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Abstract. This paper investigates the distributed optimization problem (DOP) with equality
constraint in discrete-time multiagent systems (MASs) in which the global optimization objective
is constituted by the summation of local objective functions. Firstly, by employing the Lagrange
multiplier method, we convert the convex optimization problem with equality constraint into
a consensus problem of MASs. Secondly, to reduce the communication burden, a type of event-
triggered control protocol is proposed to enable all agents achieving consensus. Thirdly, by
employing the Lyapunov function method and a set of inequality techniques, we establish some
sufficient conditions to ensure that all agents converge to consensus and successfully solve the
original DOP. Finally, a numerical simulation example is presented to validate the effectiveness of
the theoretical analysis.

Keywords: consensus, distributed optimization problem, discrete-time, event-triggered control,
multiagent systems.

1 Introduction

In recent years, the cooperative control problems of MASs have garnered significant
attention from researchers. Distributed consensus [17, 21, 26, 33, 35, 37], as a funda-
mental problem of cooperative control, aims to design appropriate distributed control
protocols to ensure that all agents eventually converge to a common decision value.
As an application of distributed consensus, distributed optimization is widely used in
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various practical applications such as resource allocation [30], economic dispatch [13,
18], shortest distance optimization [19], and target tracking [12]. Distributed optimization
of MASs is to minimize the global optimization objective, which is composed of local
objective functions, through the utilization of solely local computations and information
exchanges.

In recent years, many excellent research results have been obtained for distributed
optimization problems (DOPs) with different convergence rates. In [40], the distributed
convex quadratic optimization problem of MASs with asymptotic convergence rate was
studied. In [41], the finite-time DOP of MASs under directed network topology was
considered, and a distributed optimization algorithm was proposed. In [36], the authors
used the directed network construction method to analyze the fixed-time DOP of MASs
on the directed network, and two event-triggering algorithms were designed using the
symbolic function and the saturation function, respectively. In [4], the prescribed-time
DOP was investigated by using the event-triggered sampling control and the prescribed-
time stability theory. In addition, the DOP of MASs with second-order dynamics was
considered in [24]. It is worth noting that the above works [4,24,36,40,41] mainly solved
the DOPs by establishing continuous-time models and algorithms.

However, in order to better adapt the needs of engineering practice, the research and
development of digital control system is more and more in-depth. The discrete system
theory is the basic theory of digital control system. Therefore, the study of cooperative
control of discrete-time MASs has more practical application value. To guarantee the
asymptotic consensus among agents operating under an asynchronous network structure,
a design methodology rooted in Lyapunov function theory was introduced in [23]. Utiliz-
ing event-triggered and self-triggered control mechanisms [8], some sufficient conditions
were given for ensuring consensus in both centralized and distributed discrete-time event-
triggered protocols. As an application of consensus, a distributed subgradient optimiza-
tion algorithm was proposed in [7] to solve the first-order unconstrained DOP in the
undirected network topology. The DOP of MASs with time-varying network topologies
was investigated in [20]. One can find that all these research results mentioned above
[7, 20] considered unconstrained DOPs. To better simulate some conditional constraints
in practical applications and save energy costs, this paper will consider the constrained
DOP of discrete-time MASs, which is one of the research motivations of this paper.

With the increasing complexity of practical problems, constrained DOP has gradually
become the focus of researchers. The existing constraints mainly include equality con-
straints [25, 27], inequality constraints [10, 16], and closed convex set constraints [15, 22,
42]. For a class of resource allocation problems, two new distributed discrete-time nonlin-
ear algorithms were proposed in [27]. In addition, the global and local DOPs under time-
varying and weighted unbalanced digraph were studied in [10] and [16], respectively. In
particular, the work in [10] put forward a new push-sum dual gradient algorithm to study
distributed model predictive control for linear discrete-time system networks. In addition,
a distributed optimization algorithm based on gradient tracking and projection was pro-
posed in [22]. Based on the idea of consensus, a distributed optimization algorithm based
on projection was developed in [42] in which it does not require interaction between
gradient information of the local objective functions of the agents. Compared with the
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above results, since the classical projection strategy is no longer suitable for dealing
with optimization problems with closed convex set constraints under the gradient tracking
framework, a new indirect projection method was designed in [15], and it is proved that
the algorithm can achieve linear convergence rate when introducing a fixed step size.

While solving the DOP in MASs, it is crucial to not only determine the optimal value
but also minimize the communication load to conserve resources. To accomplish this,
advancements have been made in controller design, aimed at enhancing both optimization
and communication efficiency. In fact, in traditional time-triggered control, each agent
regularly communicates with its neighbors to obtain the necessary information. Although
this control method is easy to design and analyze, it can also lead to overuse of limited
resources in large networks. Surprisingly, the event-triggered control strategy has been
greatly improved. As a result, event-triggered control protocols may be more economical
than traditional time-triggered protocols. The work in [38] investigated the discrete-time
bumpless transfer control problem with a dynamic event-triggered control mechanism
in a switching topology. In [11], a discrete-time distributed optimization algorithm with
event-triggered communication mechanism was designed to solve the economic schedul-
ing problem. In [6], the DOP of discrete-time MASs was studied through the event-
triggered interaction scheme, and the proposed optimization algorithm provided a more
relaxed step size selection. To our best knowledge, the DOP of discrete-time MASs with
weighted equality constraint has not been studied by using event-triggered control. This
is another motivation of this paper.

Inspired by the discussion, this paper studies the DOP of discrete-time MASs with
equality constraint in which the equality constraint is represented as the weighted sum of
all agent states. The main contributions of this paper are summarized as follows:

1. In the existing research results [3, 10, 14, 31], most of the constrained DOPs in
MASs are based on continuous-time models. In many practical applications, al-
though the system itself is a continuous process, the controller can only apply
the sampled data obtained in discrete-time since the limited channel bandwidth in
the communication system. Therefore, this paper considers the equality constraint
DOP under the discrete-time model.

2. Compared with the result of the classical constrained optimization problem in
[40], this paper considers the DOP of discrete-time MASs with weighted equality
constraint. Especially, if all weight factors in the equality constraint are the same,
it can degenerate into the optimization problem in [40]. Therefore, the constraint
condition considered in this paper is more extensive. In addition, the Lagrange
multiplier approach is used to transform the convex DOP with equality constraints
into a consensus problem.

3. In order to reduce the communication load, a control strategy with event-triggered
communication mechanism is proposed, which only depends on the states of the
agents and neighbors on the event-triggered sequences.

The structure of the paper is as follows. In Section 2, we introduce some preliminaries
about graph theory and the problem formulation. A control protocol with event-triggered
communication mechanism is proposed and the convergence property for the proposed
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algorithm is analyzed in Section 3. A numerical simulation is presented in Section 4.
Section 5 summarizes the main results of this paper.

Notations. In this paper, Rn and Rn×n represent the n-dimensional real space and the
n × n dimensional set of real matrices, respectively. In represents the n-dimensional
identity matrix. For a vector x ∈ Rn, xT is the transpose of x. N denotes the set of
natural numbers.

2 Preliminaries

2.1 Algebraic graph theory

Consider an undirected graph G = (V, E ,A), where V = {v1, . . . , vn} indicates the
set of nodes, and E represents the edges in which (vi, vj) ∈ E if there exists an edge
between node vi and node vj . Ni = {vj ∈ V: (vj , vi) ∈ E} denotes the neighbors set
of node vi. The adjacency matrix is depicted by A = [aij ] ∈ RN×N in which aij > 0
if (j, i) ∈ E , and aij = 0 otherwise. The degree of node vi is given by di =

∑
j∈Ni

aij .
The Laplacian matrix L = [lij ]N×N is given by lij = −aij for i 6= j, and lii =∑N
j=1,j 6=i aij . It is noted that A and L are symmetric matrices, and L satisfies L1N =

0N . A path from node vi to vj is a sequence of edges of form (vi, vi1), (vi1 , vi2), . . . ,
(vik , vj) in the graph G with distinct node vik ∈ V . The graph G is called connected if
there exists a path between any pair of distinct nodes.

2.2 Distributed constraint optimization problem

Consider a MAS with n agents, and the main target is solve the following DOP with
equality constraint:

min f(x) =

n∑
i=1

fi(xi) s.t.
n∑
i=1

ψixi = XD, (1)

where xi ∈ R is the state of agent i, and f(x) is the global objective function. fi(xi) =
αix

2
i + βixi +ϕi is the local objective function of agent i in which αi > 0, βi and ϕi are

parameters. ψi > 0 is the weight parameter, and XD is a constant.

Assumption 1. The communication topology G among agents is an undirected and con-
nected graph.

Remark 1. The constrained DOP, characterized by the state of each agent being confined
by specific constraints, is commonly encountered in fields such as resource allocation
[5, 32] and economic scheduling problems [34]. In this kind of DOP, the state of each
agent is restricted by a certain constraint. Consequently, this paper focuses on the DOP
that incorporates weighted state constraints.

In order to solve the above optimization problem (1), we give the Lagrange function

L(xi, η
∗) =

n∑
i=1

fi(xi) + η∗

(
XD −

n∑
i=1

ψixi

)
.
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Based on the Lagrange multiplier method in [28], the corresponding optimal solution
satisfies the following equation:

∂fi(xi)

∂xi
− ψiη∗ = 0. (2)

According to (1) and (2),

2α1x1 + β1
ψ1

=
2α2x2 + β2

ψ2
= · · · = 2αnxn + βn

ψn
= η∗. (3)

Combining (1) and (3),

η∗ =
XD +

∑n
i=1

ψiβi

2αi∑n
i=1

ψ2
i

2αi

.

The corresponding optimal solution is x∗i = (η∗ψi − βi)/(2αi).
Define Ii(t) = 2αixi(t) + βi/ψi, then formula (3) can be rewritten as I1(t) =

I2(t) = · · · = In(t) = η∗. Observing the above formula, it is found that the DOP
(1) transforms into a consensus problem. That is, the constrained DOP (1) can be solved
when I1(t), I2(t), . . . ,In(t) converge to η∗.

3 Main results

According to the above statement, we propose a distributed algorithm to achieve consen-
sus of the intermediate variable Ii(t) in this section.

Consider the following discrete-time dynamics:

Ii(t+ 1) = Ii(t) + ui(t),

xi(t) =
ψiIi(t)− βi

2αi
, i = 1, 2, . . . , n,

(4)

where Ii(0) = (2αixi(0) + βi)/ψi, xi(0) is the initial value of xi(t) and satisfies∑n
i=1 ψixi(0) = XD.

Remark 2. Most of the existing research results are given based on continuous-time
model. However, the study of the DOP of discrete-time MASs is of practical importance.
On the one hand, the digital control systems are widely used in engineering practice, and
discrete system theory is the cornerstone of these systems. On the other hand, in numer-
ous practical applications, while the system may operate as a continuous process, the
controller can only utilize sampled data obtained in discrete-time due to the constrained
bandwidth of the communication system’s channel.

On the basis of achieving consensus, to maximize the service life of the network, this
paper proposes an event-triggered control method to reduce the communication between
the agents and the neighbors. In this part, ti0, t

i
1, . . . , t

i
k, . . . refer to the event-triggered

time series of ith agent, tik ∈ N. At the triggering instant tik, agent i stores its trigger
state Ii(t

i
k), and at the same time, passes it to its neighbors. When t ∈ [tik, t

i
k+1), agent j
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can send out its latest sampling state Ij(t
j
k′) to agent i, where tjk′ represents the latest

sampling instant of the agent j before t. Îi(t) denotes the last broadcast state of agent i at
time step t, which can be described in the following form: Îi(t) = Ii(t

i
k), t ∈ [tik, t

i
k+1).

Specifically, the distributed control input of agent i is given as follows:

ui(t) = −ki
∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
, (5)

where ki > 0 is the constant control parameter.
For the agent i, the next event-triggered instant tik+1 is described by

tik+1 = inf
{
t > tik: e2i (t) > riq̂i(t)w

2
i (t)

}
, (6)

where ri is a positive parameter, and ei(t) = Îi(t)−Ii(t) is the measurement error. wi(t)
and q̂i(t) are represented by

wi(t) =
∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
and

q̂i(t) = min

{∑
j∈Ni

aij
∥∥Îi(t)− Îj(t)

∥∥2, M},
where M is a positive constant.

Theorem 1. For the MAS (4) with event-triggered control protocol (5)–(6), if Assump-
tion 1 holds and the control parameters satisfy the following condition:

k̄λn + r̄Mλ2n < 1, (7)

where k̄ = max{ki}, r̄ = max{ri}, λn = max{λi(L)}, then all variables Ii(t) (i =
1, 2, . . . , n) converge to the same value

∑n
i=1(Ii(0)/ki)/

∑n
i=1(1/ki).

Proof. Firstly, let I∗ =
∑n
i=1(Ii(0)/ki)/

∑n
i=1(1/ki), and let θi(t) = Ii(t) − I∗.

Choose the Lyapunov function as V (t) =
∑n
i=1 θ

2
i (t)/ki. Based on (4) and (5), we

have

V (t+ 1)

=

n∑
i=1

1

ki
θ2i (t+ 1) =

n∑
i=1

1

ki

(
Ii(t)− ki

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
− I∗

)2

=

n∑
i=1

1

ki

(
I2i (t)− kiIi(t)

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
− I∗Ii(t)

− kiIi(t)
∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
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+ k2i

(
Ii(t)

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))2

+ I∗ki
∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
− I∗Ii + I∗ki

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
+ I∗2

)

=

n∑
i=1

1

ki

(
I2i (t)− 2kiIi(t)

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
− 2I∗Ii(t) + I∗2

+ k2i

(
Ii(t)

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))2

+ 2I∗ki
∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))
. (8)

Moreover, one has

V (t) =

n∑
i=1

1

ki
θ2i (t) =

n∑
i=1

1

ki

(
I2i (t)− 2I∗Ii(t) + (I∗)2

)
. (9)

According to (8) and (9), one obtains

V (t+ 1)− V (t)

=

n∑
i=1

1

ki

(
−2kiIi(t)

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
+ k2i

( ∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))2

+ 2I∗ki
∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))

= −2

n∑
i=1

Ii(t)
∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
+

n∑
i=1

ki

( ∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))2

+ 2I∗
n∑
i=1

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
.

Using Assumption 1, one can obtain that
∑n
i=1

∑
j∈Ni

aij(Îi(t)− Îj(t)) = 0.
Let k̄ = max{ki}, it yields

n∑
i=1

ki

( ∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))2

6 k̄
(
LÎ(t)

)T(
LÎ(t)

)
= k̄ÎT(t)LTLÎ(t) 6 k̄λnÎ

T(t)LÎ(t),

where λn = max{λi(L)}.
Therefore, we have

V (t+ 1)− V (t) 6 −2IT(t)LÎ(t) + k̄λnÎ
TLÎ

= −2
(
Î(t)− e(t)

)T
LÎ(T ) + k̄λnÎ

TLÎ

= −2ÎT(t)LÎ(t) + 2eT(t)LÎ(t) + k̄λnÎ
TLÎ. (10)
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Furthermore, for a > 0, one has

eT(t)LÎ(t) 6
1

2a
ÎT(t)LÎ(t) +

a

2
eT(t)Le(t). (11)

Combining to (10) and (11) yields

V (t+ 1)− V (t) 6 −2ÎT(t)LÎ(t) +
1

a
ÎT(t)LÎ(t) + aeT(t)Le(t) + k̄λnÎ

TLÎ

=

(
−2 +

1

a
+ k̄λn

)
ÎT(t)LÎ(t) + aeT(t)Le(t)

6

(
−2 +

1

a
+ k̄λn

)
ÎT(t)LÎ(t) + aλne

T(t)e(t).

Based on triggering condition (6), we have

V (t+ 1)− V (t) 6

(
−2 +

1

a
+ k̄λn

)
ÎT(t)LÎ(t) + aMλnr̄w

T(t)w(t). (12)

Since wi(t) =
∑
j∈Ni

aij(Îi(t)− Îj(t)) =
∑n
j=1 lij Îj(t), it follows that w(t) = LÎ(t).

Hence, we have

wT(t)w(t) = ÎT(t)LTLÎ(t). (13)

Substituting (12) into (13), one has

V (t+ 1)− V (t) 6

(
−2 +

1

a
+ k̄λn + aMr̄λ2n

)
ÎT(t)LÎ(t).

Choosing a = 1 and using condition (7), one can get V (t + 1) − V (t) 6 0. In
combination with V (t) > 0, one can conclude that V (t) → 0 as t → ∞. That means
limt→∞ Ii(t) = I′ for i = 1, 2, . . . , n in which I′ is an unknown constant.

When Ii(t) = I′, it follows that

n∑
i=1

1

ki
Ii(t+ 1) =

n∑
i=1

1

ki

(
Ii(t)− ki

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

))

=

n∑
i=1

1

ki
Ii(t)−

n∑
i=1

∑
j∈Ni

aij
(
Îi(t)− Îj(t)

)
=

n∑
i=1

1

ki
Ii(t).

It indicates that
∑n
i=1 Ii(t)/k1 a is constant, thus

n∑
i=1

1

ki
Ii(t) =

n∑
i=1

1

ki
Ii(0). (14)
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Based on the above analysis, one has

lim
t→∞

n∑
i=1

1

ki
Ii(t) = I′

(
n∑
i=1

1

ki

)
=

n∑
i=1

1

ki
Ii(0).

Therefore, we further obtain

lim
t→∞

Ii(t) = I′ = I∗ =

∑n
i=1

1
ki
Ii(0)∑n

i=1
1
ki

. (15)

The proof is completed.

Remark 3. Based on Theorem 1, it is found that when the corresponding parameters
satisfy certain conditions, the intermediate variable will achieve consensus and converge
to an expression related to the initial variable. We can adjust the initial value so that
the state variable eventually converges to a certain expected value. In addition, a type of
event-triggered control protocol with dynamic triggering mechanism is proposed in which
a minimum function q̂i(t) is skillfully used so that the frequency of event trigger can be
dynamically adjusted.

Remark 4. In existing works [29] and [1], the reliable memory and nonfragility were con-
sidered in the sampled-data control, and some feasible event-triggered control protocols
were proposed to achieve consensus of MASs. In [2], an observer-based control strategy
under directed graphs was proposed. Inspired by the above references, we will consider
nonfragility and directed network topology in the design of event-triggered optimization
control protocols in the future.

Theorem 2. Assuming that all conditions of Theorem 1 are satisfied and ki = 2αi/ψ
2
i in

the event-triggered control protocol (5), the optimal solution of constrained DOP (1) can
be obtained under the MAS (4).

Proof. Based on (4) and (15), we have

lim
t→∞

Ii(t) =

∑n
i=1

1
ki

( 2αixi(0)+βi

ψi
)∑n

i=1
1
ki

.

Let ki = 2αi/ψ
2
i , one has

lim
t→∞

Ii(t) =

∑n
i=1 ψixi(0) +

∑n
i=1

ψiβi

2αi∑n
i=1

ψ2
i

2αi

.

Due to
∑n
i=1 ψixi(0) = XD, one obtains

lim
t→∞

Ii(t) =
XD +

∑n
i=1

ψiβi

2αi∑n
i=1

ψ2
i

2αi

= η∗. (16)
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Furthermore, it yields

XD = η∗
n∑
i=1

ψ2
i

2αi
−

n∑
i=1

ψiβi
2αi

=

n∑
i=1

ψ2
i η
∗ − ψiβi
2αi

= lim
t→∞

n∑
i=1

ψixi(t).

Based on (14), one has
n∑
i=1

1

ki
Ii(t) =

n∑
i=1

1

ki

2αixi(t) + βi
ψi

=

n∑
i=1

1

ki

2αixi(0) + βi
ψi

∗

=

n∑
i=1

1

ki
Ii(0).

Thus
∑n
i=1 ψixi(t) =

∑n
i=1 ψixi(0) for t > 0. Furthermore, we have

∑n
i=1 ψixi(t) =

XD for t > 0. According to (4) and (16), one can get

x∗i =
η∗ψi − βi

2αi
=

1

2αi

(
ψi(XD +

∑n
i=1

ψiβi

2αi
)∑n

i=1
ψ2

i

2αi

− βi
)
.

The proof is completed.

In the DOP (1), when ψi = 1 for i = 1, 2, . . . , n, then it can degrade into

min f(x) =

n∑
i=1

fi(xi) s.t.
n∑
i=1

xi = XD. (17)

Corollary 1. For the MAS (4) with event-triggered control protocol (5)–(6), if Assump-
tion 1 holds and the control parameters satisfy the following condition

k̄λn + r̄Mλ2n < 1,

where k̄ = max{ki}, r̄ = max{ri}, λn = max{λi(L)}, then all variables Ii(t) (i =
1, 2, . . . , n) converge to the same value

∑n
i=1(Ii(0)/ki)

∑n
i=1(1/ki).

Corollary 2. Assuming that all conditions of Corollary 1 are satisfied and ki = 2αi in
the event-triggered control protocol (5), the constrained DOP (17) can be solved under
the MAS (4). Furthermore, the optimal solution is

x∗i =
1

2αi

(
XD +

∑n
i=1

βi

2αi∑n
i=1

1
2αi
− βi

)
.

Remark 5. In this paper, we propose an event-triggered control protocol to solve the
DOP of MASs. The optimal solution can only be asymptotically reachable. How to design
control protocols with fast convergence rates is a challenging problem. In [9, 39], some
fixed-time and prescribed-time control protocols were proposed to achieve consensus or
synchronization of complex networks. These works provide us with valuable inspiration,
and we will attempt to develop fixed-time or prescribed-time optimization protocols to
solve constrained DOPs in the future work.
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4 Simulation example

In this section, a numerical example is given to demonstrate the effectiveness of the
proposed algorithm and the feasibility of theoretical analysis.

Consider the DOP (1) with n = 6 in which ψ1 = 0.5, ψ2 = 0.6, ψ3 = 0.8, ψ4 = 0.4,
ψ5 = 0.7, ψ6 = 0.6, and XD = 1.06. In the local objective function fi(xi) = αix

2
i +

βixi + ϕi, the corresponding coefficients are α1 = 0.05, α2 = 0.036, α1 = 0.096,
α4 = 0.04, α5 = 0.1225, α6 = 0.054, β1 = 0.05, β2 = 0.02, β3 = 0.04, β4 = 0.06,
β5 = 0.3, β6 = 0.08, ϕ1 = 0.02, ϕ2 = 0.03, ϕ3 = 0.05, ϕ4 = 0.09, ϕ5 = 0.1, and
ϕ6 = 0.05.

In the MAS (4), the communication topology G is described by Fig. 1 in which all
weights are 0.1. It can be verified that Assumption 1 holds. In the control protocol (5)
with event-triggering condition (6), we choose k1 = 0.4, k2 = 0.2, k3 = 0.4, k4 = 0.5,
k5 = 0.5,k6 = 0.4, M = 3, r1 = 0.1, r2 = 0.2, r3 = 0.5, r4 = 0.4, r5 = 0.3, and
r6 = 0.6.

By calculation, one can find that all conditions of Theorems 1 and 2 are satisfied.
We choose I1(0) = 16, I2(0) = 10, I3(0) = 8, I4(0) = 15, I5(0) = 18, and
I6(0) = 12. According to (4) and (5), the trajectories of Ii(t) and control inputs ui(t) for
i = 1, 2, . . . , 6 are shown in Figs. 2 and 3, respectively. It can be seen that all intermediate
variables Ii(t) ultimately achieve consensus, and the distributed control inputs ui(t)
gradually approach zero.

Under the proposed protocol (5), the event-triggering instants for each agent are
presented in Fig. 4. Through observation and analysis, it is concluded that our proposed
event-triggered control protocol can indeed reduce the communication between agents
and the update frequency of the controller. The evolution trajectories of xi(t) are shown
in Fig. 5. The evolution trajectories of weighted equality constraint

∑6
i=1 ψixi(t) =

XD and global objective function f(x) are shown in Figs. 6 and 7, respectively. It is
found that the weighted equality constraint is always satisfied in the control process, and
the global objective function f(x) converges to optimal value is 0.6056. Therefore, our
proposed distributed event-triggered control protocol (5) for the discrete-time MASs (4)
can effectively solve the weighted equality constrained DOP (1).

Figure 1. Communication topology G.
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Figure 2. The evolution trajectories of Ii(t), i =
1, 2, . . . , 6.

Figure 3. The evolution trajectories of control
inputs ui(t).

Figure 4. Event-triggering instants of all agents. Figure 5. The evolution trajectories xi(t), i =
1, 2, . . . , 6.

Figure 6. Evolutions of equality constraint∑6
i=1 ψixi(t) = XD .

Figure 7. The evolution trajectory of f(x).

5 Conclusion

This paper considered the weighted equality constrained DOP in discrete-time MASs.
Firstly, the constrained DOP was transformed into a consensus problem by applying
Lagrange multiplier method. The optimal solution of the constrained DOP can be ob-
tained when all intermediate variables achieved consensus. Secondly, an distributed event-
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triggered control protocol was proposed, which only depends on states of the agent and its
neighbors on the event triggering instants. Thirdly, by using Lyapunov function method
and inequality techniques, some sufficient conditions for achieving consensus and solving
the constrained DOP were obtained. Finally, a numerical simulation example was given
to verify the effectiveness of the proposed protocol. In our future work, we will further
improve the proposed control protocol from the perspective of the nonfragility of the
sampled-data control and convergence rate, and consider more general constraint DOPs.
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