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Studentų str. 50, LT-51368 Kaunas, Lithuania
kristina.pupalaige@ktu.lt

Received: August 12, 2024 / Revised: December 20, 2024 / Published online: January 9, 2025

Abstract. In this paper, we construct and analyze the finite-difference method for a two-dimensional
nonlinear parabolic equation with nonlocal boundary condition. The main objective of this paper
is to investigate the stability and convergence of the difference scheme in the maximum norm. We
provide some approaches for estimating the error of the solution. In our approach, the assumption of
the validity of the maximum principle is not required. The assumption is changed to a weaker one:
the difference problem’s matrix is the M-matrix. We present numerical experiments to illustrate and
supplement theoretical results.
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1 Introduction and problem statement

We consider the finite-difference method for the following initial boundary value problem
for the nonlinear two-dimensional parabolic equation:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− f(u) + p(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ], (1)

where Ω = (0, 1)× (0, 1), with boundary and initial conditions

u(0, y, t) = 0, (2)

γ
∂u(0, y, t)

∂x
=
∂u(1, y, t)

∂x
, (3)

u(x, 0, t) = µ1(x, t), u(x, 1, t) = µ2(x, t), (4)
u(x, y, 0) = ϕ(x, y), (5)
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where (x, y) ∈ Ω := [0, 1] × [0, 1], t ∈ [0, T ]. Functions f(u), p(x, y, t), ϕ(x, y),
µ1(x, t), and µ2(x, t) are given. Functions ϕ(x, y), µ1(x, t), and µ2(x, t) must satisfy the
compatibility conditions on the Ω boundaries

µ1(x, 0) = ϕ(x, 0), µ2(x, 0) = ϕ(x, 1),

and, also, function ϕ(x, y) must satisfy boundary conditions (2), (3)

ϕ(0, y) = 0, γ
∂ϕ(0, y)

∂x
=
∂ϕ(1, y)

∂x
.

We assume that ∂f/∂u > 0 and there exists a unique sufficiently smooth solution of
problem (1)–(5).

The thorough study of numerical methods for one-dimensional parabolic problems
with the nonlocal condition of type (3) started in 1970’s [16, 17] when the new numer-
ical models for nonlocal problems of various types had been massively created. Initial
boundary value problems for parabolic equations with nonlocal conditions of type (3)
arise, for example, in exploring diffusion of particles in turbulent plasma, as well as in the
investigation of heat conduction in a thin heated rod when the flow change law is specified
at the ends of the rod [16]. The primary purpose of solving such models using the finite-
difference method was the stability of finite schemes in the special energy norms [14].

Creating new mathematical models for scientific and technical problems stimulates
the further development of numerical methods for differential equations with nonlocal
conditions. In recent years, increased attention has been paid to new mathematical mod-
els, including multidimensional and time–space fractional equations and inverse problems
with nonlocal conditions [1, 7, 13, 18]. This growing interest motivated us to investigate
the two-dimensional parabolic problem with nonlocal condition of type (3).

The intensive application and theoretical analysis of these numerical methods for the
new mathematical models with nonlocal boundary conditions started at the end of the last
century. One of the most used numerical techniques is the finite-difference method.

The stability of finite-difference scheme for the one-dimensional parabolic equation
with integral conditions

u(0, t) =

1∫
0

α(x)u(x, t) dx+ g0(t), u(1, t) =

1∫
0

β(x)u(x, t) dx+ g1(t)

is investigated in articles [3, 9]. The sufficient stability conditions considered in these
papers afterward were improved, analyzed, compared, and commented in [20,27,30] and
references therein.

Two-dimensional parabolic equations with various nonlocal boundary conditions were
also investigated in many papers [6, 19, 22]. Several directions of numerical methods for
solving differential equations with nonlocal conditions have been formed. One of the
directions is investigating the difference operator’s spectrum structure and applications for
the difference schemes’ analysis [4,9,14,21,23,27,33,34]. The other direction is implicit
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Stability and convergence of difference schemes for nonlocal boundary parabolic problem 137

alternating direction methods (ADI) for solving the systems of difference equations with
nonlocal conditions [11, 28, 31, 35, 37]. Some applications and comments are presented
in [5, 25].

A few years ago, it was noticed that the modified approach of constructing a majorant
function could be effectively applied to some new problems with nonlocal boundary
conditions. The reasoning behind the modification is that the M-matrices theory is the
base instead of the maximum principle. This fact has prevented one from requiring the
difference equations system’s matrix to be diagonally dominant.

The main objective of this article is to investigate the stability and convergence of
the difference scheme. For this purpose, we use the spectrum analysis of the difference
problem and the M-matrices theory. This approach is used for the theoretical investigation
of various type difference problems for elliptic and parabolic equations with nonlocal
conditions [10, 29, 32, 36].

2 Difference problem and approximation error

We solve the differential problem (1)–(5) using finite-difference method. We assume that
the solution u(x, t) of (1)–(5) exists, is unique, and the derivatives ∂ku/∂xk, k = 1, 4,
and ∂lu/∂tl, l = 1, 2, are continuous and bounded. We define

max

∣∣∣∣∂ku∂xk

∣∣∣∣ 6Mk, k = 1, 4; max

∣∣∣∣∂lu∂tl
∣∣∣∣ 6 Cl, l = 1, 2.

Let Unij be the finite-difference approximation of u(x, y, t). We denote

Unij = U
(
xi, yj , t

n
)
,

where xi = ih, yj = jh, i, j = 0, N , h = 1/N ; tn = nτ , n = 0,M , τ = T/M ;
N,M ∈ N.

We denote

∂xU
n
ij =

Uni+1,j − Unij
h

, ∂x̄U
n
ij =

Unij − Uni−1,j

h
,

∂t̄U
n
ij =

Unij − U
n−1
ij

τ
, ∂tU

n
ij =

Un+1
ij − Unij

τ
,

∂2
xU

n
ij =

Uni−1,j − 2Unij + Uni+1,j

h2
, ∂2

yU
n
ij =

Uni,j−1 − 2Unij + Uni,j+1

h2
.

We approximate Eq. (1) and conditions (2), (4), and (5) by difference one using
standard method:

∂t̄U
n
ij =

(
∂2
x + ∂2

y

)
Unij − f

(
Unij
)
+ pnij , i, j = 1, N − 1, (6)

Un0j = 0, j = 0, N, (7)

Uni0 = (µ1)
n
i , UniN = (µ2)

n
i , i = 0, N, (8)

U0
ij = ϕij , i, j = 0, N. (9)
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The approximation error of (6) is

r(h, τ) = R1,ij(h) +R2,ij(τ), i, j = 1, N − 1, (10)

where ∣∣R1,ij(h)
∣∣ 6 h2M4

6
,

∣∣R2,ij(τ)
∣∣ 6 τC2

2
. (11)

To approximate nonlocal condition (3) with accuracy O(h2 + τ), we rewrite it in the
following form:

γ

(
∂xu

n
0j −

h

2

∂2un0j
∂x2

− h2

6

∂3ũn0j
∂x3

)
= ∂x̄U

n
Nj +

h

2

∂2unNj
∂x2

− h2

6

∂3ũnNj
∂x3

.

Assume that differential equation (1) is defined in the interval x ∈ (0, 1) and on the bound-
aries x = 0 and x = 1. Now, substitute into latter equality expressions of ∂2un0j/∂x

2 and
∂2unNj/∂x

2 from (1). Using ∂Un0j/∂t and ∂UnNj/∂t approximations of order O(τ), after
elementary rearrangements, we have

γ

(
∂xu

n
0j +

h

2

(
pn0j − f

(
un0j
)))

= ∂x̄u
n
Nj +

h

2

(
∂t̄u

n
Nj − ∂2

yu
n
Nj + f

(
unNj

)
− pnNj + rNj(h, τ)

)
.

Using the previous expression, we have the following form of nonlocal condition (3):

∂t̄U
n
Nj =

2

h

(
γ∂xU

n
0j − ∂x̄UnNj

)
+ ∂2

yU
n
Nj − f

(
UnNj

)
+ p̃nNj + rnNj , j = 1, N − 1, (12)

where p̃nNj = −γf(Un0j) + γpn0j + pnNj . The approximation error is

rNj = R1,Nj(h) +R2,Nj(τ), (13)∣∣R1,Nj(h)
∣∣ 6 h2M4

6
+
h(γ + 1)M3

3
,

∣∣R2,Nj(τ)
∣∣ 6 τC2

2
. (14)

Therefore, the differential problem (1)–(5) is approximated by the difference problem (6)–
(9), (12) with approximation order defined by formulas (10) and (11).

As a result, we get the system of difference equations approximating problem (1)–(5)
with accuracy O(h2 + τ)

∂t̄U
n
ij =

(
∂2
x + ∂2

y

)
Unij − f

(
Unij
)
+ pnij , i, j = 1, N − 1,

∂t̄U
n
Nj =

2

h

(
γ∂xU

n
0j − ∂x̄UnNj

)
− f

(
UnNj

)
+ p̃nNj , j = 1, N − 1,

Un0j = 0, Uni0 = (µ1)
n
i , UniN = (µ2)

n
i , Unij = ϕij i, j = 0, N.

(15)
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Remark 1. In the difference expression (6), approximating differential equation (1) as
well as in expression (12), approximating nonlocal condition (3), one can take terms
f(Un−1

ij ) and f(Un−1
Nj ) instead of terms f(Unij) and f(UnNj). The approximation error is

the same O(h2 + τ). In this way, instead of solving a nonlinear system of equations, we
get a linear one

∂t̄U
n
ij =

(
∂2
x + ∂2

y

)
Unij − f

(
Un−1
ij

)
+ pnij , i, j = 1, N − 1,

∂t̄U
n
Nj =

2

h

(
γ∂xU

n
0j − ∂x̄UnNj

)
− f

(
Un−1
Nj

)
+ p̃nNj , j = 1, N − 1,

Un0j = 0, Uni0 = (µ1)
n
i , UniN = (µ2)

n
i , Unij = ϕij i, j = 0, N.

We denote

znij = unij − Unij ,

where Unij is the solution of difference problem (15), unij is the solution of differential
problem at the point (xi, yj) at time t = tn.

Using system (15) and formulas (10) and (13), we get that znij is the solution of the
following system:

∂t̄z
n
ij = ∂2

xz
n
ij + ∂2

yz
n
ij − dnijznij + rnij , i, j = 1, N − 1,

∂t̄z
n
Nj =

2

h

(
γ∂xz

n
0j − ∂x̄znNj

)
+ ∂2

yz
n
Nj − dNjznNj + rNj , j = 1, N − 1,

zn0j = 0, zni0 = 0, zniN = 0, i, j = 0, N,

(16)

where dNj = f ′(ŨNj).
To investigate the difference systems (15) and (16), we rewrite them on the nth layer

in the matrix form regarding to unknowns Unij , i = 0, N , j = 1, N .

3 Systems of difference equations in matrix form

We rewrite system (16) in the matrix form. We define N ×N matrix Λx and (N − 1)×
(N − 1) matrix Λy as follows:

Λx =
1

h2



2 −1 0 · · · 0 0

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
. . . . . . . . . . . .

...
0 0 0 −1 2 −1
−2γ 0 0 · · · −2 2


,
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Λy =
1

h2



2 −1 0 · · · 0 0

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
. . . . . . . . . . . .

...
0 0 0 −1 2 −1
0 0 0 · · · −1 2


.

We denote by Ix the N ×N identity matrix and by Iy the (N − 1)× (N − 1) identity
matrix. Now, we construct two N(N − 1)×N(N − 1) matrices

A1 =


Λx

Λx
. . .

Λx
Λx

 , (17)

A2 = h−2


2Ix −Ix . . .
−Ix 2Ix −Ix

. . . . . . . . .
−Ix 2Ix −Ix
. . . −Ix 2Ix

 . (18)

The number of diagonal blocks of matrices (17) and (18) is N − 1.
Now, we rewrite system (16) in the matrix form (on the nth time layer) as

zn − zn−1

τ
= −Azn −Dnz

n + rn, (19)

where zn, zn−1, and rn are the vectors of order N(N − 1), A = A1 + A2, Dn is the
N(N − 1)×N(N − 1) diagonal matrix with elements

dnij =
∂f(Ũnij)

∂U
> 0.

Using the same method, by rewriting system (15), we get

Un − Un−1

τ
= −AUn − f

(
Un
)
+ p. (20)

Now we find the eigenvalues of matrix A.

Lemma 1. If γ ∈ (0, 1), then all eigenvalues of matrix A are positive.

Proof. We formulate two eigenvalue problems for matrices Λx and Λy

ΛxVk = µkVk, k = 1, N

ΛyWl = ηlWl, l = 1, N − 1.
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If γ ∈ (0, 1), then all eigenvalues of matrix Λx are positive [17, 29]. The eigenvalues
of matrix Λy are of the form

ηl =
4

h2
sin2 πlh

2
, l = 1, N − 1.

We rewrite matrix A in another form using Kronecker (tensor) product:

A = A1 +A2 = Iy ⊗ Λx + Λy ⊗ Ix.

Using properties of tensor product (see [38]), we have

(Iy ⊗ Λx + Λy ⊗ Ix)(W ⊗V) = (µ+ η)(W ⊗V)

or
A(W ⊗V) = λ(W ⊗V),

where λ := λkl = µk + ηl, k = 1, N , l = 1, N − 1, are the eigenvalues of matrix A. So,
λkl > 0.

4 M-matrices and systems of difference equations

We investigate the system of difference equations (19) using the theory of M-matrices.
For this purpose, we provide the definition and some properties of M-matrices [2, 38].

Definition 1. A square matrix with real elements A = {akl}, k, l = 1,m, is called an
M-matrix if akl 6 0 when k 6= l and the inverse A−1, whose all elements are nonnegative
(A−1 > 0), exists.

It follows from the definition that akk > 0. We also use the notation A > 0 (A > 0)
if akl > 0 (akl > 0) for all k, l and A < B (A 6 B) if akl < bkl (akl 6 bkl).

We formulate some properties of M-matrices that will be used later.

Property 1. If akl 6 0 (k 6= l), then two next statements are equivalent:

(i) The matrix A−1 exists, and A−1 > 0,
(ii) The real parts of each eigenvalue of A are positive: Reλ(A) > 0.

Property 2. If A1 is an M-matrix, A2 > A1, and all nondiagonal elements of the matrix
A2 are nonpositive, then A2 is also an M-matrix, and

A−1
2 6 A−1

1 .

Property 3. If an M-matrix A has a regular splitting A = B − C, where A−1 > 0,
C > 0, then

ρ
(
B−1C

)
= max

16k6m

∣∣λk(B−1C)
∣∣ < 1.
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The next corollary is valid according to all three properties.

Corollary 1. If akk > 0, akl 6 0, k 6= l, and Reλ(A) > 0, then A−1 > 0.

Lemma 2. If γ ∈ (0, 1), then the matrix A of system (19) is an M-matrix.

Proof. It follows from the definition of the matrices Λx and Λy that all diagonal elements
are positive and nondiagonal are nonnegative. So, the same property is valid for matrix
A = A1+A2. Since all eigenvalues of the matrix A are positive, then all listed properties
are sufficient for the matrix A to be an M-matrix [38].

Remark 2. If A is an M-matrix, then A+D (if ∂f/∂U > 0) and I+ τA (if τ > 0) are
also M-matrices.

Remark 3. For the matrix A +D to be an M-matrix, the condition ∂f/∂u > 0 can be
improved. Indeed, consider the new condition

∂f

∂u
> −η1,

where η1 = (4/h2) sin2(πh/2) is the smallest eigenvalue of the matrix Λy . We construct
the matrix A − η1I. This matrix’s diagonal elements are positive, nondiagonal are non-
negative, and all the eigenvalues are positive. According to Definition 1 and Property 1,
the matrix A− η1I is an M-matrix. Now we take two matrices A− η1I and A+D with
the condition ∂f/∂u > −η1. Since A + D > A − η1I, then, according to Property 2,
the matrix A+D is an M-matrix.

5 An existence and uniqueness of the difference solution

We investigate existence conditions and construct an iterative method for finding the
unique solution of system (20). We do not write the index of the time layer tn for
simplicity. We rearrange system (20) in the form

A1U = −f(U) + p̃,

where p̃ = p+ Un−1/τ , A1 = (1/τ)I+A is an M-matrix. We define the inner product
in the vector space RN(N−1) as

(U, V ) = h2
N∑
i=1

N−1∑
j=1

UijVij

and corresponding norm as
‖U‖ = (U,U)1/2.

We also use the other compatible vector and matrix norms

‖U‖∗ =
((
MM>

)−1
U,U

)
, ‖A‖∗ = ρ(A),

https://www.journals.vu.lt/nonlinear-analysis
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where M is a matrix with rows constructed using the linearly independent eigenvectors of
matrix A. The purpose of norm ‖A‖ is such: if ρ(A) < 1 and the eigenvectors of matrix
A are linearly independent, then ρ(A) is the norm whether or not matrix A is symmetric.
The following theorem is proved in [26].

Theorem 1. If matrix A1 in the system

A1U = −f(U) + p (21)

is an M-matrix and 0 6 ∂f/∂U < β < ∞, then there exists a unique solution of
system (21). This system could always be rewritten in a form where the nonlinear operator
is the contraction operator.

The following is the iteration method for solving system (21):

(A1 + βI)Uk+1 = βUk − f
(
Uk
)
+ p, (22)

where β is a finite constant such that 0 6 ∂f/∂U < β <∞.
We denote by U∗ the unique solution of system (21). It follows from (22)∥∥U∗ − Uk+1

∥∥ =
∥∥(A1 + βI)−1(βI− D̃)

(
U∗ − Uk

)∥∥
6
∥∥(A1 + βI)−1β

∥∥ · ∥∥U∗ − Uk∥∥,
where D̃ = diag{∂f̃/∂U}. Thus, the iteration method (22) converges in ‖U‖∗ if∥∥(A1 + βI)−1β

∥∥
∗ = ρ

(
(A1 + βI)−1β

)
< 1.

So, we have

ρ
(
(A1 + βI)−1β

)
= ρ

((
1

τ
I+A+ βI

)−1

β

)
=

β
1
τ + λ(A) + β

=
βτ

βτ + 1 + λ(A)τ
< 1.

The iteration method (22) converges if the following sufficient conditions are satisfied:

(i) A is a simple structure M-matrix,
(ii) 0 6 ∂f/∂U < β <∞.

Remark 4. If, instead of the iteration method (22), we take the simpler structure method

A1U
k+1 = −f

(
Uk
)
,

then, applying the same technique, we get

ρ(A−1
1 β) = ρ

((
1

τ
I+A

)−1

β

)
=

βτ

1 + τλ(A)
.

So, the sufficient convergence condition is

β <
1

τ
.
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6 Comparison theorem

Now, we formulate and prove the comparison theorem for system (19) using the properties
of M-matrices.

Let V n be a vector with coordinates V nij . We denote the vector with coordinates |V nij |
by |V n|, i.e.,

|V n| =
{∣∣V nij ∣∣}.

Theorem 2 [Comparison theorem]. Let zn = {znij} and wn = {wnij} be two different
solutions of the difference system (19)

zn − zn−1

τ
= −Azn −Dnz

n + fn, (23)

wn − wn−1

τ
= −Awn + gn, (24)

where Dn is the diagonal matrix with elements dnij > 0, w0 > 0, gn > 0 (n > 1). If
|z0| 6 w0, |fn| 6 gn, then

|zn| 6 wn, n > 1.

Proof. First, notice that according to the theorem’s formulation, the following inequality
is valid:

wn > 0.

Indeed, using system (24), we have

(I+ τA)wn = wn−1 + τgn.

It follows

wn = (I+ τA)−1wn−1 + (I+ τA)−1τgn,

where (I+ τA)−1 > 0, gn > 0. So, if wn−1 > 0, then wn > 0 for all n = 1, 2, . . . .
Further, using (23), we have

zn = (I+ τA+ τDn)
−1zn−1 + τ(I+ τA+ τDn)

−1fn.

Using Property 2,

|zn| 6 (I+ τA)−1
∣∣zn−1

∣∣+ τ(I+ τA)−1
∣∣fn∣∣

6 (I+ τA)−1wn−1 + τ(I+ τA)−1gn = wn. �

Remark 5. Theorem 2 can be proven using the monotone matrix property: if A is a mo-
notone matrix, then from the inequality Av 6 Aw it follows v 6 w.

We note that the comparison theorem for the finite-difference method is usually for-
mulated as a corollary of the maximum principle (see e.g. [8, 12, 24]). It means that the
system of difference equations is diagonally dominant. In the M-matrices theory, this
property is optional.
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Function w(x, y, t) satisfying Theorem 2 conditions is usually called the majorant
of the difference problem (23) solution. The majorant is typically not unique for the
considered problem regardless of the method it obtained (whether as the conclusion of
the maximum principle or as the property of M-matrices). Several forms of majorants
could be constructed.

In the article [10], the comparison theorem is formulated and proved for the difference
system of the following form (unlike the (23) form):

Azn = Bzn−1 + fn,

where A is the M-matrix, and B > 0. System (23) could also be rewritten in the same
form. However, as it was noticed in [29], the (23) majorant form is preferable for certain
cases.

7 Stability of difference scheme

First, we define the stability notion used in this article for the difference scheme analysis.
We use the general stability concept for a nonlinear problem. We consider two problems.
One is system (6)–(9), (12) with the data p(x, y, t) and ϕ(x, y). We denote the solution of
this problem by Unij . The other problem is the same system (6)–(9), (12) with perturbed
functions p̃(x, y, t) and ϕ̃(x, y). We denote the solution of the perturbed problem by Ũij .

Definition 2. Difference scheme (6)–(9), (12) is stable if for every ε > 0, there exists
δ(ε) > 0 not dependent on h and τ such that∣∣Unij − Ũnij∣∣ 6 ε
for n = 1, 2, . . . if ∣∣pnij − p̃nij∣∣ 6 δ, |ϕij − ϕ̃ij | 6 δ.

The stability defined by this method is usually called the stability concerning the initial
data and the right-hand side stability [24, pp. 403, 411].

We denote

z̃nij = Unij − Ũnij , f̃0
ij = ϕij − ϕ̃ij , f̃nij = pnij − p̃nij .

Vector z̃nij is the solution of the following system (equivalent to system (16)):

∂t̄z̃
n
ij = ∂2

xz̃
n
ij + ∂2

y z̃
n
ij − dnij z̃nij + f̃nij , i, j = 1, N − 1, (25)

∂t̄z̃
n
Nj =

2

h

(
γ∂xz̃

n
0j − ∂x̄z̃nNj

)
+ ∂2

y z̃
n
Nj − dNj z̃nNj + f̃Nj , j = 1, N − 1, (26)

z̃n0j = 0, z̃ni0 = 0, z̃niN = 0, z̃0
ij = f̃0

ij , i, j = 0, N. (27)

The matrix form of system (25)–(27) is equivalent to (23)

z̃n − z̃n−1

τ
= −Az̃n −Dnz̃

n + f̃n. (28)
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Figure 1. Split of grid points into groups.

Now, in order to investigate the stability of problem (6)–(9), (12), we find the majorant
of problem’s (28) solution in the following form:

w(x, y, t) =
δ

5

(
2− x2 − y2 +

2x

1− γ

)
+
δt

5
, (29)

where δ > 0 is a fixed, still undefined, number.
According to Theorem 2, the majorant (29) is the solution of system (24). We rewrite

this system in the coordinates form

wnij − w
n−1
ij

τ
= ∂2

xw
n
ij + ∂2

yw
n
ij + gnij , n = 1, N − 1, (30)

wnNj − w
n−1
Nj

τ
=

2

h

(
γ∂xw

n
0j − ∂x̄wnNj

)
+ ∂2

yw
n
Nj + gNj , n = 1, N − 1. (31)

The gnij values still need to be found in this system. The values must be such that the
function w(x, y, t), defined by formula (29), is the solution of system (30), (31).

First, we note that function w(x, y, t), defined by formula (29), is positive for all x ∈
[0, 1], y ∈ [0, 1], γ ∈ [0, 1], δ > 0, and t > 0. Next, the solution wnij of system (30), (31),
unlike the solution z̃nij of system (25)–(27), does not satisfy the homogenous boundary
conditions. It affects the choice of gnij values. We split all the grid points, where Eqs. (30),
(31) are defined: (i, j), i = 1, N , j = 1, N − 1, into four groups (see Fig. 1):

(i) (i, j) ∈ Ω1 if i = 2, N − 1, j = 2, N − 2;
(ii) (i, j) ∈ Ω2 if {i = 1, j = 2, N − 2} and {i = 1, N − 1, j = 1, N − 1};

(iii) (i, j) ∈ Ω3 if i = N , j = 2, N − 2;
(iv) (i, j) ∈ Ω4 if i = N , j = 1, N − 1.

From the w(x, y, t) definition (29) it follows that

∂2
xw

n
ij =

∂2wnij
∂x2

= −2δ

5
, ∂2

yw
n
ij =

∂2wnij
∂y2

= −2δ

5
, ∂tw

n
ij =

∂wnij
∂t

=
δ

5
.
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Using Eq. (30), we have

gnij =
δ

5
+

4δ

5
= δ, (i, j) ∈ Ω1.

Furthermore,

gnij =
δ

5
+

4δ

5
+
w̃nij
h2

> δ, (i, j) ∈ Ω2.

Here w̃nij is the value of function w(x, y, t) at the point on the Ω boundary. For example,
in the case i = 1, j = 2, N − 2,

w̃nij = wn0j > 0.

Similarly, after elementary transformations, from Eqs. (31) we have

gnNj =
δ

5
+

2(γ + 1)δ

5
+

2δ

5
= δ +

2γδ

5
> δ, (i, j) ∈ Ω3,

gnNj =
δ

5
+

2(γ + 1)δ

5
+

2δ

5
+
w̃nNj
h2

> δ, (i, j) ∈ Ω4,

where w̃nNj = wnN0 > 0 if j = 1, and w̃nNN = wnNN > 0 if j = N − 1.
Thus, in all cases (for all (i, j)), the following inequality is valid:

gnij > δ. (32)

Generalizing this investigation, we have

Conclusion 1. If system (25)–(27) satisfies following conditions∣∣f̃0
ij

∣∣ = |ϕij − ϕ̃ij | < δ,
∣∣f̃ij∣∣ = ∣∣pnij − p̃nij∣∣ < δ, (33)

then the function w(x, y, t), defined by formula (29), is the majorant of the solution z̃nij
of this system, that is, ∣∣z̃nij∣∣ 6 wnij , i, j = 0, N. (34)

Actually, all the assumptions of Theorem 2 are fullfilled, i.e., dnij > 0, wnij > 0 for
all i, j, and n values; z̃0

ij = 0, and w0
ij > 0, therefore |z̃0

ij | 6 w0
ij . Matrix A, according

to Lemma 1, is M-matrix if γ ∈ [0, 1). Next, from Eqs. (32) and (33) it follows that
|f̃nij | 6 gij . Then inequality (34) is valid.

Theorem 3. The difference scheme (6)–(9), (12) is stable if γ ∈ [0, 1).

Proof. Using function w(x, y, t) definition (29), it follows that ∂w/∂x > 0 if x ∈ [0, 1]
and γ ∈ [0, 1). Hence, for every ε > 0 value, the inequality

wnij < ε

is true if
δ <

5ε
2

1−γ + T
.
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In other words, for every ε > 0, there exists δ := δ(ε) > 0 such that∣∣z̃nij∣∣ 6 wnij 6 ε
if

δ 6 δ0 =
5ε

2
1−γ + T

,

which is the definition of stability.

8 Error estimation and convergence of difference scheme

Now, using the Comparison theorem 2, we evaluate the error of the difference scheme (6)–
(9), (12)

znij = uij − Uij ,

where uij is the solution of the differential problem (1)–(5), and Uij is the solution of
the difference problem (6)–(9), (12). For this purpose, we consider the finite-difference
system (16) and its matrix form (19).

Using formulas (10), (11), (13), and (14), we have the following estimates for the
vector r = {rnij} of system (16):

|rnij | 6
h2M4

6
+
τC2

2
, i, j = 1, N − 1,

|rnNj | 6
h2M4

6
+
h(γ + 1)M3

3
+
τC2

2
, j = 1, N − 1.

(35)

We define the function w(x, y, t) as follows:

w(x, y, t) =
h2M(γ + 1)

6

(
2− x2

2
− y2

2
+

2x

1− γ

)
+
τC2(γ + 1)t

2
, (36)

where M = max(M3,M4). Now, we prove that w(x, y, t) is the difference problem (19)
solution’s majorant. For this purpose, like in Section 7, we calculate the values gnij in
system (30), (31) as w(x, y, t) is defined by formula (36). Using (30), (36), we have

gnij =
τC2(γ + 1)

2
+
h2M(γ + 1)

3
, (i, j) ∈ Ω1,

gnij =
τC2(γ + 1)

2
+
h2M(γ + 1)

3
+
w̃nij
h2

>
τC2(γ + 1)

2
+
h2M(γ + 1)

3
, (i, j) ∈ Ω2,

where w̃nij > 0 is the value of function w(x, y, t) at the corresponding point on the Ω
boundary.
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Further, using (31) and (36), we have

gnij =
τC2(γ + 1)

2
+
h2M(γ + 1)

3
+
hM(γ + 1)

3
, (i, j) ∈ Ω3,

gnij >
τC2(γ + 1)

2
+
h2M(γ + 1)

3
+
hM(γ + 1)

3
, (i, j) ∈ Ω4.

So, for system (19) with estimates (35) and for system (24) with function w(x, y, t),
defined by formula (36), all assumptions of Theorem 2 are valid.

Theorem 4. Let the following assumptions hold for the differential problem (1)–(5):

(i) γ ∈ [0, 1),
(ii) ∂f/∂u > 0,

(iii) there exists a unique, sufficiently smooth solution such that estimates (10), (11)
and (13), (14) are valid for the approximation error.

Then, for the error of the solution

znij = unij − Unij ,

where unij is the solution of differential problem (1)–(5), and Unij is the solution of differ-
ence problem (6)–(9), (12), the following estimate is valid:

‖zn‖C = max
i,j

∣∣znij∣∣ 6 C1h
2 + C2τ,

where C1 and C2 do not depend on h and τ .

Proof. Function w(x, y, t), defined by formula (36), is the majorant of the solution znij
of difference problem (23). According to Theorem 2, we have

∣∣znij∣∣ 6 wnij 6 h2M(γ + 1)

6
· 2

1− γ
+
τC2(γ + 1)T

2

= C1h
2 + C2τ. �

Conclusion 2. If the assumptions of Theorem 4 are valid, then the difference scheme (6)–
(9), (12) converges in maximum norm.

9 Numerical experiment

This section provides the results of the numerical experiment to comment on and sup-
plement the theoretical investigation. We made several different numerical experiments
to show the stability and estimate the approximation error of the investigated difference
method. Specifically, we considered the differential problem with various h and τ values,
different solution exponential growth variants, and various time intervals t ∈ [0, T ].
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Table 1. Absolute and relative errors of the numerical experiment.

(a) Absolute error ε(h, τ)

T = 1, γ = 0.5

a = 0.1 a = 2

h τ ε(h, τ) ε(h, τ)/ε(2h, 4τ) ε(h, τ) ε(h, τ)/ε(2h, 4τ)

1/10 1/10 3.04 · 10−4 2.02 · 10−2

1/20 1/40 7.61 · 10−5 3.99 5.50 · 10−3 3.67
1/40 1/160 1.91 · 10−5 3.98 1.40 · 10−3 3.92
1/80 1/640 4.77 · 10−6 4.00 3.60 · 10−4 3.89

(b) Relative error ∆(h, τ)

T = 1, γ = 0.5

a = 0.1 a = 2

h τ ∆(h, τ) ∆(h, τ)/∆(2h, 4τ) ∆(h, τ) ∆(h, τ)/∆(2h, 4τ)

1/10 1/10 1.00 · 10−3 1.94 · 10−2

1/20 1/40 2.58 · 10−4 3.88 5.30 · 10−3 3.67
1/40 1/160 6.49 · 10−5 3.96 1.40 · 10−3 3.79
1/80 1/640 1.63 · 10−5 3.98 3.42 · 10−4 4.09

We have chosen the simple mathematical model (1)–(5) with known solution

u(x, y, t) =
2

π

(
sin

(
πx

2

)
+ γ

πx2

4

)
sin

(
πy

2

)
eat, (37)

where γ ∈ [0, 1); a > 0 is a parameter regulating solution’s exponentional growth as
t→∞. Next,

f(u) = Ku3.

Boundary and nonlocal conditions (2) and (3) are fulfilled for all γ and a values. Functions
p, µ1, µ2, and ϕ are chosen according to expression (37).

The main results of the numerical experiment are presented in Tables 1–3. Absolute
and relative errors (ε(h, τ) and ∆(h, t), accordingly) were considered for each case.

ε(h, τ) = max
i,j
|Uij − u∗ij |, ∆(h, t) = max

i,j

∣∣∣∣Uij − u∗ijUij

∣∣∣∣,
where Uij is the difference problem solution, and u∗ij is the differential problem solution
as t = T .

Table 1 provides the relative and absolute errors of the numerical experiment with
fixed parameters T = 1, γ = 0.5, a = 0.1, and a = 2. Each row of Table 1(a)
represents absolute error values, while the value of h is reduced in half, and the values of
τ are reduced four times. Also, the rate of decrease of absolute error (while h and τ are
decreasing) is presented in each row. According to the theoretical investigation about the
error rate of O(h2 + τ), the decrease rate must be equal to four times for every row. Nu-
merical experiment fully confirms theoretical results. Each row of Table 1(b) represents
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Table 2. Relative error estimates for different values of T for u(x, y, t) defined by formula (37).

∆(h, τ), γ = 0.5, a = 0.5

h τ T = 1 T = 4 T = 6 T = 8 T = 10 T = 12

1/10 1/10 2.40 · 10−3 2.40 · 10−3 2.40 · 10−3 6.25 · 10−1 6.25 · 10−1 6.25 · 10−1

1/20 1/10 6.15 · 10−4 6.15 · 10−4 6.15 · 10−4 5.57 · 10−1 1.37 · 100 1.37 · 100
1/40 1/10 1.55 · 10−4 1.55 · 10−4 1.55 · 10−4 1.55 · 10−4 1.42 · 100 1.42 · 100
1/80 1/10 3.90 · 10−5 3.90 · 10−5 3.90 · 10−5 3.90 · 10−5 3.90 · 10−5 1.59 · 100

Table 3. Absolute and relative error estimates for different values of T for u(x, y, t) defined by formu-
la (39).

a = 0.5, γ = 0.5, C = 2

T = 1 T = 4 T = 8

h τ ε(h, τ) ∆(h, τ) ε(h, τ) ∆(h, τ) ε(h, τ) ∆(h, τ)

1/10 1/10 4.99 · 10−4 1.72 · 10−4 7.84 · 10−4 1.98 · 10−4 2.33 · 101 9.49 · 10−1

1/20 1/40 1.26 · 10−4 4.36 · 10−5 1.99 · 10−4 5.01 · 10−4 3.20 · 101 6.70 · 10−1

1/40 1/160 3.16 · 10−5 1.09 · 10−5 5.00 · 10−5 1.26 · 10−5 5.00 · 10−5 1.26 · 10−5

1/80 1/640 7.91 · 10−6 2.74 · 10−6 1.25 · 10−5 3.14 · 10−6 1.25 · 10−5 3.14 · 10−6

the relative error values. Using the same principle, we proved that the decreasing rate of
relative error is also stable.

Table 2 presents the relative and absolute errors for different T values (up to T = 12).
For higher T values, the value of absolute error is growing. It is natural since both the
solution and derivatives, on which depends the value of error, are proportional to the
multiplier eat, t > 0.

We notice that with increasing t value, the relative error stays the same (∆(h, τ) rows
of Table 2). Usually, for nonstationary problems, the absolute error and the relative error
grow with increasing t value. We investigated this situation in detail and discovered that
this is due to the structure of the selected solution. The exact solution (37) of differential
problem is of the following form:

u(x, y, t) = u1(x, y) · u2(t). (38)

Whenever the solutions of differential and difference problems are proportional to the
multiplier eat, the relative error, according to (38), is independent of t. Therefore, by
adding a constant term, let us slightly change solution (37) of the differential problem

u(x, y, t) =
2

π

(
sin

(
πx

2

)
+ γ

πx2

4

)
sin

(
πy

2

)
eat + C. (39)

Table 3 shows the results of the numerical experiment. Neither of the solution deriva-
tives, nonlocal condition, and the structure of the equation has changed. Only the Dirichlet
boundary condition, initial condition, and function f(u) have changed. However, the
solution is not in the form of (38). According to the experiment data, absolute and relative
errors are growing with increasing T .
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Table 4. Absolute and relative error estimates in the case of big ∂f/∂u values.

T = 1, γ = 0.5, a = 0.5

K = 1 K = 10 K = 20

h τ ε(h, τ) ∆(h, τ) ε(h, τ) ∆(h, τ) ε(h, τ) ∆(h, τ)

1/10 1/10 1.90 · 10−3 2.80 · 10−3 4.35 · 10−2 4.80 · 10−2 1.68 · 10−2 2.31 · 10−2

1/20 1/40 4.68 · 10−4 7.09 · 10−4 1.99 · 10−1 1.73 · 10−1 9.40 · 10−3 1.06 · 10−1

1/40 1/160 1.17 · 10−4 1.78 · 10−4 1.06 · 10−1 8.56 · 10−2 8.70 · 10−1 8.62 · 10−1

1/80 1/640 2.93 · 10−5 4.48 · 10−5 1.97 · 10−3 1.59 · 10−2 2.26 · 100 2.11 · 100

While investigating the iterative method of solving difference problem, we encoun-
tered a situation when the convergence condition of the iterative method is valid only
subject to the additional condition

β = max
∂f

∂u
<

1

τ
.

This fact motivated us to make an additional numerical experiment artificially increasing
∂f/∂u value (∂f/∂u = 3Ku2); see Table 4.

The numerical experiment results show that the difference scheme is unstable if τ > 0
value is not small enough (βτ < 1). Also, at sufficiently large h values, the instability does
not occur as the matrix has a low order (h = 1/10, 1/20). Finally, the numerical exper-
iment confirms the authors’ theoretical observation that relatively high ∂f/∂u values, at
relative high τ (τ |∂f/∂u| > 1) values, may lead to difference scheme’s instability.

10 Conclusions and comments

In this article, we investigated the stability and convergence of the implicit difference
scheme for the two-dimensional nonlinear parabolic equation with nonlocal condition (3).
Theoretic results are obtained using the system of difference equations solution’s majo-
rant, constructed for the error of solution (Gerschgorin method). Such an approach was
used for the elliptic problem with Dirichlet boundary conditions difference method’s error
of solution estimates decades ago [8, 12, 24].

The differential problem (1)–(5) investigated in this paper has been the object of
numerical analysis research. The two-dimensional linear parabolic equation (1) with non-
local boundary condition (3) in the case f = 0 is solved using Crank–Nicolson method
in [15]. It is proved that the used difference scheme is stable in a specific (weak) energy
norm

‖u‖D = (Du, u)1/2,

where D = (MM∗)−1 is the positive definite matrix, and M is the matrix formed by the
eigenvectors (in some instances adjoint vectors) of difference problem. Problem (1)–(5)
in the case f = f(x, y, t) was solved by Peaceman–Rachford alternating direction method
in article [29]. It was proved that the method is stable in norm ‖u‖D. However, the stabil-
ity in the ‖u‖D norm does not imply the stability in the maximum norm and convergence
of the scheme.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Stability and convergence of difference schemes for nonlocal boundary parabolic problem 153

In this article, the stability in maximum norm and the convergence of difference
scheme for the differential problem (1)–(5) is proved using M-matrices theory (see also [10,
29]).

We also note that it is essential to investigate the spectrum structure of the difference
operator’s matrix using M-matrices theory for the analysis of the difference method’s
solutions for the problems with nonlocal boundary conditions.
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