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Abstract. Lyapunov stability analysis of nonautonomous real-order systems is put forward here in
the sense of Caputo in a new and different way. We introduce new theorems and inequalities that
give stability of constant solutions in the domain of attraction to such systems when attached with
random initial time placed on the real axis. We give some examples including an advanced nonlinear
Lorenz system to illustrate the results.
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1 Introduction

It is widely known that the concept of Newton–Leibniz derivatives of first, second, . . . ,
nth order is quite elementary and plays a crucial role in nonlinear systems and their
control (see, e.g., [15, 28]). In accordance, the principle of l’Hôpital–Leibniz deriva-
tives (for example, think of possibility of rational, irrational, real-orders, etc.) has been
continually evolving with many applications that include motivated problems in physics,
engineering, and other applied areas (we refer to [2, 16, 27]). For instance, many existing
real-order (fractional-order) operators have been thoroughly used mainly because of the
global nature associated with intrinsic memory features [30] that cannot be found in the
elementary Newton–Leibniz derivative concept. In order to understand why these types
of real-order operators are important, the readers are referred to an elementary example
mentioned in the research findings of Li et al. [22] that gives order-dependent transition
and to the nontrivial Leibniz rule discussed by Tarasov in [29] when utilized Caputo
derivative operator. On the other hand, many early sophisticated applications dealing with
the modelling, analysis, and control are published in [1, 4, 8–10, 14, 16, 17, 24, 26, 27, 32]
and can be found in their references.
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It has been continually reported in the literature that stability is a fundamental issue
in many problems dealing with predicting dynamics and controlling trajectories. It often
plays a basic role in many systems described in terms of real-order systems in the modern
areas of dynamics and control of understanding difficult problems. For example, is it
possible to control the trajectory of many real-order systems at different initial times?

In short, recent investigations show that the methods and conditions established by
many researchers in [5,11,21,22,31] are not applicable in many instances when it comes
to nonautonomous real-order systems. In particular, consider a case where a described
system (1) is given and assume that a < 0. To the best of the authors’ knowledge, this
issue has not been investigated yet.

Motivated by the above-mentioned issue, in this paper, we consider the real-order
system described by

CDω
a+, tx(t) = f

(
t, x(t)

)
, x(a) = xa, (1)

where CDω
a+,tx(t) = (CDω

a+,tx1(t), . . . ,CDω
a+,txn(t))T, ω ∈ (0, 1], a ∈ R, and the

function f : [a,∞) × Ω ⊆ Rn → Rn is continuously differentiable with respect to its
arguments.

The main purpose of this paper is to bring out and establish some new stability
results of (1) for an effective analysis. We first introduce new Lyapunov theorems and
provide proofs that present the stability of (1). We establish new inequalities that provide
some new tools for the application of Lyapunov theorems. For applications, we give
some examples that include random initial times to demonstrate the importance of such
theorems. In particular, we show that it is possible to stabilize the chaotic trajectory of
the real-order Lorenz system using some proposed theorem whenever the initial time is
negative.

This paper is organised as follows. We recall some definitions in Section 2. In Sec-
tion 3, we introduce new Lyapunov theorems. In Section 4, we establish new inequalities.
In Section 5, we provide examples, and in Section 6, we draw reasonable conclusions.

2 Notations and definitions

Throughout this paper, we denote the set of real numbers by R, the set of positive real
numbers by R+, the set of natural numbers by N, the Euclidean space by Rn, the Eu-
clidean norm of a vector x ∈ Rn by ‖x‖, the interval −∞ 6 a < b 6 ∞ by I , and the
n-times continuously differentiable space by Cn. We recall here the operators mentioned
below.

Definition 1. Let n ∈ N and ω ∈ R+. The ω-order Riemann–Liouville integral of an
integrable function g on I is given by [16, 27]

RLI−ωa+,tg(t) =
1

Γ(ω)

t∫
a

(t− s)ω−1g(s) ds, t > a.
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Definition 2. Let n ∈ N and ω ∈ R+. The ω-order Caputo derivative of an Cn-function
g on I is given by [2, 16, 27]

CDω
a+,tg(t) =

{
RLI
−(n−ω)
a+,t

dn

dtn g(t) if n− 1 < ω < n,
dn

dtn g(t) if ω = n.
(2)

3 Main results

We introduce two new theorems for system (1) that provide key but straightforward
statements for the analysis of the system.

First, we introduce the below-mentioned definitions, which will give rigorous under-
standing of our new theorems that are presented later.

Definition 3 [Point asymptotic stability]. Throughout this paper, the solution or station-
ary point (SP) x = 0 to (1) is said to be point asymptotically stable (PAS) if there exists
Ω such that for all x(a) ∈ Ω, the Euclidean nontrivial measure ‖x(t)‖ → 0 as t→∞.

Definition 4 [Point stability]. Throughout this paper, the solution or stationary point
(SP) x = 0 to (1) is said to be point stable (PS) if there exists a Ω such that for any
x(a) ∈ Ω1, there is a δ > 0 so that ‖x(a)‖ 6 δ⇒ ‖x(t)‖ 6 ε, where ε > 0.

Definitions 3 and 4 can be viewed as different ones as compared to stability definitions
found in books [15, 25]. The notions of Definitions 3 and 4 are globally defined on time
interval [a,∞) considering the linear operator (2). These definitions are inevitable in the
construction of the proofs of our main theorems.

We introduce here the fundamental theorems of (1). In brief, these theorems can
be thought of as “Lyapunov theorems”, and the line of approach can be called known
“Lyapunov direct method”.

Theorem 1 [Fundamental stability theorem I]. Let x = 0 be the SP of (1), and let
x = 0 in the domain D. Assume that there exists a C1-function V (t, x) : [a,∞) ×D ⊆
Rn → [0,∞) satisfying

(A1) m1‖x‖r1 6 V (t, x) 6 µ(t)‖x‖r2 , where m1, r1, r2 > 0 with µ(t) continuous
on [a,∞), and m1 6 µ(t), 1 6 µ(t), r1 6 r2, and r2 > 1;

(A2) CDβ
a+,tV (t, x(t)) is uniformly negative definite on the nontrivial solution x(t)

of (1), i.e.,
CDβ

a+,tV
(
t, x(t)

)
6 −α < 0 ∀x ∈ D − {0} ∀t > a, (3)

where 0 < β 6 1, and some α > 0.

Then the SP x = 0 to (1) is PAS. When D = Rn and the result holds, then the SP x = 0
is globally PAS.

Proof. Since V (t, x) satisfies inequality (3) of (A2), it suffices to construct an equation
such that x = 0 should be PAS. We consider

CDβ
a+,tV

(
t, x(t)

)
= −λV

(
t, x(t)

)
− h(t) ∀t > a, ∀x ∈ D − {0}, (4)
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where λ > 0, and h : [a,∞) → [0,∞) is continuous. Clearly, Eq. (4) satisfies inequal-
ity (3). By letting W̄ (t) = V (t, x(t)), we now define an initial value problem

CDβ
a+,tW̄ (t) = −λW̄ (t)− h(t), W̄ (a) = Va > 0. (5)

Clearly, problem (5) has an analytic solution as follows [16]:

W̄ (t) = Eβ
(
−λ(t− a)β

)
W̄ (a)

−
t∫
a

(t− s)β−1Eβ,β
(
−λ(t− s)β

)
h(s) ds. (6)

Then from (6) one obtains

lim
t→∞

W̄ (t) 6 0. (7)

Note that Mittag-Leffler functionsEβ(−λ(t−a)β) andEβ,β(−λ(t−s)β) are nonnegative
[12], and Eβ(−λ(t − a)β) approaches 0 as t → ∞ [27]. As a result, one gets from (7)
and assumption (A1) that

lim
t→∞

∥∥x(t)
∥∥ = 0.

This completes the proof.

Theorem 2 [Fundamental stability theorem-II]. Let x = 0 be the SP of (1), and let
x = 0 in the domain D. Assume that there exists a C1-function V (t, x) : [a,∞) ×D ⊆
Rn → [0,∞) satisfying

(A1) m1‖x‖r1 6 V (t, x) 6 µ(t)‖x‖r2 , where m1, r1, r2 > 0 with µ(t) continuous
on [a,∞), and m1 6 µ(t), 1 6 µ(t), r1 6 r2, and r2 > 1;

(A2) CDβ
a+,tV (t, x(t)) is uniformly negative semidefinite on the nontrivial solution

x(t) of (1), i.e.,

CDβ
a+,tV

(
t, x(t)

)
6 −α 6 0 ∀x ∈ D, ∀t > a, (8)

where 0 < β 6 1, and some α > 0.

Then the SP x = 0 to (1) is PS. When D = Rn and the result holds, then the SP x = 0 is
globally PS.

Proof. Employing the procedure of Theorem 1, we consider the equation

CDβ
a+,tV

(
t, x(t)

)
= −ĥ(t)− λV

(
t, x(t)

)
∀x ∈ D, ∀t > a, (9)

where λ > 0, and ĥ : [a,∞) → [0,∞) is continuous. Observe that Eq. (9) satisfies
inequality (8). By letting W̄ (t) = V (t, x(t)), we define a fractional differential equation
as follows:

CDβ
a+,tW̄ (t) = −λW̄ (t)− ĥ(t) (10)
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with initial condition W̄ (a) = Va > 0. The explicit solution to (10) is given by [16]

W̄ (t) = Eβ
(
−λ(t− a)β

)
W̄ (a)

−
t∫
a

(t− s)β−1Eβ,β
(
−λ(t− s)β

)
ĥ(s) ds. (11)

Then from (11) one has

W̄ (t) 6 W̄ (a). (12)

Note that Eβ(−λ(t− a)β) and Eβ,β(−λ(t− s)β) are nonnegative [12, 27]:

0 < Eβ
(
−λ(t− a)β

)
6 1 ∀t > a.

Consequently, from assumption (A1) and (12) one obtains

∥∥x(t)
∥∥ 6

[
µ(a)

m1

∥∥x(a)
∥∥r2]1/r1

∀t > a.

Hence, the SP x = 0 is PS. This completes the proof.

Remark 1. The notion of “uniformly negative definite”, with a constant number α, is
not standard in Theorems 1 and 2; see [15]. However, one can always construct such
a constant α to think of fundamental stability theorems. It should be noted that finding
new proofs to Theorems 1 and 2 remains open and quite challenging in qualitative stability
theory.

4 Inequalities

We introduce the below-mentioned lemmas that open the use of many Lyapunov functions
in the application of Lyapunov direct method.

Lemma 1. Suppose that V be a real-valued C1-function on [a,∞) × Ω ⊆ Rn, which is
convex w.r.t. its arguments. Let x : [a,∞)→ Ω ⊆ Rn be a continuous function, which is
differentiable on (a,∞). Then we have

CDω
a+,tV

(
t, x(t)

)
6
∂V (t, x(t))

∂t
CDω

a+,tt+

(
∂V (t, x(t))

∂x(t)

)T
CDω

a+,tx(t) (13)

for all t > a and for all ω ∈ (0, 1].

Proof. To prove inequality (13) by using the Caputo derivative (2), we need to show that
the following inequality holds:

t∫
a

(t− s)−ω

Γ(1− ω)
G(s, t) ds 6 0, (14)
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where

G(s, t) =
∂V (s, x(s))

∂s
− ∂V (t, x(t))

∂t

+

(
∂V (s, x(s))

∂x(s)

)T
d

ds
x(s)−

(
∂V (t, x(t))

∂x(t)

)T
d

ds
x(s).

Define

Q(s, t) = V
(
s, x(s)

)
− V

(
t, x(t)

)
−
(
∂V (t, x(t))

∂x(t)

)T(
x(s)− x(t)

)(∂V (t, x(t))

∂t

)
(s− t).

Then one obtains

d

ds
Q(s, t) =

∂V (s, x(s))

∂s
+

(
∂V (s, x(s))

∂x(s)

)T
d

ds
x(s)

−
(
∂V (t, x(t))

∂x(t)

)T
d

ds
x(s)− ∂V (t, x(t))

∂t
.

Clearly, d/dτQ(s, t) = G(s, t). Then inequality (14) becomes

t∫
a

(t− s)−ω

Γ(1− ω)

d

ds
Q(s, t) ds 6 0.

Integrating by parts, one obtains

t∫
a

(t− s)−ω

Γ(1− ω)

d

ds
Q(s, t) ds =

(t− s)−ωQ(s, t)

Γ(1− ω)

∣∣∣∣
s=t

− (t− a)−ωQ(a, t)

Γ(1− ω)

− ω

Γ(1− ω)

t∫
a

Q(s, t)

(t− s)ω+1
ds. (15)

By using l’Hôpital rule, it can be obtained that

(t− s)−ωQ(s, t)

Γ(1− ω)

∣∣∣∣
s=t

= lim
s→t

(t− s)−ωQ(s, t)

Γ(1− ω)
= 0.

Further, the convexity of V (t, x) yields Q(s, t) > 0; see [3]. It is immediate that (15) is
bounded from above by 0. Thus, we conclude inequality (14).

Remark 2. Lemma 1 can be found in the work by Wu [33], where the author has not
considered initial time a to the interval (−∞, 0). As a result, the version of Lemma 1 of
[33] cannot be applied to system (1) if initial time a is placed on (−∞, 0). In comparison
to the inequality of Wu [33], Lemma 1 provides promising implications to random initial-
time system (1).
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Lemma 2. Suppose that V is a real-valued C1-function on [a,∞) × Ω ⊆ Rn, which
is convex w.r.t. Ω. Let x : [a,∞) → Ω ⊆ Rn be a continuous function, which is
differentiable on (a,∞). Then we have

CDω
a+,tV

(
t, x(t)

)
6

(
∂V (t, x(t))

∂x(t)

)T
CDω

a+,tx(t) (16)

for all t > a and for all ω ∈ (0, 1].

Proof. To prove inequality (16), it suffices to show that the following inequality holds:

t∫
a

(t− s)−ω

Γ(1− ω)
G(s, t) ds 6 0, (17)

where

G(s, t) =
∂V (s, x(s))

∂s
+

(
∂V (s, x(s))

∂x(s)

)T
d

ds
x(s)−

(
∂V (t, x(t))

∂x(t)

)T
d

ds
x(s).

Set

Q(s, t) = V
(
s, x(s)

)
− V

(
t, x(t)

)
−
(
∂V (t, x(t))

∂x(t)

)T(
x(s)− x(t)

)
.

Then one obtains

d

ds
Q(s, t) =

∂V (s, x(s))

∂s
+

(
∂V (s, x(s))

∂x(s)

)T
d

ds
x(s)−

(
∂V (t, x(t))

∂x(t)

)T
d

ds
x(s).

Clearly, (d/ds)Q(s, t) = G(s, t). Then (17) reduces to

t∫
a

(t− s)−ω

Γ(1− ω)

d

ds
Q(s, t) ds 6 0.

Utilizing integration of parts, one can compute

t∫
a

(t− s)−ω

Γ(1− ω)

d

ds
Q(s, t) ds =

(t− s)−ωQ(s, t)

Γ(1− ω)

∣∣∣∣
s=t

− (t− a)−ωQ(a, t)

Γ(1− ω)

− ω

Γ(1− ω)

t∫
a

Q(s, t)

(t− s)ω+1
ds. (18)

By using l’Hôpital rule and the convexity of V (t, x), it is immediate that (18) is bounded
from above by 0. Thus, we conclude inequality (17).
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5 Applications through examples

In this section, we provide some systems that deal with some applications of derived
theorems in the analysis of stability.

Example 1. We consider the following linear nonautonomous positive initial time system:

CDω
1+, tx1(t) = −x1 −

1√
1 + t

x2(t),

CDω
1+, tx2(t) = x1(t)− x2(t)

(19)

subject to the initial conditions x1(1) = x11 and x2(1) = x21, where ω ∈ (0, 1].

First, we let V (t, x) = x2
1 + (1 + 1/

√
1 + t)x2

2, where x = (x1, x2)T. Set β = ω.
Then we get, by using Lemma 1 for system (1),

CDβ
1+, tV

(
t, x(t)

)
6 − 1

2
√

1 + t
x2

2(t)CDβ
1+, tt+ 2x1(t)CDβ

1+, tx1(t)

+ 2

(
1 +

1√
1 + t

)
x2(t)CDβ

1+, tx2(t)

= − 1

2
√

1 + t
x2

2(t)
(t− 1)1−β

Γ(2− β)
+ 2x1(t)CDβ

1+, tx1(t)

+ 2

(
1 +

1√
1 + t

)
x2(t)CDβ

1+, tx2(t)

6 −2x2
1(t) + 2x1(t)x2(t)− 2x2

2(t)

= −
(
x1(t) x2(t)

)( 2 −1
−1 2

)(
x1(t)
x2(t)

)
6 −

(
x2

1(t) + x2
2(t)

)
= −r2(t) 6 −r2 < 0

for all (x1, x2)T ∈ R2 − {(0, 0)T} and for all t > 1, where r(t) is continuous and
satisfies r2(t) > r2 = x2

1 + x2
2, and r is a positive constant. Set α = r2. Consequently,

by Theorem 1, the SP x = 0 to (19) should be globally PAS. To see the trajectory
of (19), we take a suitable value ω = 0.7 and set the initial conditions as x1(1) = 20
and x2(1) = −10. The obtained trajectory of (19) using the approach in [7] is shown in
Fig. 1. It clearly indicates that the state curves approach 0 as time increases toward∞.

Remark 3. In Example 1, the importance of Theorem 1 is shown for the positive initial
time nonautonomous system. Theorem 1 provides a new tool with the point asymptotic
analysis. We find that the existing Lyapunov theory, as stated in [5, 11, 21, 22, 31], cannot
be applied to (1). In comparison to these previous research, the present theorem provides
new platforms for the analysis of the system in large scale and tackling the case when the
initial time is positive.
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Figure 1. State trajectories of (19) with order ω = 0.7 starting from initial values x1(1) = 20 and x2(1) =
−10. It demonstrates PAS.

Example 2. We consider the following nonlinear nonautonomous negative initial time
system:

CDω
−10+,tx(t) = −

1 + t(t+10)1−ω

Γ(2−ω) + t2

(1 + t2)
x(t)− x3(t) (20)

with x(−10) = x−10, where ω ∈ (0, 1].

We introduce V (t, x) = x2 + t2x2 and set β = ω. Then, by Lemma 1, one obtains
the following on the nontrivial solution x(t) to (20):

CDω
−10+,tV

(
t, x(t)

)
6 2tx2(t)CDω

−10+,tt+ 2
(
1 + t2

)
x(t)

(
−

1 + t(t+10)1−ω

Γ(2−ω) + t2

(1 + t2)
x(t)

)
− 2
(
1 + t2

)
x4(t)

= 2tx2(t)
(t+ 10)1−ω

Γ(2− ω)
− 2

(
1 +

t(t+ 10)1−ω

Γ(2− ω)
+ t2

)
x2(t)

− 2
(
1 + t2

)
x4(t)

= −2
(
1 + t2

)(
x2(t) + x4(t)

)
6 −

(
1 + t2

)
x2(t) = −r2(t) 6 −r2 < 0

for all x ∈ R − {0} and for all t > −10, where r(t) is continuous and satisfies r2(t) >
r2 = x2, and r is a positive constant. Setα = r2. Observe that assumptions (A1) and (A2)
of Theorem 1 hold. Thus, by Theorem 1, the SP x = 0 to (20) should be globally PAS.
For the computational demonstration, we consider the values ω = 0.8 and x(−10) = 20.
The numerical simulation is depicted in Fig. 2. It indicates that the nontrivial solution
to (20) approaches 0 as time increases toward∞.

Remark 4. The importance of Theorem 1 is shown in Example 2 where the initial time
is t = −10. It provides a new tool for answering the point asymptotic stability. We
discover that all the existing Lyapunov theory [5,11,21,22,31,33] cannot be applicable to
this problem. In comparison to the previous research, the applied theorem provides new
platforms for the system analysis in large scale.
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Figure 2. State curve of (20) with order ω = 0.8 starting from initial value x(−10) = 20. It demonstrates
PAS.

Figure 3. The PAS system (21) where the values ω = 0.9 and initial condition x(−50) = 100 are taken.

Example 3. We consider the nonautonomous negative initial time system

CDω
−50+,tx(t) = − x(t)

1 + cos2(t)
(21)

with initial condition x(−50) = x−50, where fractional order ω ∈ (0, 1].

We propose V (t, x) = x2 + cos2(t)x2 and set order β = ω. Then, by using Lemma 2
for system (21), one obtains

CDω
−50+,tV

(
t, x(t)

)
6 2x(t)

(
1 + cos2(t)

)(
− x(t)

1 + cos2(t)

)
= −2x2(t) 6 −x2(t) = −r2(t) 6 −r2 < 0

for all x ∈ R − {0} and for all t > −50, where r(t) is continuous and satisfies r2(t) >
r2 = x2, and r is a positive constant. Set α = r2. Thus, according to Theorem 1, the
zero SP to (21) should be globally PAS. Here we take a suitable value ω = 0.9 and initial
condition x(−50) = 100 in system (21).

The evolution of the trajectory of system (21) is presented in Fig. 3. It demonstrates
the PAS of zero SP to (21) when ω = 0.9.

Remark 5. Theorem 3 provides a new tool for the analysis of Example 3 when initial
time t = −50. We observe that the results in [5, 11, 21, 22, 31, 33] are not suitable to be
applicable to (3). In contrast to these research, Theorem 3 provides new platforms for the
system analysis in large scale.
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Figure 4. The PS system (22) where the values ω = 0.4 and initial conditions x1(0) = 0.5 and x2(0) = 0 are
considered.

Example 4. We consider the following nonautonomous zero initial time system:
CDω

0+,tx1(t) = x1(t)
(
x2

1(t) + x2
2(t)− 1

)
− 5e−2tx1(t)x3

2(t),

CDω
0+,tx2(t) = x2(t)

(
x2

1(t) + x2
2(t)− 1

)
+ 5e−2tx2

1(t)x2
2(t)

(22)

subject to x1(0) = x10 and x2(0) = x20, where ω ∈ (0, 1].

We demonstrate here by using V (t, x) = x2
1+x2

2, where x = (x1, x2)T. Subsequently,
Lemma 2 yields, along (22),

CDω
0+,tV

(
t, x(t)

)
6 2
(
x2

1(t) + x2
2(t)

)(
x2

1(t) + x2
2(t)− 1

)
= 2r2(t)

(
r2(t)− 1

)
6 2r2

(
r2 − 1

)
= −α 6 0

for all x ∈ Ω1 and for all t > 0, whereΩ1 = {(x1, x2)T: x2
1+x2

2 6 1}, r(t) is continuous
and satisfies r2(t) > r2 = x2

1 + x2
2, and r is a positive constant. Set α = 2r2(1− r2). In

order to show the applicability of Theorem 2, we set β = ω. Consequently, by Theorem 2,
one can immediately ensure that the trivial solution of (22) should be locally PS. For the
computational demonstration, we set the value ω = 0.4 and choose the initial conditions
x1(0) = 0.5 and x2(0) = 0. The state curves (trajectories) of (22) are presented in Fig. 4,
which demonstrates the predictability of (22).

Remark 6. In Example 4, Theorem 2 is shown to be effective when initial time t = 0.
On the other hand, we find that [9, Thm. 3], [11, Prop. 6], [31, Thm. 3], and [33, Thm. 3.1]
are quite interesting, and they may be applicable to (22).

Example 5. Consider a simple application of engineering control system designed prob-
lem as described in (23). Does system (23) give rise to any new behaviour? Is it possible
to stabilize any such behaviour by using a linear state feedback control law? Here we set
up a well-known Lorenz system as follows:

CDω
−33+,tx1(t) = 10

(
x2(t)− x1(t)

)
+ u1(t),

CDω
−33+,tx2(t) = x1(t)

(
28− x3(t)

)
− x2(t) + u2(t), (23)

CDω
−33+,tx3(t) = x1(t)x2(t)− 8

3
x3(t) + u3(t)

with xi(−33) = Ci for i = 1, 2, 3, where control input ui(t) needs be designed.
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Figure 5. Unpredictability motion of system (23). A typical chaotic trajectory of the chaotic system (23)
when ui(t) = 0 for i = 1, 2, 3, where the values ω = 0.997 and initial conditions x1(−33) = 0.01,
x2(−33) = 0.02, and x3(−33) = 0.03 are taken.

We take ω = 0.997. Whenever the inputs are taken as u1(t) = u2(t) = u3(t) = 0,
system (23) has three stationary points: xe1 = (0, 0, 0)T, xe2 = (

√
72,
√

72, 27)T, xe3 =
(−
√

72,−
√

72, 27)T, and exhibits a chaotic trajectory (all stationary points are not PAS)
as shown in Fig. 5. We design the linear control law ui(t) = −kixi(t), ki > 0 for
i = 1, 2, 3, where the values of ki are required to be chosen. By using the control law,
system (23) now get simplified to

CDω
−33+,tx1(t) = 10

(
x2(t)− x1(t)

)
− k1x1(t),

CDω
−33+,tx2(t) = x1(t)

(
28− x3(t)

)
− x2(t)− k2x2(t),

CDω
−33+,tx3(t) = x1(t)x2(t)− 8

3
x3(t)− k3x3(t)

(24)

with xi(−33) = Ci for i = 1, 2, 3. In order to analyse system (24), we invoke Theorem 1.
We take autonomous function V (t, x) = x2

1 + x2
2 + x2

3, where x = (x1, x2, x3)T. By
using Lemma 1 or Lemma 2, we get

CDω
−33+,tV

(
t, x(t)

)
6 2x1(t)CDω

−33+,tx1(t) + 2x2(t)CDω
−33+,tx2(t)

+ 2x3(t)CDω
−33+,tx3(t)

= −2k1x
2
1(t) + 20x1(t)x2(t)− 20x2

1

+ 56x1(t)x2(t)− 2x1(t)x2(t)x3(t)− 2x2
2(t)

− 2k2x
2
2(t) + 2x3(t)x1(t)x2(t)− 16

3
x2

3(t)− 2k3x
2
3(t)

6 −(2k1 − 18)x2
1(t)− (2k2 − 36)x2

2(t)

−
(

2k3 +
16

3

)
x2

3(t). (25)

We assume the following conditions:

k1 > 9, k2 > 18, k3 > 0. (26)
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Figure 6. The PAS of chaotic system (24) with a control action, where ω = 0.997, k1 = 10, k2 = 20, and
k3 = 1.

Denote by λ = {(2k1 − 18), (2k2 − 36), (2k3 + 16/3)}. Clearly, if conditions (26) hold,
one has λ > 0. Then it follows from (25) that

CDω
−33+,tV

(
t, x(t)

)
6 −λ

(
x2

1(t) + x2
2(t) + x2

3(t)
)

= −λr2(t) 6 −λr2 < 0

for all t > a and for all x ∈ R3−{0}, where r(t) is continuous and satisfies r2(t) > r2 =
x2

1+x2
2+x2

3, and r is a positive constant. Set α = λr2. Thus, by Theorem 1, the SP xe1 of
system (24) is globally PAS if the control parameters satisfy conditions (26). As a result,
the control system (23) is globally PAS under the mentioned control law. We now take val-
ues of control parameters as k1 = 10, k2 = 20, and k3 = 1. For these choices of control
parameters, the numerical responses of system (24) is presented in Fig. 6, where the values
ω = 0.997 and initial conditions x1(−33) = 0.01, x2(−33) = 0.02, and x3(−33) =
0.03 are taken. It indicates that the evolution of the chaotic trajectory of the state of
system (24) may be controlled to a desired SP xe1 under the influence of linear state
feedback control law provided the control parameters satisfy the criteria given by (26).

Remark 7. In Example 5, the famous Lorenz system (see, e.g., [13, 18, 23]) exhibits
a trajectory that seems to be unpredictable (irregular) at any future instant when the initial
time is −33. Using the linear state feedback control methodology (see, e.g., [18–20]),
we demonstrate that it is possible to stabilize the unpredictability of the motion of such
a system. Theorem 1 provides a new tool that guarantees the possibility of stabilizing the
irregular motion to a regular one.

Remark 8. In [6], Diethelm indicated that, in the formulation of real-world models,
e.g., dynamics of a dengue fever outbreak, the biological parameters can make real-order
models technically somewhat different because the dimensions of the left-hand side and
right-hand side of equations in Examples 1–5 may not be the same. As a result, it is not
possible to balance the system, and the exact formulation could be a new and modified

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


New formulation of Lyapunov direct method for nonautonomous real-order systems 209

one. It is obvious that all the models in Examples 1–5 are theoretical in nature and they
seem dimensionally inconsistent. Since the examples are regarded without correction to
exact balance between the left-hand and right-hand sides, one can use the suggested
theoretical approach in practical real-world applications dealing with quantifying physical
quantities while maintaining dimensional consistency.

6 Conclusions

In this paper, we have focused on the stability of nonautonomous real-order systems,
where the initial time could be negative, zero, or positive. We have developed Lyapunov
theorems for analysing the point stability defined in the sense of the Caputo derivative.
These theorems show some new distinctive features such as new inequalities and their
wider applicability as demonstrated in Section 5 in contrast to the earlier Lyapunov idea
[5, 11, 21, 22, 31, 33]. We believe that these Lyapunov theorems seem like fundamen-
tal theorems for real-order systems. Indeed, we have made this claim in the sense that
Theorems 1, 2 are fundamental theorems due to their crux of assumptions and proofs. We
also believe that the finding of new proofs to Theorems 1 and 2 will certainly enrich the
development of advanced Lyapunov theory. As a result, we term the function V associated
with Theorems 1 and 2 for system (1) a fundamental function in our investigation. In
the end, we have shown that this study has certain advantages in comparison to existing
different versions of Lyapunov theorems.
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