρ(t), respectively, and ρ(t) = ρ(t+) at the discontinuous point.
Matrix A is called Metzler, whose off-diagonal entries are nonnegative. Say a matrix
B ∈ Rn×n is nonnegative if all its elements are nonnegative.

Let us consider time-varying switched impulsive system as follows:

ẋ(t) = Aσ(t)(t)x(t) +Bσ(t)(t)ω(t), t > 0, t 6= tk,

x(t+) = Fσ(t+)x(t−), t = tk,

y(t) = Cσ(t)(t)x(t) +Dσ(t)(t)ω(t),

(1)

where x(t), ω(t), and y(t) ∈ Rn represent the state vector, the disturbance input, and
the system output, respectively. M̄ = {1, 2, . . . ,m} denotes the set of subsystem indices
withm being the total number of subsystems. The switching signal σ(t) : [0,∞)→ M̄ is
a right-continuous function over time. The matrices Ai(t), Bi(t), Ci(t), Di(t) ∈ Rn×n,
i ∈ M̄, represent the time-varying system matrices of the ith subsystem. Additionally,
Fi ∈ Rn×n, i ∈ M̄, is a impulse matrix. For a switching sequence 0 < t1 < t2 < · · · <
tk < · · · with k ∈ N, tk is the switching instant with the dwell time τk = tk+1 − tk,
x(tk) = x(t+k ), and limk→∞ tk = +∞.

It is known that if Ai(t) is a Metzler matrix and Bi(t), Ci(t), Di(t), Fi ∈ Rn×n are
nonnegative and ω(t) < 0 for each i ∈ M̄, t > 0, then system (1) is positive.

Definition 1. The zero solution of system (1) is globally uniformly exponentially stable
(GUES) if there exist two positive constants b and c such that ‖x(t)‖ 6 b‖x(0)‖e−ct,
t > 0, for all initial conditions, where c is referred to as the exponential convergence rate.

Definition 2. A system (1) is said to be GUES with an L1-gain of ε for a given switching
signal and a constant ε > 0 if it satisfies the following conditions:
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(i) System (1) exhibits GUES in the absence of the input variable ω(t);
(ii) When the initial conditions are set to zero, the following inequality holds for any

nonzero ω(t) ∈ L1[0,∞):
∞∫
t0

∥∥y(t)
∥∥dt 6 ε

∞∫
t0

‖ω(t)‖ dt.

To further investigate the exponential stability of the time-varying switched impulsive
system under the switching signal σ(t), we proceed under the following assumptions.

Assumption 1. Ai(t) ∈ Rn×n is Metzler, and there exist a class of constant matrices
Āi ∈ Rn×n such that Ai(t) 4 Āi, i ∈ M̄, t > 0.

Assumption 2. Bi(t), Ci(t), Di(t), Fi ∈ Rn×n are nonnegative, and there exist a series
of constant matrices B̄i, C̄i, D̄i ∈ Rn×n such that Bi(t) 4 B̄i, Ci(t) 4 C̄i, Di(t) 4 D̄i,
i ∈ M̄, t > 0.

Assumption 3. ω(t) < 0 for t > 0.

Under Assumptions 1–3, it is evident that the time-varying switched impulsive system
(1) is positive.

Assumption 4. There exist positive constants τ1 = infk∈N τk and τ2 = supk∈N τk. The
switching signal that meets such conditions is termed interval dwell time (IDT).

Assumption 5. There exist a series of positive constants τi1 = infk∈N{τk: σ(tk) = i,
i ∈ M̄} and τi2 = supk∈N{τk: σ(tk) = i, i ∈ M̄}. The switching signal that meets
such conditions is termed mode-dependent interval dwell time (MDIDT).

When t = tk, the σ(tk)th subsystem is active. Therefore, in this article, the time
interval during which the σ(tk)th subsystem operates is designated as Rk = [tk, tk+1).
Subsequently, we divide the interval Rk into L segments averagely with length dk =
(tk+1 − tk)/L, and each segment is marked as Rkq = [tk + θkq, tk + θkq+1), where
θkq = qdk = q(tk+1 − tk)/L, q = 0, 1, . . . , L − 1. It is obvious that

⋃L−1
n=0 Rkn = Rk

and Rkn ∩Rkm = ∅ when n 6= m.
For the switching moment tk, several piecewise linear functions are introduced as

follows:

κ(t) =
1

tk+1 − tk
, t ∈ Rk, k ∈ N, (2)

κ(t) =
t− tk − θkq

dk
, κ̃(t) =

tk + θkq+1 − t
dk

, t ∈ Rkq, k ∈ N. (3)

For (2), we employ the convex combination technique. For ith subsystem, it is estab-
lished that there exists a function α(t) ∈ [0, 1], t ∈ Rk, k ∈ N, such that

κ(t) =
α̃(t)

τi1
+
α(t)

τi2
,

where α̃(t) = 1− α(t).
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For convenience, we set σ(t) = i ∈ M̄ for t ∈ Rk, k ∈ N, in the following analysis.
For each switching interval Rkq , a set of positive constant vectors ςiq+1 ∈ Rn+ and ςiq ∈
Rn+ for i ∈ M̄, q = 0, 1, . . . , L, are selected. With the aid of (3), we construct the
following continuous vector function, which depends on the switching signal σ(t):

ςσ(t)(t) = κ(t)ςiq+1 + κ̃(t)ςiq. (4)

Taking the derivative of (4) with respect to t, we obtain

ς̇i(t) =
ςiq+1 − ςiq

dk
= L

(
ςiq+1 − ςiq
tk+1 − tk

)
, t ∈ Rk, k ∈ N. (5)

3 Stability analysis

In this section, a discretized switched time-varying copositive Lyapunov function is de-
fined as

Vσ(t)(t, x) = ςTσ(t)(t)x(t), t > 0, x ∈ Rn, x < 0.

Consider system (1) with ω(t) = 0, t > 0, as follows:

ẋ(t) = Aσ(t)(t)x(t), t > 0, t 6= tk,

x(t+) = Fσ(t+)x(t−), t = tk.
(6)

Next, we present new criterion on exponential stability for the positive switched impulsive
system (6).

Theorem 1. Suppose that Assumptions 1 and 2 hold true. Given a positive integer L and
constants η > 0, 0 < ρ < 1, if there exist a group of constant vectors ςiq ∈ Rn+, i ∈ M̄,
q = 0, 1, . . . , L, such that for all q = 0, 1, . . . , L− 1, we have

ςTiqĀi +
L

τi2
(ςTiq+1 − ςTiq

)
− ηςTiq ≺ 0, (7)

ςTiqĀi +
L

τi1

(
ςTiq+1 − ςTiq

)
− ηςTiq ≺ 0, (8)

ςTiq+1Āi +
L

τi2

(
ςTiq+1 − ςTiq

)
− ηςTiq+1 ≺ 0, (9)

ςTiq+1Āi +
L

τi1

(
ςTiq+1 − ςTiq

)
− ηςTiq+1 ≺ 0, (10)

ςTi0Fi − ρςTjL 4 0, i, j ∈ M̄, i 6= j, (11)

τ2η + ln ρ < 0, (12)

where τ2 = maxi∈M̄ τi2, then system (6) is GUES under any MDIDT switching signal
satisfying Assumption 5.
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Proof. Since Assumptions 1 and 2 hold, system (6) is positive. Given x(0) < 0, the
trajectory of system (6) will remain nonnegative for any t > 0 under arbitrary switching.
Letting σ(t) = i for t ∈ Rk, k ∈ N, we obtain

V̇i(t, x(t))− ηVi
(
t, x(t)

)
= ς̇i

T(t)x(t) + ςTi (t)ẋ(t)− ηςTi (t)x(t)

= ς̇i
T(t)x(t) + ςTi (t)Ai(t)x(t)− ηςTi (t)x(t)

6 ς̇i
T(t)x(t) + ςTi (t)Āix(t)− ηςTi (t)x(t)

=
(
ς̇i

T(t) + ςTi (t)Āi − ηςTi (t)
)
x(t)

=

(
ςTiq+1 − ςTiq

dk
+
(
κ(t)ςTiq+1 + κ̃(t)ςTiq)Āi − η

(
κ(t)ςTiq+1 + κ̃(t)ςTiq

))
x(t)

=

(
κ(t)α(t)

(
ςTiq+1Āi +

L

τi2

(
ςTiq+1 − ςTiq

)
− ηςTiq+1

)
+ κ(t)α̃(t)

(
ςTiq+1Āi +

L

τi1

(
ςTiq+1 − ςTiq

)
− ηςTiq+1

)
+ κ̃(t)α(t)

(
ςTiqĀi +

L

τi2

(
ςTiq+1 − ςTiq

)
− ηςTiq

)
+ κ̃(t)α̃(t)

(
ςTiqĀi +

L

τi1

(
ςTiq+1 − ςTiq

)
− ηςTiq

))
x(t). (13)

By (7)–(10) and the fact
⋃L−1
n=0 Rkn = Rk and Rkn ∩Rkm = ∅, we have

V̇i
(
t, x(t)

)
6 ηVi

(
t, x(t)

)
, t ∈ Rk, k ∈ N. (14)

Let σ(t−k ) = j. Due to (11), it is concluded that

Vi
(
tk, x(tk)

)
− ρVj

(
t−k , x(t−k )

)
= ςTi (tk)x(tk)− ρςTj (t−k )x(t−k ) =

[
ςTi (tk)Fi − ρςTj (t−k )

]
x(t−k )

=
(
ςTi0Fi − ρςTjL

)
x(t−k ) 6 0. (15)

Inequalities (14) and (15) lead to the fact that

Vi
(
t, x(t)

)
6 eη(t−tk)Vi

(
tk, x(tk)

)
6 ρeη(t−tk)Vj

(
t−k , x(t−k )

)
6 ρeη(t−tk−1)Vj

(
tk−1, x(tk−1)

)
6 ρkeηtVσ(0)

(
0, x(0)

)
6 ρt/τ2eηtVσ(0)

(
0, x(0)

)
= e(ln(ρ)/τ2+η)tVσ(0)

(
0, x(0)

)
, t ∈ Rk, k ∈ N, (16)

where τ2 = maxi∈M̄τi2. We can get from (12) that

ln ρ

τ2
+ η < 0.
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On the basis of (5) and (6), we can conclude that there exists an n-dimensional vector
λ > 0 ensuring Vσ(t)(t, x) > λTx(t) for t > 0. Therefore, inequality (16) implies that
system (1) is GUES under the MDIDT switching signal satisfying Assumption 5. The
proof of Theorem 1 is completed.

Remark 1. In Theorem 1, conditions (7)–(10) assess the evolution of subsystems be-
tween every two switching behaviors. Inequality (11) means that changes in energy of the
switching behaviors with impulse are evaluated, indicating the impulse should not be too
large.

Remark 2. In certain applications, the subsystem does not switch arbitrarily; it can only
switch to specific subsystems. For this scenario, we define the allowable switching set
Q̄i = {j: σ(t+) = j, σ(t−) = i} for t > 0, where i 6= j and i ∈ M̄, which represents
the possible destinations for the ith subsystem. Consequently, the switching condition (11)
can be relaxed to

ςTi0Fi − ρςTjL 4 0, j ∈ Q̄i.

Remark 3. The definition of ς(t) by [28] is in the form of

ςi(t) =

{
t−tk−θq

d ςiq+1 +
tk+θq+1−t

d ςiq, t ∈ [tk+θq, tk+θq+1), q = 0, 1, . . . , L− 1,

ςiL+1, t ∈ [tk+τmin, tk+1),

where θq= qd, d = τmin/L, σ(tk) = i, and ∪L−1
q=0 [tk+θq, tk+θq+1) = [tk, tk+ τmin) ⊆

[tk, tk+1). This paper adopts a different segmentation method from [28] for the interval
Rk = [tk, tk+1) and considers the time-varying positive switched system under the influ-
ence of pulse factors.

When Ai(t) ≡ Āi, system (6) reduces to a time-invariant positive switched impulsive
system, and Theorem 1 still holds in this case. The stability criterion of the time-invariant
positive switched impulsive system in [8] is as follows.

Proposition 1. Given a positive integer L, if there exist a group of positive vectors ςiq ∈
Rn+, i ∈ M̄, q = 0, 1, . . . , L, and two constants 0 < ρ < 1, η > 0 such that for all
q = 0, 1, . . . , L− 1, we have

ςTiqĀi + L

(
ςTiq+1

τi1
−
ςTiq
τi2

)
− ηςTiq ≺ 0, (17)

ςTiq+1Āi + L

(
ςTiq+1

τi1
−
ςTiq
τi2

)
− ηςTiq+1 ≺ 0, (18)

ςTi0Fi − ρςTjL 4 0, i, j ∈ M̄, i 6= j,

τ2η + ln ρ < 0,

where τ2 = maxi∈M̄τi2, then system (6) is GUES under MDIDT switching signal.

Next, this paper compares the conservativeness of Proposition 1 and Theorem 1 through
formula derivation.
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In (7), we have
L

τi2

(
ςTiq+1 − ςTiq

)
= L

(
ςTiq+1

τi2
−
ςTiq
τi2

)
.

The fact that τi2 > τi1 leads to the conclusion that

ςTiq
τi2
≺
ςTiq
τi1
,

which further implies that

L

(
ςTiq+1

τi2
−
ςTiq
τi2

)
≺ L

(
ςTiq+1

τi1
−
ςTiq
τi2

)
.

Similarly, in (8), we obtain

L

τi1

(
ςTiq+1 − ςTiq

)
= L

(
ςTiq+1

τi1
−
ςTiq
τi1

)
,

we can also deduce that

L

(
ςTiq+1

τi1
−
ςTiq
τi1

)
≺ L

(
ςTiq+1

τi1
−
ςTiq
τi2

)
.

Based on these findings, it is evident that when inequality (17) holds, inequalities (7)
and (8) also hold. Similarly, when (18) holds, the inequalities (9) and (10) are also sat-
isfied. Therefore, the restrictions on the stability criterion obtained in this paper are less
conservative compared to those in [8].

We also consider the stability of system (6) under an IDT switching signal that satisfies
Assumption 4.

Corollary 1. Suppose that Assumptions 1 and 2 hold true. Given a positive integer L and
constants η > 0, 0 < ρ < 1, if there exist a group of positive constant vectors ςiq ∈ Rn+,
i ∈ M̄, q = 0, 1, . . . , L, such that for all q = 0, 1, . . . , L− 1, we have

ςTiqĀi +
L

τ2

(
ςTiq+1 − ςTiq

)
− ηςTiq ≺ 0, (19)

ςTiqĀi +
L

τ1

(
ςTiq+1 − ςTiq

)
− ηςTiq ≺ 0, (20)

ςTiq+1Āi +
L

τ2

(
ςTiq+1 − ςTiq

)
− ηςTiq+1 ≺ 0, (21)

ςTiq+1Āi +
L

τ1

(
ςTiq+1 − ςTiq

)
− ηςTiq+1 ≺ 0, (22)

ςTi0Fi − ρςTjL 4 0, i, j ∈ M̄, i 6= j, (23)

τ2η + ln ρ < 0, (24)

then system (1) is GUES under any IDT switching signal satisfying Assumption 4.

We now present an algorithm designed to compute the maximum and minimum dwell
times, which can further delve into the stability region.
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Algorithm 1. IDT maximum-minimum dwell-times algorithm

Steps:
1. Initialization:
Initial guess τ2, ςiq , i ∈ M̄, q = 0, 1, . . . , L;
Configure the fmincon function with the SQP and define the objective function f = −τ2 along with the
constraint functions (19)–(24).
2. Optimization:
Utilize the fmincon function to find the optimal solution of τ2, ςiq and their corresponding objective function
value f ;
Obtain the optimization success flag (exitflag) and output information.
3. Results:
If exitflag > 0, print “Optimal solution found!” and display τ2, ςiq , and the objective function value f ;
Otherwise, print “No solution found”.
4. Save:
Save results for further analysis.

Considering Corollary 1, our goal is to compute the maximum dwell time τ2 and the
minimum dwell time τ1 under the IDT switching signal and to seek m(L + 1) positive
vectors ςiq ∈ Rn for i ∈ M̄ and q = 0, 1, . . . , L. By treating τ1, τ2, and ςiq as variables,
the problem transforms into a nonlinear optimization problem subject to constraints (19)–
(24). To tackle this optimization problem, we employ the sequential quadratic program-
ming (SQP) algorithm, which is not constrained by step size limitations and can provide
solutions with high precision.

Given the mutual constraints between τ1 and τ2 as defined by conditions (19)–(24),
it is not feasible to search for τ1 or τ2 independently. Therefore, we employ the SQP
algorithm to treat either τ1 or τ2 as an independent variable and the other as a dependent
variable. This method enables us to construct a relationship graph that visually represents
the variations between the two variables and subsequently identifies the stability region.
Assuming that τ1 is the independent variable and assigning an initial assumption to τ1,
when conditions (19)–(24) are satisfied, we can compute the corresponding maximum
dwell time. For details, we refer to Algorithm 1.

4 L1-gain analysis

In this section, based on Theorem 1, the L1-gain performance of the positive switched
impulsive system (1) is further analyzed.

Theorem 2. Consider system (1) under Assumptions 1–3. Given a positive integer L and
a constant 0 < ρ < 1, if there exist a group of constant vectors ςiq ∈ Rn+, i ∈ M̄,
q = 0, 1, . . . , L, such that for all q = 0, 1, . . . , L− 1, we have[

ςTiqĀi + L
τi2

(ςTiq+1 − ςTiq) + 1TC̄i
ςTiqB̄i + 1TD̄i − ε1T

]
≺ 0, (25)

[
ςTiqĀi + L

τi1
(ςTiq+1 − ςTiq) + 1TC̄i

ςTiqB̄i + 1TD̄i − ε1T

]
≺ 0, (26)
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[
ςTiq+1Āi + L

τi2
(ςTiq+1 − ςTiq) + 1TC̄i

ςTiq+1B̄i + 1TD̄i − ε1T

]
≺ 0, (27)[

ςTiq+1Āi + L
τi1

(ςTiq+1 − ςTiq) + 1TC̄i
ςTiq+1B̄i + 1TD̄i − ε1T

]
≺ 0, (28)

ςTi0Fi − ρςTjL 4 0, i, j ∈ M̄, i 6= j, (29)

where τ2 = maxi∈M̄ τi2, then system (1) is GUES with an L1-gain ε under MDIDT
switching signal satisfying Assumption 5.

Proof. Since Assumptions 1–3 hold, system (1) is positive. Given x(0) < 0, the trajectory
of system (1) will remain nonnegative under arbitrary switching. Based on Theorem 1,
we can easily arrive at system (1) without ω(t) is GUES. Subsequently, we proceed to
investigate the L1-gain performance. Let

K(t) =
∥∥y(t)

∥∥− ε∥∥ω(t)
∥∥ = 1Ty(t)− ε1Tω(t), t ∈ Rk, k ∈ N. (30)

Moreover, for σ(t) = i, we have that

V̇i(t) + K(t) = ς̇i
T(t)x(t) + ςTi (t)ẋ(t) + 1Ty(t)− ε1Tω(t)

=
(
ς̇i

T(t) + ςTi (t)Ai(t)
)
x(t) + ςTi (t)Bi(t)ω(t)

+ 1TCi(t)x(t) + 1TDi(t)ω(t)− ε1Tω(t)

6
(
ς̇i

T(t) + ςTi (t)Āi
)
x(t) + ςTi (t)B̄iω(t)

+ 1TC̄ix(t) + 1TD̄iω(t)− ε1Tω(t)

=

[
ςTi (t)Āi + ς̇i

T(t) + 1TC̄i
ςTi (t)B̄i + 1TD̄i − ε1T

] [
x(t)
ω(t)

]
,

where ςi(t) is defined by (5). Thus, similar to the proof of inequality (13), inequali-
ties (25)–(28) imply that

V̇i(t) + K(t) < 0, t ∈ Rk, k ∈ N. (31)

Taking the integral of (31) with respect to t, t ∈ Rk, k ∈ N, we have

Vi(t) < Vi(tk)−
t∫

tk

K(s) ds. (32)

Set σ(t−k ) = j. Based on (29), one has

Vi
(
tk, x(tk)

)
− Vj

(
t−k , x(t−k )

)
6 Vi

(
tk, x(tk)

)
− ρVj

(
t−k , x(t−k )

)
= ςTi (tk)x(tk)− ρςTj (t−k )x(t−k )

=
[
ςTi (tk)Fi − ρςTj (t−k )

]
x(t−k ) =

(
ςTi0Fi − ρςTjL

)
x(t−k ) 6 0, k ∈ N. (33)
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It further follows from (32) and (33) that

Vi(t) < Vj(t
−
k )−

t∫
tk

K(s) ds. (34)

Moreover,

Vj(t
−
k ) < Vj(tk−1)−

tk∫
tk−1

K(s) ds. (35)

Substitute (35) into (34)

Vi(t) < Vj
(
tk−1

)
−

tk∫
tk−1

K(s) ds−
t∫

tk

K(s) ds.

Replicating the above protocol, we can obtain

Vi(t) < Vσ(0)(t0)−
t1∫
t0

K(s) ds−
t2∫
t1

K(s) ds

−
t3∫
t2

K(s) ds− · · · −
t∫

tk

K(s) ds

= Vσ(0)(t0)−
t∫

t0

K(s) ds, t > t0.

On the basis of initial condition and definition of Vi(t), it is already known that
Vσ(0)(t0) = 0 and Vi(t) > 0. Obviously,

∫ t
t0
K(s) ds < 0, t ∈ [tk, tk+1), k ∈ N. Then,∫∞

t0
K(s) ds < 0 holds, which can derive

∫∞
t0
‖y(t)‖ dt < ε

∫∞
t0
‖ω(t)‖ dt. The proof is

now complete.

We also evaluate the L1-gain performance of system (1) under IDT switching signals,
leading to the following conclusions.

Corollary 2. Suppose that Assumptions 1–3 hold true. Given a positive integer L and
constants η > 0, 0 < ρ < 1, if there exist a group of positive constant vectors ςiq ∈ Rn+,
i ∈ M̄, q = 0, 1, . . . , L, such that for all q = 0, 1, . . . , L− 1, we have[

ςTiqĀi + L
τ2

(ςTiq+1 − ςTiq) + 1TC̄i
ςTiqB̄i + 1TD̄i − ε1T

]
≺ 0,[

ςTiqĀi + L
τ1

(ςTiq+1 − ςTiq) + 1TC̄i
ςTiqB̄i + 1TD̄i − ε1T

]
≺ 0,
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[
ςTiq+1Āi + L

τ2
(ςTiq+1 − ςTiq) + 1TC̄i

ςTiq+1B̄i + 1TD̄i − ε1T

]
≺ 0,[

ςTiq+1Āi + L
τ1

(ςTiq+1 − ςTiq) + 1TC̄i
ςTiq+1B̄i + 1TD̄i − ε1T

]
≺ 0,

ςTi0Fi − ρςTjL 4 0, i, j ∈ M̄, i 6= j,

then system (1) is GUES with an L1-gain ε under IDT switching signal satisfying As-
sumption 5.

5 Numerical examples

This section presents two numerical examples to show the effectiveness of our main
results. The first example involves a time-invariant positive switched impulsive system.
By employing Algorithm 1, this example aims to illustrate the reduced conservatism of
our findings in comparison to prior works [8,28]. The second numerical example concerns
a time-varying positive switched impulsive system, which is introduced to demonstrate
the validity of our results.

Example 1. When Ai(t) ≡ Āi. Consider system (6) consisting of two subsystems as

Ā1 =

[
0.15 0.2

0 −1

]
, Ā2 =

[
−1.5 0.2

0 0.37

]
,

impulse matrices as follows:

F1 =

[
1.5 1
0 0.5

]
, F2 =

[
0.5 0
0 0.6

]
.

Both subsystems are unstable due to the system matrices A1 and A2 not being Hurwitz.
Let x(0) = [1, 3]T. Figs. 1 and 2 show that the subsystems 1 and 2 are unstable, respec-
tively.

We specify a set of fixed constants satisfying L = 1, ρ = 0.6, and η = 0.1. When
a guess at τ1 = 0.84 is provided, we are able to find the values of ς10, ς11, ς20, ς21 and the
maximum dwell time τ2 that satisfy the stability criterion of Corollary 1

ς10 =

[
0.0112
13.0795

]
, ς11 =

[
0.0100
25.0000

]
, ς20 =

[
0.0120
25.0000

]
, ς21 =

[
0.0280
10.9183

]
,

and τ2 = 2.08.
The switching signal σ(t) designed based on IDT with τ1 = 0.84 and τ2 = 2.08 is

shown in Fig. 3. The trajectory of the positive switched impulsive system (6) is depicted in
Fig. 4, demonstrating that the positive switched impulsive system is exponentially stable
under the IDT switching signal.

By utilizing the linear programming (LP) tool in MATLAB, we are unable to find
a suitable vector ςiL ∈ Rn with ςiL � 0 that satisfies AT

i ςiL ≺ 0, indicating that the
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Figure 1. The state trajectory of subsystem 1. Figure 2. The state trajectory of subsystem 2.

Figure 3. The given switching signal for Example 1. Figure 4. The state trajectory of Example 1.

result from [28] is not applicable to this specific scenario. Employing Algorithm 1, we
illustrate the stability region that satisfies Corollary 1 and Proposition 1 for this example
in Fig. 5. The dwell time within this stability region guarantees the exponential stability
as demonstrated by the above simulation result with the switching signals τ1 = 0.84 and
τ2 = 2.08. As shown in Fig. 5, region R2 represents the stability region of Proposition 1,
while region R1 ∪ R2 represents the stability region of Corollary 1. It can be observed
that R2 is entirely contained within R1 ∪ R2, indicating that the conservativeness of our
result is lower than that of Proposition 1 from [8].

Finally, the L1-gain performance of this positive switched impulsive system is con-
sidered. We consider system (1) with[

Ā1 B̄1

C̄1 D̄1

]
=

0.15 0.2 0.5
0 −1 1
1 2 0.5

 , [
Ā2 B̄2

C̄2 D̄2

]
=

−1.5 0.2 2
0 0.37 1
1 0.5 0.5

 ,
the system matrices Ā1 and Ā2, as well as the impulse matrices F1 and F2, are consistent
with the above. Given the input function ω(t) = 2t3, under the switching signal shown in
Fig. 3, we can calculate the L1-gain as ε = 19.8200 using MATLAB.

Nonlinear Anal. Model. Control, 30(2):157–175, 2025
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Figure 5. Stability region for admissible dwell time: R2 is the stability region of Proposition 1, and R1 ∪ R2

is the stability region of Corollary 1, respectively.

Example 2. Consider the time-varying system (6), which consists of two subsystems with
the parameters setting in the form of

A1(t) =

[
−1.5 0

0.2| cos(t)| 0.1| sin(t)|+ 0.01

]
, A2(t) =

[
0.1− 2−t 0.3

0.04| sin(t)| −1.1

]
,

which implies

Ā1 =

[
−1.5 0
0.2 0.11

]
, Ā2 =

[
0.1 0.3
0.04 −1.1

]
,

impulse matrices as follows:

F1 =

[
1.05 0.2

0 0.6

]
, F2 =

[
1 0.4
0 0.75

]
.

Each subsystem is unstable, as evidenced by the fact thatA1(t) andA2(t) are not Hurwitz
matrices. We choose the initial state as x(0) = [2, 2]T. The state trajectories of subsystems
1 and 2 are shown in Figs. 6 and 7, respectively.

In [8, 28], the stability criterion for the time-varying positive switched impulsive
system is not provided, thus they cannot address this case. Given L = 1, ρ = 0.95,
and η = 0.01, an initial guess for τ1 is set to 0.91. By utilizing Algorithm 1, we can
determine that

ς10 =

[
0.4476
1.1334

]
, ς11 =

[
0.8565
0.7480

]
, ς20 =

[
0.8136
0.5135

]
, ς21 =

[
0.4948
0.8101

]
,

and τ2 = 3.40.
The switching signal σ(t) is designed with τ1 = 0.91 and τ2 = 3.40. This design is

shown in Fig. 8. The trajectory of the time-varying positive switched impulsive system is
shown in Fig. 9, clearly demonstrating its exponential stability.

With the aid of Algorithm 1, the stability region of this example is illustrated in
Fig. 10. The dwell time within the stability region can ensure the exponential stability,
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Figure 6. The state trajectory of subsystem 1. Figure 7. The state trajectory of subsystem 2.

Figure 8. The given switching signal for Example 2. Figure 9. The state trajectory of Example 2.

as demonstrated by the above simulation result with the switching signals τ1 = 0.91 and
τ2 = 3.40.

Lastly, the L1-gain performance of the positive switched impulsive system is consid-
ered. We consider system (1) with

[
A1(t) B1(t)
C1(t) D1(t)

]
=

 −1.5 0 0.5| sin(t)|
0.2| cos(t)| 0.1| sin(t)|+ 0.01 0.1

0.9 + 0.1| cos(t)| 1 1.5 + 0.5| sin(t)|

 ,
[
A2(t) B2(t)
C2(t) D2(t)

]
=

 0.1− 2−t 0.3 0.2
0.04| sin(t)| −1.1 0.2 + 0.1| sin(t)|

0.5 0.5| cos(t)| 1.5 + 0.5| sin(t)|

 ,
which implies

[
Ā1 B̄1

C̄1 D̄1

]
=

−1.5 0 0.5
0.2 0.11 0.1
1 1 2

 , [
Ā2 B̄2

C̄2 D̄2

]
=

 0.1 0.3 0.2
0.04 −1.1 0.3
0.5 0.5 2

 ,
Nonlinear Anal. Model. Control, 30(2):157–175, 2025
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Figure 10. Stability region for admissible dwell time: R is the stability region.

the system matrices A1(t) and A2(t), as well as the impulse matrices F1 and F2, are
consistent with the preceding descriptions. Assuming an input function ω(t) = 4e−0.1t,
the L1-gain is computed as ε = 6.3118 using MATLAB under the switching signal
depicted in Fig. 8.

6 Conclusions

In this paper, we have delved into the exponential stability and L1-gain performance of
time-varying positive switched impulsive systems when all subsystems are unstable under
the MDIDT switching. By constructing a switched copositive Lyapunov function, we
have derived a novel exponential stability criterion for such systems, which offers less
conservative approach than prior results. Furthermore, an algorithm for calculating the
maximum and minimum dwell times has been introduced, which is implemented based
on SQP in MATLAB. Subsequently, based on the established stability result, we have
explored the unweighted L1-gain performance. Finally, the validity of our main results is
demonstrated by numerical examples and simulations.
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