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Abstract. In this paper, we study a Hadamard-type fractional-order three-point boundary value
problem on the half-line. Under some growth conditions concerning the spectral radius of the
relevant linear operator, the existence and multiplicity of positive solutions is obtained using a fixed-
point method. Our results improve and generalize some results in the literature.
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1 Introduction

In this paper, we study the existence and multiplicity of positive solutions for the Hadamard-
type fractional-order three-point boundary value problem on the half-line

Dσ
1+z(t) = −θ(t)f

(
t, z(t)

)
, t ∈ (1,+∞),

z(1) = δz(1) = 0, Dσ−1
1+ z(+∞) = bx(ξ),

(1)

where Dσ
1+ is the Hadamard fractional derivative of order σ ∈ (2, 3), δ = t(d/dt), and b,

ξ, θ, f satisfy the following conditions.
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(H0) b ∈ [0,+∞), ξ ∈ (1,+∞) are constants with b(ln ξ)σ−1 ∈ [0,Γ(σ));
(H1) f : [1,+∞)× R+ → R+ is continuous;
(H2) θ(t) : [1,+∞)→ R+ does not identically vanish on any subinterval of [1,+∞)

and

0 <

+∞∫
1

θ(s)
ds

s
< +∞.

Fractional-order calculus is a classical research field, which provides a more appro-
priate description of some natural phenomena. For example, in [1], the authors studied
a cancer treatment model given by the Hadamard-type fractional derivative

HDrρ(t) = α1ρ

(
1− ρ

S1

)
− β1ρα− εD(t)ρ,

HDrα(t) = α2α

(
1− α

S2

)
− β2ρα−D(t)α,

ρ(0) = ρ0, α(0) = α0,

where ρ(t) represent the concentration of healthy cells, α(t) is the concentration of cancer
cells, and D(t) is the strategy of the radiotherapy.

Recently, fractional-order nonlinear differential equations on an unbounded domain
have become an interesting area of research; see, for example, [3–8, 10–13, 16–21, 24–
29] and the references therein. In [7] the authors studied the Hadamard-type fractional
boundary value problem on the half-line

Dϑ
1+u(t) + p(t)f

(
t, u(t), Dϑ−1

1+ u(t)
)

= 0, n− 1 < ϑ 6 n, t ∈ (1,+∞),

u(k)(1) = 0, 0 6 k 6 n− 2,

Dϑ−1
1+ u(+∞) =

+∞∫
1

g(t)u(t)
dt

t
+

m∑
i=1

λiI
βi
1+u(ς),

and they obtained some multiplicity results for positive solutions via the Bai–Ge fixed
point theorem. In [24] the authors used some fixed point theorems of a sum operator in
partially ordered Banach spaces to study the local existence and uniqueness of positive
solutions for the Hadamard-type fractional differential equation on the half-line

Dα
1+z(t) + a(t)f

(
t, z(t)

)
+ b(t)g

(
t, z(t)

)
= 0, t ∈ (1,+∞),

z(1) = z′(1) = 0, Dα−1
1+ z(+∞) =

m∑
i=1

αiI
βi
1+z(η) + c

n∑
j=1

σjz(ξj).

The spectral theory of linear operators can be used to study differential equations;
see [2, 15, 22, 23, 30]. In [30] the authors studied positive solutions for the fractional
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integral boundary value problem

Dα
0+z(t) + h(t)f

(
t, z(t)

)
= 0, 0 < t < 1,

z(0) = z′(0) = z′′(0) = 0, z(1) = λ

η∫
0

z(s) ds,

where f ∈ C([0, 1]×R+,R+) satisfies some superlinear and sublinear growth conditions
regarding the spectral radius of the linear operator

(LZz)(t) =

1∫
0

GZ(t, s)h(s)z(s) ds,

and GZ is the Green’s function.
To the authors’ knowledge, due to the noncompactness of an infinite interval, there

are very few research results on Hadamard-type fractional boundary value problems on
the half-line, and even fewer results apply spectral theory methods. Motivated by the
aforementioned works, in this paper, we study the existence and multiplicity of positive
solutions for the Hadamard-type fractional equations (1) on the half-line. We first study
a relevant linear operator and obtain its spectral radius, then we obtain the existence and
multiplicity of positive solutions under some growth conditions regarding the spectral
radius; see (H3)–(H6) is Section 3.

2 Preliminaries

In this section, we only recall the definition of the Hadamard-type fractional derivative;
for more details about the Hadamard-type fractional calculus theory, we refer the reader
to [3, 7, 19, 24, 26, 27, 29].

Definition 1. The σ-order Hadamard-type fractional derivative of a function z :
[1,+∞)→ R is

Dσ
1+z(t) =

1

Γ(n− σ)

(
t

d

dt

)n t∫
1

(
ln
t

s

)n−σ−1

z(s)
ds

s
, σ > 0, t > 1,

where n = [σ] + 1, [σ] is the integer part of σ.

In what follows, we calculate the Green’s function associated with (1). For complete-
ness, we provide the proof of the following lemma.

Lemma 1. (See [27]). Let y : [1,+∞) → R+ with
∫ +∞

1
y(s) (ds/s) < +∞. Then the

boundary value problem

Dσ
1+z(t) = −y(t), t ∈ (1,+∞),

z(1) = δz(1) = 0, Dσ−1
1+ z(+∞) = bz(ξ)
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has a solution, which can be expressed as

z(t) =

+∞∫
1

G(t, s)y(s)
ds

s
,

where

G(t, s) = g(t, s) +
b(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1
g(ξ, s), t, s ∈ [1,+∞),

g(t, s) =
1

Γ(σ)

{
(ln t)σ−1 − (ln t− ln s)σ−1, 1 6 s 6 t < +∞,
(ln t)σ−1, 1 6 t 6 s < +∞.

Proof. From [27, Lemma 3.1] we have

z(t) = c1(ln t)σ−1 + c2(ln t)σ−2 + c3(ln t)σ−3

− 1

Γ(σ)

t∫
1

(ln t− ln s)σ−1y(s)
ds

s
,

where ci ∈ R, i = 1, 2, 3. From z(1) = δz(1) = 0 we find c2 = c3 = 0. Therefore,

z(t) = c1(ln t)σ−1 − 1

Γ(σ)

t∫
1

(ln t− ln s)σ−1y(s)
ds

s
,

Dσ−1
1+ z(t) = c1Γ(σ)−

t∫
1

y(s)
ds

s
.

Using Dσ−1
1+ z(+∞) = bx(ξ), we have

c1Γ(σ)−
+∞∫
1

y(s)
ds

s
= c1b(ln ξ)

σ−1 − b

Γ(σ)

ξ∫
1

(ln ξ − ln s)σ−1y(s)
ds

s
,

and from (H0) we find

c1 =
1

Γ(σ)− b(ln ξ)σ−1

+∞∫
1

y(s)
ds

s

− b

Γ(σ)[Γ(σ)− b(ln ξ)σ−1]

ξ∫
1

(ln ξ − ln s)σ−1y(s)
ds

s
.
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Consequently, we obtain

z(t) =
(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1

+∞∫
1

y(s)
ds

s

− b(ln t)σ−1

Γ(σ)[Γ(σ)− b(ln ξ)σ−1]

ξ∫
1

(ln ξ − ln s)σ−1y(s)
ds

s

− 1

Γ(σ)

t∫
1

(ln t− ln s)σ−1y(s)
ds

s

=
(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1

+∞∫
1

y(s)
ds

s

− b(ln t)σ−1

Γ(σ)[Γ(σ)− b(ln ξ)σ−1]

ξ∫
1

(ln ξ − ln s)σ−1y(s)
ds

s

− 1

Γ(σ)

t∫
1

(ln t− ln s)σ−1y(s)
ds

s
+

1

Γ(σ)

+∞∫
1

(ln t)σ−1y(s)
ds

s

− 1

Γ(σ)

+∞∫
1

(ln t)σ−1y(s)
ds

s

=

+∞∫
1

g(t, s)y(s)
ds

s
+

b(ln t)σ−1

Γ(σ)[Γ(σ)− b(ln ξ)σ−1]

×

[ +∞∫
1

(ln ξ)σ−1y(s)
ds

s
−

ξ∫
1

(ln ξ − ln s)σ−1y(s)
ds

s

]

=

+∞∫
1

g(t, s)y(s)
ds

s
+

b(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1

+∞∫
1

g(ξ, s)y(s)
ds

s

=

+∞∫
1

G(t, s)y(s)
ds

s
.

This completes the proof.

Lemma 2. (See [27]). The functions G and g have the following properties:

(i) G, g(t, s) is nonnegative and continuous for (t, s) ∈ [1,+∞)× [1,+∞);
(ii) g(t, s) is increasing with respect to t;
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(iii) For fixed k > 1, g(t, s) satisfies

min
t∈[e1/k,ek]

g(t, s)

1 + (ln t)σ−1
>

1

4k2(1 + kσ−1)
sup

t∈[1,+∞)

g(t, s)

1 + (ln t)σ−1
.

Let E = C([1,+∞),R), and let

Z =

{
z ∈ E: sup

t∈[1,+∞)

|z(t)|
1 + (ln t)σ−1

< +∞
}

equipped with the norm

‖z‖Z = sup
t∈[1,+∞)

|z(t)|
1 + (ln t)σ−1

.

Note that (Z, ‖·‖Z) is a Banach space. In what follows, we use ‖·‖ to replace ‖·‖Z . Let

P =
{
z ∈ Z: z(t) > 0, t ∈ [1,+∞)

}
.

Then P is a cone on Z. For convenience, let Bρ = {z ∈ Z: ‖z‖ < ρ} for ρ > 0, and
note that Bρ is an open ball.

From Lemma 1 we define an operator A as

(Az)(t) =

+∞∫
1

G(t, s)θ(s)f
(
s, z(s)

)ds

s
, z ∈ Z, t ∈ [1,+∞).

Note thatG is nonnegative and continuous on [1,+∞)×[1,+∞), and from (H0)–(H2) we
obtain thatA is a map from P to P , and if there exists z∗∗ ∈ P \{0} such thatAz∗∗ = z∗∗,
then this z∗∗ is a positive solution of (1). Define a linear operator L : P → P as

(Lz)(t) =

+∞∫
1

G(t, s)θ(s)
z(s)

1 + (ln s)σ−1

ds

s
, z ∈ P, t ∈ [1,+∞).

Now, we prove that its spectral radius, denoted by r(L), is positive.

Lemma 3. r(L) > 0.

Proof. We first estimate the norm of Ln = L(Ln−1), n = 1, 2, . . . , L0 = I . Choose
z0(t) = 1 + (ln t)σ−1, t ∈ [1,+∞) and then ‖z0‖ = 1. Consequently, we have

‖L‖ = sup
‖z‖=1

‖Lz‖ > ‖Lz0‖ = sup
t∈[1,+∞)

(Lz0)(t)

1 + (ln t)σ−1

>
b

Γ(σ)− b(ln ξ)σ−1
sup

t∈[1,+∞)

(ln t)σ−1

1 + (ln t)σ−1

+∞∫
1

g(ξ, s)θ(s)
z0(s)

1 + (ln s)σ−1

ds

s

=
b

Γ(σ)− b(ln ξ)σ−1

+∞∫
1

g(ξ, s)θ(s)
ds

s
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and

‖L2‖ = sup
‖z‖=1

‖L2z‖ > ‖L2z0‖ = sup
t∈[1,+∞)

(L2z0)(t)

1 + (ln t)σ−1

= sup
t∈[1,+∞)

1

1 + (ln t)σ−1

+∞∫
1

+∞∫
1

G(t, s)θ(s)

1 + (ln s)σ−1

G(s, τ)θ(τ)

1 + (ln τ)σ−1
z0(τ)

dτ

τ

ds

s

>

[
b

Γ(σ)− b(ln ξ)σ−1

]2

sup
t∈[1,+∞)

(ln t)σ−1

1 + (ln t)σ−1

×
+∞∫
1

+∞∫
1

(ln s)σ−1g(ξ, s)θ(s)

1 + (ln s)σ−1
g(ξ, τ)θ(τ)

dτ

τ

ds

s

=

[
b

Γ(σ)− b(ln ξ)σ−1

]2
+∞∫
1

(ln s)σ−1g(ξ, s)θ(s)

1 + (ln s)σ−1

ds

s

+∞∫
1

g(ξ, τ)θ(τ)
dτ

τ
.

By the method of mathematical induction we obtain

‖Ln‖ >
[

b

Γ(σ)− b(ln ξ)σ−1

]n[ +∞∫
1

(ln s)σ−1g(ξ, s)θ(s)

1 + (ln s)σ−1

ds

s

]n−1 +∞∫
1

g(ξ, τ)θ(τ)
dτ

τ
.

Therefore, Gelfand’s theorem implies that

r(L) = lim inf
n→+∞

n
√
‖Ln‖ > b

Γ(σ)− b(ln ξ)σ−1

+∞∫
1

(ln s)σ−1g(ξ, s)θ(s)

1 + (ln s)σ−1

ds

s
> 0.

This completes the proof.

From Lemma 3 and the Krein–Rutman theorem [14] we have that L has an eigenfunc-
tion ϕ ∈ P \ {0} corresponding to its first eigenvalue λ1 = (r(L))−1, i.e.,

ϕ = λ1Lϕ. (2)

Lemma 4. (See [9]). Suppose that Ω ⊂ E is a bounded open set and A : Ω ∩ P → P
is a continuous and completely continuous (compact) operator. If there exists z0 ∈
P \ {0} such that z − Az 6= λz0 for all λ > 0, z ∈ ∂Ω ∩ P , then the fixed point index
i(A, Ω ∩ P, P ) = 0.

Lemma 5. (See [9]). Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose that
A : Ω ∩ P → P is a continuous and completely continuous operator. If z 6= λAz for all
z ∈ ∂Ω ∩ P , 0 6 λ 6 1, then the fixed point index i(A, Ω ∩ P, P ) = 1.
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3 Main results

Now, we state our main theorems and give their proofs.

Theorem 1. Suppose that (H0)–(H2) and the following conditions hold:

(H3) lim infz→0+ f(t, z)/(z/(1 + (ln t)σ−1)) > λ1 uniformly on t ∈ [1,+∞);
(H4) lim supz→+∞ f(t, z)/(z/(1 + (ln t)σ−1)) < λ1 uniformly on t ∈ [1,+∞).

Then (1) has at least one positive solution.

Proof. From (H3) there is a r1 > 0 such that

f(t, z) > λ1
z

1 + (ln t)σ−1
, z ∈ [0, r1], t ∈ [1,+∞). (3)

For each z ∈ ∂Br1 ∩ P , by (3) we have

(Az)(t) >

+∞∫
1

G(t, s)θ(s)λ1
z(s)

1 + (ln s)σ−1

ds

s
:= (L1z)(t), t ∈ [1,+∞).

Note that r(L1) = 1, and from (2) there exists z∗ ∈ P \ {0} such that

L1z
∗ = r(L1)z∗ = z∗. (4)

Now, we shall prove that

z −Az 6= µz∗, z ∈ ∂Br1 ∩ P, µ > 0. (5)

Suppose the contrary. Then there exist z0 ∈ ∂Br1 ∩ P , µ0 > 0 such that

z0 −Az0 = µ0z
∗.

We only need to consider µ0 > 0. (Note, µ0 = 0 implies that z0 = Az0, i.e., z0 is
a positive fixed point of A, and thus this z0 is also a positive solution for (1)). Let

µ∗ = sup{µ: z0 > µz∗}.

Then µ∗ > µ0 > 0, z0 > µ∗z∗, and from (4) we have

z0 = Az0 + µ0z
∗ > L1z0 + µ0z

∗ > L1µ
∗z∗ + µ0z

∗ = µ∗z∗ + µ0z
∗.

This contradicts the definition of µ∗. Therefore, (5) holds, and Lemma 4 implies that

i(A, Br1 ∩ P, P ) = 0. (6)

From (H4) there exist ε1 ∈ (0, λ1) and c1 > 0 such that

f(t, z) 6 (λ1 − ε1)
z

1 + (ln t)σ−1
+ c1, z > 0, t ∈ [1,+∞).
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Then we have

(Az)(t) 6

+∞∫
1

G(t, s)θ(s)

[
(λ1 − ε1)

z(s)

1 + (ln s)σ−1
+ c1

]
ds

s

= (λ1 − ε1)(Lz)(t) + c1

+∞∫
1

G(t, s)θ(s)
ds

s
.

Let

(L2z)(t) = (λ1 − ε1)(Lz)(t) and z(t) = c1

+∞∫
1

G(t, s)θ(s)
ds

s
.

Then r(L2) = 1− ε1/λ1 < 1, which implies that (I − L2)−1 exists and

(I − L2)−1 = I + L2 + L2
2 + · · ·+ Ln2 + · · · .

Keeping in mind the definition of our norm, from (H2) we have

‖z‖ = sup
t∈[1,+∞)

z(t)

1 + (ln t)σ−1

6 sup
t∈[1,+∞)

(ln t)σ−1

1 + (ln t)σ−1
c1

+∞∫
1

[
1

Γ(σ)
+

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)

]
θ(s)

ds

s

= c1

+∞∫
1

[
1

Γ(σ)
+

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)

]
θ(s)

ds

s
< +∞.

Define a set

S = {z ∈ P : Az = µz, µ > 1}.

Now, we claim that S is bounded in P . Indeed, if z ∈ S, we have

z(t) 6 (Az)(t) 6 (L2z)(t) + z(t), t ∈ [1,+∞).

This implies that (I − L2)z 6 z. Note that (I − L2)−1 : P → P , and hence we have

‖z‖ 6
∥∥(I − L2)−1z

∥∥.
As a result, S is bounded as required. Now, we can choose R1 > supS and R1 > r1

such that
Az 6= µz, z ∈ ∂BR1

∩ P, µ > 1.

Therefore, Lemma 5 implies that

i(A, BR1 ∩ P, P ) = 1. (7)
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Combining (6) and (7), we have

i
(
A, (BR1 \Br1) ∩ P, P

)
= i(A, BR1 ∩ P, P )− i(A, Br1 ∩ P, P )

= 1− 0 = 1.

Then A has a fixed point in (BR1 \ Br1) ∩ P , i.e., (1) has at least one positive solution.
This completes the proof.

Theorem 2. Suppose that (H0)–(H2) and the following conditions hold:

(H5) lim infz→+∞ f(t, z)(z/(1 + (ln t)σ−1)) > λ1 uniformly on t ∈ [1,+∞);
(H6) lim supz→0+ f(t, z)(z/(1 + (ln t)σ−1)) < λ1, uniformly on t ∈ [1,+∞).

Then (1) has at least one positive solution.

Proof. From (H5) there exist ε2, c2 > 0 such that

f(t, z) > (λ1 + ε2)
z

1 + (ln t)σ−1
− c2, z > 0, t ∈ [1,+∞). (8)

Next, we shall prove that there is a sufficiently large

R2 >
c2
∫ +∞

1
[ 1
Γ(σ) + b

Γ(σ)−b(ln ξ)σ−1 g(ξ, s)]θ(s)ds
s

bε2
4k2(1+kσ−1)[Γ(σ)−b(ln ξ)σ−1]

∫ ek

e1/k
g(ξ, s)θ(s) ds

s

, k > 1, (9)

such that
z −Az 6= µϕ, z ∈ ∂BR2

∩ P, µ > 0, (10)

where ϕ is defined by (2). Suppose the contrary. Then there exist z1 ∈ ∂BR2 ∩P , µ1 > 0
such that

z1 −Az1 = µ1ϕ. (11)

Note that for fixed k > 1, we have

min
t∈[e1/k,ek]

b(ln t)σ−1

Γ(σ)−b(ln ξ)σ−1 g(ξ, s)

1 + (ln t)σ−1

>
1

kσ−1(1 + kσ−1)

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s), s ∈ [1,+∞),

and thus we have

min
t∈[e1/k,ek]

G(t, s)

1 + (ln t)σ−1

>
1

4k2(1 + kσ−1)
sup

t∈[1,+∞)

g(t, s)

1 + (ln t)σ−1

+
1

kσ−1(1 + kσ−1)
sup

t∈[1,+∞)

(ln t)σ−1

1 + (ln t)σ−1

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)

>
1

4k2(1 + kσ−1)
sup

t∈[1,+∞)

G(t, s)

1 + (ln t)σ−1
, s ∈ [1,+∞). (12)

Nonlinear Anal. Model. Control, 30(2):176–195, 2025

https://doi.org/10.15388/namc.2025.30.38345


186 J. Xu et al.

Define a cone

P0 =

{
z ∈ P : min

t∈[e1/k,ek]

z(t)

1 + (ln t)σ−1
>

1

4k2(1 + kσ−1)
‖z‖
}
.

Now, we prove that
z1 ∈ P0. (13)

By (11) and (2) we have

(Az1)(t)

1 + (ln t)σ−1
=

+∞∫
1

G(t, s)

1 + (ln t)σ−1
θ(s)f

(
s, z1(s)

) ds

s

and

µ1ϕ(t)

1 + (ln t)σ−1
= µ1λ1

+∞∫
1

G(t, s)

1 + (ln t)σ−1
θ(s)

ϕ(s)

1 + (ln s)σ−1

ds

s
.

Using (12), we obtain

min
t∈[e1/k,ek]

(Az1)(t)

1 + (ln t)σ−1

= min
t∈[e1/k,ek]

+∞∫
1

G(t, s)

1 + (ln t)σ−1
θ(s)f(s, z1(s))

ds

s

>
1

4k2(1 + kσ−1)
sup

t∈[1,+∞)

+∞∫
1

G(t, s)

1 + (ln t)σ−1
θ(s)f

(
s, z1(s)

) ds

s

=
1

4k2(1 + kσ−1)
‖Az1‖. (14)

Similarly, we obtain

min
t∈[e1/k,ek]

µ1ϕ(t)

1 + (ln t)σ−1
>

1

4k2(1 + kσ−1)
‖µ1ϕ‖.

Therefore, we have (13), i.e.,

min
t∈[e1/k,ek]

z1(t)

1 + (ln t)σ−1
>

1

4k2(1 + kσ−1)
‖z1‖.

Note that ‖z1‖ = R2, and by (9) we have

ε2

ek∫
e1/k

b(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)θ(s)

z1(s)

1 + (ln s)σ−1

ds

s

− c2

+∞∫
1

[
(ln t)σ−1

Γ(σ)
+

b(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)

]
θ(s)

ds

s
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> (ln t)σ−1

[
ε2

ek∫
e1/k

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)θ(s)

1

4k2(1 + kσ−1)
R2

ds

s

− c2
∫ +∞

1

[
1

Γ(σ)
+

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)

]
θ(s)

ds

s

]
> 0.

Therefore, from (11) and (8) we have

(Az1)(t) >

+∞∫
1

G(t, s)θ(s)

[
(λ1 + ε2)

z1(s)

1 + (ln s)σ−1
− c2

]
ds

s

> λ1(Lz1)(t) + ε2

ek∫
e1/k

b(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)θ(s)

z1(s)

1 + (ln s)σ−1

ds

s

− c2

+∞∫
1

[
(ln t)σ−1

Γ(σ)
+

b(ln t)σ−1

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)

]
θ(s)

ds

s

> λ1(Lz1)(t), t ∈ [1,+∞). (15)

From (11) we only need to consider µ1 > 0. (Note, µ1 = 0 implies that z1 = Az1, i.e.,
z1 is a positive fixed point of A, and thus this z1 is also a positive solution for (1).) Let

µ∗∗ = sup{µ: z1 > µϕ}.

Then µ∗∗ > µ1 > 0, z1 > µ∗∗ϕ, and from (2), (11), and (15) we have

z1 = Az1 + µ1ϕ > λ1Lz1 + µ1ϕ > λ1Lµ
∗∗ϕ+ µ1ϕ = µ∗∗ϕ+ µ1ϕ.

This contradicts the definition of µ∗∗. Therefore, (10) holds, and Lemma 4 implies that

i(A, BR2
∩ P, P ) = 0. (16)

From (H6) there is a sufficiently small r2 ∈ (0, R2) such that

f(t, z) 6 λ1
z

1 + (ln t)σ−1
, z ∈ [0, r2], t ∈ [1,+∞). (17)

For each z ∈ ∂Br2 ∩ P , by (17) we have

(Az)(t) 6

+∞∫
1

G(t, s)θ(s)λ1
z(s)

1 + (ln s)σ−1

ds

s
:= (L3z)(t), t ∈ [1,+∞).

Nonlinear Anal. Model. Control, 30(2):176–195, 2025

https://doi.org/10.15388/namc.2025.30.38345


188 J. Xu et al.

From the definition of L3 and (2) we see that

r(L3) = 1. (18)
Now, we claim that

Az 6= µz, z ∈ ∂Br2 ∩ P, µ > 1. (19)

Suppose the contrary. Then there exist z2 ∈ ∂Br2 ∩ P , µ2 > 1 such that

Az2 = µ2z2.

Note, µ2 = 1 implies that z2 = Az2, i.e., z2 is a positive fixed point of A, and thus this
z2 is also a positive solution for (1). Therefore, we only consider µ2 > 1. Consequently,

z2 = µ−1
2 Az2 6 µ−1

2 L3z2. (20)

Note that L3 is a positive linear operator, and thus we obtain a sequence {µ−n2 Ln3 z2}∞n=1

such that

µ−1
2 L3z2 6 µ−1

2 L3

(
µ−1

2 L3z2

)
= µ−2

2 L2
3z2 6 · · · 6 µ−n2 Ln3 z2 6 · · · .

This, together with (20), implies that∥∥Ln3∥∥ >
‖Ln3 z2‖
‖z2‖

>
µn2‖z2‖
‖z2‖

.

Therefore, Gelfand’s theorem implies that

r(L3) = lim inf
n→+∞

n

√
‖Ln3‖ > lim inf

n→+∞
n
√
µn2 = µ2 > 1.

This contradicts (18), and (19) holds as required. Therefore, Lemma 5 implies that

i(A, Br2 ∩ P, P ) = 1. (21)

Combining (16) and (21), we have

i
(
A, (BR2 \Br2) ∩ P, P

)
= i(A, BR2 ∩ P, P )− i(A, Br2 ∩ P, P )

= 0− 1 = −1.

Then A has a fixed point in (BR2
\ Br2) ∩ P , i.e., (1) has at least one positive solution.

This completes the proof.

Theorem 3. Suppose that (H0)–(H2), (H4), (H6), and the following condition hold:
(H7) There exist Λ > 0 and

Θ >
Γ(σ)− b(ln ξ)σ−1

b
∫ ek

e1/k
g(ξ, s)θ(s)ds

s

such that f(t, z) > ΘΛ for z ∈ [Λ/(4k2(1 + kσ−1)), Λ], t ∈ [e1/k, ek], k > 1.

Then (1) has at least two positive solutions.
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Proof. We claim that

z −Az 6= µz∗∗, z ∈ ∂BΛ ∩ P, µ > 0, (22)

where z∗∗ ∈ P0 is a fixed element. If (22) is false, then there exist z3 ∈ ∂BΛ∩P , µ3 > 0
such that

z3(t) = (Az3)(t) + µ3z
∗∗(t) > (Az3)(t), t ∈ [1,+∞). (23)

Note that by (14) we also obtain Az3 ∈ P0, and thus z3 ∈ P0. Note that

z(t)

1 + (ln t)σ−1
6 Λ if z(t) 6 Λ, t ∈ [1,+∞).

Therefore, when z3 ∈ ∂BΛ ∩ P , i.e., ‖z3‖ = Λ, we have

Λ

4k2(1 + kσ−1)
6

z3(t)

1 + (ln t)σ−1
6 Λ, t ∈ [e1/k, ek], k > 1.

Consequently, we see that

‖Az3‖ = sup
t∈[1,+∞)

1

1 + (ln t)σ−1

+∞∫
1

G(t, s)θ(s)f
(
s, z3(s)

) ds

s

> sup
t∈[1,+∞)

(ln t)σ−1

1 + (ln t)σ−1

ek∫
e1/k

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)θ(s)ΘΛ

ds

s

> Λ = ‖z3‖. (24)

However, from (23) we have

‖z3‖ = sup
t∈[1,+∞)

z3(t)

1 + (ln t)σ−1
> sup
t∈[1,+∞)

(Az3)(t)

1 + (ln t)σ−1
= ‖Az3‖,

and this contradicts (24). Then (22) holds, and Lemma 4 implies that

i(A, BΛ ∩ P, P ) = 0. (25)

Note that we can choose Λ such that R1 > Λ > r2, and then (H4) and (H6) imply that
(7), (21) are still satisfied. Consequently, by (25) we have

i
(
A, (BΛ \Br2) ∩ P, P

)
= i(A, BΛ ∩ P, P )− i(A, Br2 ∩ P, P )

= 0− 1 = −1
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and
i
(
A, (BR1

\BΛ) ∩ P, P
)

= i(A, BR1
∩ P, P )− i(A, BΛ ∩ P, P

)
= 1− 0 = 1.

Therefore, A has a fixed point in (BΛ \Br2)∩P and (BR1 \BΛ)∩P , respectively. Thus
(1) has at least two positive solutions. This completes the proof.

Theorem 4. Suppose that (H0)–(H3), (H5), and the following condition hold:

(H8) There exist Λ > 0 and

Θ̃ ∈
(

0,
1∫ +∞

1
[ 1
Γ(σ) + b

Γ(σ)−b(ln ξ)σ−1 g(ξ, s)]θ(s) ds
s

)

such that f(t, z) 6 Θ̃Λ for z ∈ [0, Λ], t ∈ [1,+∞).

Then (1) has at least two positive solutions.

Proof. From (H8) we obtain

z(t)

1 + (ln t)σ−1
∈ [0, Λ] if z(t) ∈ [0, Λ], t ∈ [1,+∞).

Note that when z ∈ ∂BΛ ∩ P , we see that

‖Az‖ = sup
t∈[1,+∞)

1

1 + (ln t)σ−1

+∞∫
1

G(t, s)θ(s)f(s, z(s))
ds

s

6 sup
t∈[1,+∞)

(ln t)σ−1

1 + (ln t)σ−1

+∞∫
1

[
1

Γ(σ)
+

b

Γ(σ)− b(ln ξ)σ−1
g(ξ, s)

]
θ(s)Θ̃Λ

ds

s

< Λ = ‖z‖. (26)

This implies that

Az 6= µz, z ∈ ∂BΛ ∩ P, µ > 1. (27)

If (27) is false, then there exist z4 ∈ ∂BΛ ∩ P , µ4 > 1 such that

(Az4)(t) = µ4z4(t) > z4(t), t ∈ [1,+∞).

Hence, we obtain

‖Az4‖ = sup
t∈[1,+∞)

(Az4)(t)

1 + (ln t)σ−1
> sup
t∈[1,+∞)

z4(t)

1 + (ln t)σ−1
= ‖z4‖,
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and this contradicts (26). Then (27) holds, and Lemma 5 implies that

i(A, BΛ ∩ P, P ) = 1. (28)

Note that we can choose Λ such that R2 > Λ > r1, and then (H3) and (H5) imply that
(6), (16) are still satisfied. Consequently, by (28) we have

i
(
A, (BΛ \Br1) ∩ P, P

)
= i(A, BΛ ∩ P, P )− i(A, Br1 ∩ P, P )

= 1− 0 = 1

and
i
(
A, (BR2 \BΛ) ∩ P, P

)
= i(A, BR2 ∩ P, P )− i(A, BΛ ∩ P, P )

= 0− 1 = −1.

Therefore, A has a fixed point in (BΛ \Br1)∩P and (BR2
\BΛ)∩P , respectively. Thus

(1) has at least two positive solutions. This completes the proof.

Now, we provide some examples to verify our main results. Let σ = 2.5, b = 1,
ξ = e, θ(t) = 1/(1 + ln2 t), t ∈ [1,+∞). Then b(ln ξ)σ−1 = 1 < Γ(σ) = 1.33,∫ +∞

1
θ(t) (dt/t) = π/2, and thus (H0), (H2) hold.

Example 1. Let f(t, z) =
√
z/(1 + (ln t)σ−1), z > 0, t ∈ [1,+∞). Then

lim inf
z→0+

f(t, z)
z

1+(ln t)σ−1

= lim inf
z→0+

√
z

1+(ln t)σ−1

z
1+(ln t)σ−1

= +∞ > λ1

and

lim sup
z→+∞

f(t, z)
z

1+(ln t)σ−1

= lim sup
z→+∞

√
z

1+(ln t)σ−1

z
1+(ln t)σ−1

= 0 < λ1

uniformly on t ∈ [1,+∞). Therefore, (H1), (H3)–(H4) hold, and by Theorem 1, (1) has
at least one positive solution.

Example 2. Let f(t, z) = z2/(1 + (ln t)σ−1), z > 0, t ∈ [1,+∞). Then

lim inf
z→+∞

f(t, z)
z

1+(ln t)σ−1

= lim inf
z→+∞

z2

1+(ln t)σ−1

z
1+(ln t)σ−1

= +∞ > λ1

and

lim sup
z→0+

f(t, z)
z

1+(ln t)σ−1

= lim sup
z→0+

z2

1+(ln t)σ−1

z
1+(ln t)σ−1

= 0 < λ1

uniformly on t ∈ [1,+∞). Therefore, (H1), (H5)–(H6) hold, and by Theorem 2, (1) has
at least one positive solution.
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Example 3. Let k = 2, Λ = 1 + 2
√

2 and note
∫ ek

e1/k
g(ξ, s)θ(s) (ds/s) = 27.69. Now,

let

f(t, z) =


162Λz2, z ∈ [0, 1/16], t ∈ [1,+∞),

Λ, z ∈ [1/16, 1 + 2
√

2], t ∈ [1,+∞),
√
Λz, z ∈ [1 + 2

√
2,+∞), t ∈ [1,+∞).

Then

lim sup
z→+∞

f(t, z)
z

1+(ln t)σ−1

= lim sup
z→+∞

√
Λz
z

1+(ln t)σ−1

= 0 < λ1

and

lim sup
z→0+

f(t, z)
z

1+(ln t)σ−1

= lim sup
z→0+

162Λz2

z
1+(ln t)σ−1

= 0 < λ1

uniformly on t ∈ [1,+∞). Moreover, if z ∈ [Λ/(4k2(1 + kσ−1)), Λ], t ∈ [e1/k, ek], we
have

f(t, z) = Λ > ΘΛ if 1 > Θ >
Γ(σ)− b(ln ξ)σ−1

b
∫ ek

e1/k
g(ξ, s)θ(s) ds

s

= 0.012.

Therefore, (H1), (H4), and (H6)–(H7) hold, and Theorem 3 implies that (1) has at least
two positive solutions.

Example 4. Let Λ = 100 and

f(t, z) =

{
2.5
√
z, z ∈ [0, 100], t ∈ [1,+∞),

z2

400 , z ∈ [100,+∞), t ∈ [1,+∞).

Then

lim inf
z→0+

f(t, z)
z

1+(ln t)σ−1

= lim inf
z→0+

2.5
√
z

z
1+(ln t)σ−1

= +∞ > λ1

and

lim inf
z→+∞

f(t, z)
z

1+(ln t)σ−1

= lim inf
z→+∞

z2

400
z

1+(ln t)σ−1

= +∞ > λ1

uniformly on t ∈ [1,+∞). Moreover, if z ∈ [0, Λ], t ∈ [1,+∞), we have

f(t, z) 6 25 6 Θ̃Λ if Θ̃ ∈ [0.25, 0.254) ⊂ (0, 0.254),

1∫ +∞
1

[ 1
Γ(σ) + b

Γ(σ)−b(ln ξ)σ−1 g(ξ, s)]θ(s) ds
s

= 0.254.

Therefore, (H1), (H3), (H5), and (H8) hold, and Theorem 4 implies that (1) has at least
two positive solutions.
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