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Abstract. By deriving the expression of Green function and some of its special properties
and establishing appropriate substitution and appropriate cone, the existence of unique iterative
positive, error estimation, and convergence rate of approximate solution are obtained for singular
p-Laplacian Caputo–Hadamard fractional differential equation with infinite-point boundary
conditions. Nonlinearities involve derivative terms that make our analysis difficult in the course of
this research, and we deal with the difficulty of derivative terms by making appropriate substitutions.
An example is given to demonstrate the validity of our main results.
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1 Introduction

Fractional-order systems have been shown to be more accurate and realistic than integer-
order models, and it also provides an excellent tool to describe the hereditary properties
of material and processes, particularly, in viscoelasticity, electrochemistry, porous media,
and so on. As a result, there has been a significant development in the study of fractional
differential equations in recent years; readers can refer to [9, 14–17, 25, 27, 28]. Guo et
al. have also made some achievements in this regard, for example, [10–12]. In terms of
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dynamics, we also participated in some work [8, 22, 26, 29] and later prepared to build
fractional-order dynamics models and establish the existence theorem of solutions. There
are many ways to deal with the solution of fractional differential equations such as spectral
analysis [21], Guo–Krasnoselskii’s fixed point theorem [20], mixed monotone operator
method [24], Bohnenblust–Karlin FP approaches [13], the mountain pass theorem [6],
Mawhin’s continuation theorem [7], and so on. Up till now, most of the results are
obtained in the sense of fractional derivatives such as Caputo and Riemann–Liouville, and
there are few models under the Caputo–Hadamard fractional derivatives. Compared with
Caputo and Riemann–Liouville fractional derivative, the Caputo–Hadamard fractional-
order derivative contains logarithmic function of arbitrary order, which is invariant to
dilation on the half-axis. Boutiara [4] studied the following Caputo–Hadamard fractional
differential equation:

CHDr
1+x(t) = f

(
t, x(t)

)
, t ∈ J = [1, T ], 0 < r 6 1,

with three-point boundary condition

αx(1) + βx(T ) = λIq1+x(η) + δ, q ∈ (0, 1],

where CHDr
1+ denotes the Caputo–Hadamard fractional derivative, and Iq1+ denotes the

standard Hadamard fractional integral, 0 < r, q 6 1, f : [1, T ] × R → R is continuous,
α, β, λ, and δ are real constants, and η ∈ (1, T ). The authors obtained the uniqueness
results by means of Boyd and Wong’s and Banach’s fixed point theorems. Ardjouni [3]
discussed the existence and uniqueness of positive solutions of the nonlinear fractional
differential equation CHDα

1+y(t) = f(t, x(t)), t ∈ J , with integral boundary conditions
y(1) = b

∫ e

1
y(s) ds + d, where J = [1, e], CHDα

1+ denotes the Caputo–Hadamard
fractional derivative, 0 < α 6 1, b > 0, d > 0, and f : J × [0,∞) → [0,∞) is a given
continuous function. The authors discussed the existence and uniqueness of positive solu-
tions by some methods. Derbazi [5] discussed the following Caputo–Hadamard fractional
differential problem:

CHDα
1+u(t) = f

(
t, u(t)

)
, t ∈ J := [1, T ],

a1u(1) + b1
CHDγ

1+u(1) = λH1 I
σ1

1+u(η1), 1 < η1 < T, σ1 > 0,

a2u(T ) + b2
CHDγ

1+u(T ) = λH2 I
σ2

1+u(η2), 1 < η1 < T, σ2 > 0,

where CHDµ
1+ is the Caputo–Hadamard fractional derivative of order µ ∈ {α, γ},

1 < α 6 2, 0 < γ 6 1, HIθ1 is the Hadamard fractional integral of order θ > 0,
θ ∈ {σ1, σ2}, f : J × R → R is a given continuous function, and ai, bi, λi, i = 1, 2,
are suitably chosen real constants. In [23], Makhlouf consider the following Caputo–
Hadamard fractional differential equation:

CHDα
1+%(ϑ) = f

(
ϑ, %(ϑ)

)
+ g
(
ϑ, %(ϑ)

) dW (ϑ)

dϑ
,

where the initial condition is %(1) = ω, f : [1, Λ]×Rd → Rd is measurable. The authors
get the existence and uniqueness of solution of Caputo–Hadamard fractional stochastic
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differential equations via the Banach fixed point method and the Ulam–Hyers stability,
and this equation is analyzed using the generalized and the classical Gronwall inequalities.

Motivated by the excellent results above, this paper will be devoted to considering the
infinite-point singular p-Laplacian Caputo–Hadamard fractional differential equation

HDβ
1+

(
ϕp
(
CHDγ

1+u
))

(t) + f
(
t, u(t), u′(t)

)
= 0, 1 < t < e, (1)

under infinite-point boundary condition

u(1) = u′(1) = · · · = u(i−1)(1) = u(i+1)(1) = · · · = u(n−1)(1) = 0,

u(i)(1) =

∞∑
j=1

ηju(ξj),
CHDγ

1+u(1) = 0,

ϕp
(
CHDγ

1+u(e)
)

=

∞∑
j=1

ζjϕp
(
CHDγ

1+u(ξj)
)
,

(2)

where β, γ ∈ R+ = [0,+∞), 1 < β 6 2, n − 1 < γ 6 n (n > 3), γ > i, p-Laplacian
operator ϕp is defined as ϕp(s) = |s|p−2s, p, q > 1, 1/p+ 1/q = 1, and 0 < ηi, ζi < 1,
1 < ξi < e (i = 1, 2, . . . ,∞), f ∈ C((1, e) × R+ × R+, R+) (R+ = [0,+∞)),
f(t, x1, x2) has singularity at t = 1, e, and CHDβ

1+u is the standard Caputo–Hadamard
derivative.

In this paper, the iterative scheme converging to the unique solution will be con-
structed, and then the estimates on the error and the convergence rate of approximate
solution are also obtained. Compared with [30], the equation in this paper is p-Laplacian
fractional differential equation, and the method which we used in this paper is iterative
sequence. Compared with [18], derivative is involved in the nonlinear terms for BVP (1)–
(2), and iterative positive solutions are obtained for BVP (1)–(2).

2 Preliminaries and lemmas

In this section, we introduce definitions and preliminary results, which are used through-
out this paper. Now we list a condition below to be used later in the paper.

(H0) f : (1, e) × R+ × R+ → R+ is continuous and nondecreasing in the second
and the third variables, and there exists r, σ ∈ (0, 1) such that for all (t, x, y) ∈
(1, e)× [0,+∞)× [0,+∞), we have

f(t, rx, ry) > rσf(t, x, y). (∗)

Remark 1. If (H0) holds, then for any c > 1, σ ∈ (0, 1), and (t, x, y) ∈ (1, e)×[0,+∞)×
[0,+∞), inequality (∗) is equivalent to

f(t, cx, cy) 6 cσf(t, x, y). (∗∗)

Now, we state some lemmas, which are basic and used in this paper.
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Definition 1. (See [2, 19].) The Caputo–Hadamard fractional derivative of order β > 0
of a continuous function y ∈ AC([1, T ],R) is given by

CHDβ
1+y(t) =

1

Γ(n− β)

t∫
1

(
ln
t

s

)β−n+1(
s

d

ds

)n
y(s)

ds

s
,

where n = [β] + 1, [β] denotes the integer part of the number β, provided that the right-
hand side is pointwise defined on (0,∞).

Definition 2. (See [1, 19].) Let a > 0, then the Hadamard-type fractional left integral of
order β > 0 of a function h : [a,∞)→ R, h ∈ L1[a,∞), is defined by

HIβa+h(t) =
1

Γ(β)

t∫
a

(
ln
t

ς

)β−1
h(ς)

dς

ς
, t > a.

Definition 3. (See [1, 19].) Let a > 0, h : [a,∞) → R, tn−1h(n−1)(t) ∈ AC[a,∞),
n ∈ N, β ∈ (n− 1, n). Then the Hadamard fractional left derivative of from [a,+∞) is
defined by

HDβ
a+h(t) =

1

Γ(n− β)
(t

d

dt
)n

t∫
a

(
ln
t

ς

)n−β−1
h(ς)

dς

ς
, t > a.

Lemma 1. (See [19].) Let n− 1 < β 6 n, n ∈ N, and x ∈ Cn([1, T ]). Then(
CHDβ

1+
HIβ1+x

)
(t) = (x)(t),

(HIβ1+
CHDβ

1+x
)
(t) = x(t) + Σn−1k=0ck(ln t)k,

where β, ck ∈ R, k = 1, 2, . . . , n− 1.

Lemma 2. (See [1, 19].) For β ∈ (n− 1, n), n ∈ N, h ∈ L[a,∞), a > 0, the fractional
equation HDβ

a+x(t) + ω(t) = 0, t > a, has the following expression of solution:

x(t) =

n∑
i=1

χi

(
ln
t

a

)β−i
− 1

Γ(β)

t∫
a

(
ln
t

ς

)β−1
ω(ς)

dς

ς
, t > a,

where χi ∈ R, k = 1, 2, . . . , n.

Let u(t) =
∫ t
1
v(t) dt/t, v(t) ∈ C[1, e]. Then BVP (1)–(2) reduces to the following

modified boundary value problem:

HDβ
1+

(
ϕp
(
HDγ−1

1+ v(t)
))

+ f

(
t,

t∫
1

v(t)
dt

t
, v(t)

)
= 0, 1 < t < e, (3)
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with nonlocal boundary conditions

v(1) = v′(1) = · · · = v(i−2)(1) = v(i)(1) = · · · = v(n−2)(1) = 0,

v(i−1)(e) =

∞∑
j=1

ηjv(ξj),
CHDγ−1

1+ v(1) = 0,

ϕp
(
CHDγ−1

1+ v(e)
)

=

∞∑
i=1

ζjϕp
(
CHDγ−1

1+ v(ξj)
)
.

(4)

Lemma 3. Given y ∈ L1[1, e] ∩ C(1, e), then the solution of the equation

CHDγ−1
1+ v(t) + y(t) = 0, 1 < t < e, (5)

with boundary condition v(i−1)(e) =
∑∞
j=1 ηjv(ξj) can be expressed by

v(t) =

e∫
1

G(t, s)y(s)
ds

s
, t ∈ [1, e], (6)

where

G(t, s) =
1

∆Γ(γ − 1)


(ln t)i−1Γ(γ − 1)P (s)(ln e

s )γ−i−1 −∆(ln t
s )γ−2,

1 6 s 6 t 6 e,

(ln t)i−1Γ(γ − 1)P (s)(ln e
s )γ−i−1, 1 6 t 6 s 6 e,

in which

P (s) =
1

Γ(γ − i)
− 1

Γ(γ − 1)

∑
s6ξj

ηj

(
ln

ξj
s

ln e
s

)γ−2(
ln

e

s

)i−1
, (7)

∆ = (i− 1)!−
∞∑
j=1

ηj(ln ξj)
i−1. (8)

Proof. By means of Lemma 1, we reduce (5) to an equivalent integral equation

v(t) = −HIγ−11+ y(t) + C1 + C2(ln t) + · · ·+ Ci−1(ln t)i−2 + Ci(ln t)
i−1

+ Ci+1(ln t)i + · · ·+ Cn(ln t)n−2

for Ci ∈ R, i = 1, 2, . . . , n. From v(1) = 0 we have C1 = 0. Taking the derivative of the
above formula, we have

v′(t) = −HIγ−21+ y(t) + C2
1

t
+ · · ·+ Ci−1(i− 2)(ln t)i−3

1

t
+ (i− 1)Ci

1

t
(ln t)i−2

+ · · ·+ Cn
1

t
(n− 2)(ln t)n−3.
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From v′(1) = 0 we have C2 = 0. Taking the derivative of this formula step by step and
combining with v′′(1) = · · · = v(i−2)(1) = v(i)(1) = · · · = v(n−2)(1) = 0, we have
Cj = 0, j > 3, j 6= i. Consequently, we get

v(t) = Ci(ln t)
i−1 − HIγ−11+ y(t),

hence, we have

v(i−1)(e) = (i− 1)!Ci − HIγ−i1+ y(e). (9)

On the other hand, combining v(i−1)(e) =
∑∞
j=1 ηjv(ξj) with (9), we get

Ci =

e∫
1

(ln e
s )γ−i−1

Γ(γ − i)∆
y(s)

ds

s
−
∞∑
j=1

ηj

ξj∫
1

(ln
ξj
s )γ−2

Γ(γ − 1)∆
y(s)

ds

s

=

e∫
1

(ln e
s )γ−i−1P (s)

∆
y(s)

ds

s
,

where P (s) is as in (7), and ∆ is as in (8). Hence,

v(t) = Ci+1(ln t)i−1 − HIγ−11+ y(t)

= −
t∫

1

∆(ln t
s )γ−2

Γ(γ − 1)∆
y(s)

ds

s
+

e∫
1

(ln e
s )γ−i−1(ln t)i−1P (s)

∆
y(s)

ds

s
.

Therefore, G(t, s) is as in (6).

Lemma 4. Let f ∈ C((1, e] × (0,+∞)2, [0,+∞)). Then BVP (3)–(4) has a unique
solution

v(t) =

e∫
1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ,HI1+v(τ), v(τ)

) dτ

τ

)
ds

s
, (10)

where G(t, s) is as in (6), and

H(t, s) =
1

∆Γ(β)


Γ(β)Q(s)(ln t)β−1(ln e

s )β−1 −∆(ln t
s )β−1,

1 6 s 6 t 6 e,

Γ(β)Q(s)(ln t)β−1(ln e
s )β−1, 1 6 t 6 s 6 e,

in which

Q(s) =
1

Γ(β)
− 1

Γ(β)

∑
s6ξj

ζj

(
ln

ξj
s

ln e
s

)γ−2
, ∆ = 1−

∞∑
j=1

ζj(ln ξj)
β−1. (11)
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Proof. Let y ∈ C[1, e], v̂(t) = ϕp(
HDγ−1

1+ v)(t). Consider the boundary value problem

HDβ
1H
v̂(t) + y(t) = 0, 1 < t < e,

v̂(1) = 0, v(e) =

∞∑
j=1

ζj v̂(ξj).
(12)

By means of the Lemma 2, we reduce (12) to an equivalent integral equation

v̂(t) = −HIβ1+y(t) + C1(ln t)β−1 + C2(ln t)β−2.

From v̂(1) = 0 we have C2 = 0. Consequently, we get

v̂(t) = C1(ln t)β−1 − HIβ1+y(t). (13)

On the other hand, v̂(1) =
∑∞
j=1 ζj v̂(ξj), and combining this with (13), we get

C1 =

e∫
1

(ln e
s )β−1

Γ(β)∆
y(s)

ds

s
−
∞∑
j=1

ζj

ξj∫
1

(ln
ξj
s )β−1

Γ(β)∆
y(s)

ds

s

=

1∫
0

(ln e
s )β−1Q(s)

∆
y(s)

ds

s
,

where Q(s) and ∆ are as in (11). Hence,

v̂(t) = C1(ln t)β−1 − HIβ1+y(t)

= −
t∫

1

∆

(
ln t

s

)β−1
Γ(β)∆

y(s) ds+

e∫
1

(ln e
s )β−1Q(s)

∆
y(s) ds.

Therefore, H(t, s) is as in (10).

Lemma 5. The Green function (6) has the following property:

∆(ln t)i−1g(s) 6 G(t, s) 6 a(ln t)i−1, t, s ∈ [1, e].

where g(s) = (ln(e/s))γ−i−1[1− (ln(e/s))i−1], a = 1/∆Γ(γ − i).

Proof. First, we prove

∆(ln t)i−1
(

ln
e

s

)γ−i−1[
1−

(
ln

e

s

)i−1]
6 ∆Γ(γ − 1)G(t, s)

6 (ln t)i−1Γ(γ − 1)P (s)

(
ln

e

s

)γ−i−1
. (14)
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By direct calculation, we get P ′(s) > 0, s ∈ [1, e], and so P (s) is nondecreasing with
respect to s. For s ∈ [1, e], γ − 1 > i, we get

Γ(γ − 1)P (s)

= (γ − 2)(γ − 3) · · · (γ − i)−
∑
s6ξj

ηj

(
ln

ξj
s

ln e
s

)γ−1(
ln

e

s

)i−1
> Γ(γ − 1)P (1) = (γ − 2)(γ − 3) · · · (γ − i)−

∞∑
j=1

ηj(ln ξj)
γ−1

> (i− 1)!−
∞∑
j=1

ηj(ln ξj)
i = ∆. (15)

Then we prove (14). The right inequality of (14) is trivial. We have only to prove the left
inequality. If 1 6 s 6 t 6 e, we have ln t− ln s 6 ln t− ln t ln s = (1− ln s) ln t, which
implies that (

ln
t

s

)γ−2
6

(
ln

e

s

)γ−2
(ln t)γ−2.

Then, by γ − 1 > i and by (15), one has

∆Γ(γ − 1)G(t, s) = (ln t)i−1P (s)Γ(γ − 1)

(
ln

e

s

)γ−i−1
−∆

(
ln
t

s

)γ−2
> ∆

[
(ln t)i−1

(
ln

e

s

)γ−i−1
−∆

(
ln
t

s

)γ−2 ]
> ∆

[
(ln t)i−1

(
ln

e

s

)γ−i−1
−
(

ln
e

s

)γ−2
(ln t)γ−2

]
> ∆(ln t)i−1

(
ln

e

s

)γ−i−1[
1−

(
ln

e

s

)i−1 ]
.

If 1 6 t 6 s 6 e, by (15), then we have

∆Γ(γ − 1)G(t, s) = (ln t)i−1Γ(γ − 1)P (s)

(
ln

e

s

)γ−i−1
> ∆

[
(ln t)i−1

(
ln

e

s

)γ−i−1
−∆

(
ln
t

s

)γ−2 ]
> ∆

[
(ln t)i−1

(
ln

e

s

)γ−i−1
−
(

ln
e

s

)γ−2
(ln t)γ−2

]
> ∆(ln t)i−1

(
ln

e

s

)γ−i−1[
1−

(
ln

e

s

)i−1 ]
.

So the left inequality of (14) is proved. Moreover, by P (s) 6 1/Γ(γ − i), we easily get
Lemma 4.
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Lemma 6. Let ∆ > 0, then the Green functions defined by (6) satisfies:

(i) H : [1, e]× [1, e]→ R+ is continuous, and H(t, s) > 0 for all t, s ∈ (1, e);
(ii) The following inequality holds:

(ln t)β−1H(e, s) 6 H(t, s) 6 H(e, s), t, s ∈ [1, e],

in which

H(e, s) =
1

∆

(
Q(s)− ∆

Γ(β)

)
(ln e− ln s)β−1.

Proof. The proof is similar to that of Lemma 3 in [31], we omit it here.

Now we define a Banach space E with the norm

‖u‖ = max
{
u(t), u′(t)

}
,

a cone K on C[1, e], and an operator as follow. Let

K =
{
v ∈ E: v(t) > 0, t ∈ [1, e]

}
,

then K is a normal cone with normality constants 1 in the Banach space E. Next, we
define a subset of K by

Ke =
{
v(t) ∈ K: there exist two numbers Dv > 1 > dv > 0

such that dve(t) 6 v(t) 6 Dve(t)
}
,

where e(t) = (ln t)i−1, and

Av(t) =

e∫
1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+v(τ), v(τ)

) dτ

τ

)
ds

s
. (16)

Problem (3)–(4) has a positive solution if and only if v is a fixed point of A in Ke, that is,
problem (1)–(2) has a positive solution u.

3 Main results

To ensure the validity of Lemma 3, we need the following assumption.

(H1) For 0 < ηi, ζi < 1, 1 < ξi < e (i = 1, 2, . . . ,∞), we have

∞∑
j=1

ηj(ln ξj)
i−1 < (i− 1)!,

∞∑
j=1

ζj(ln ξj)
β−1 < 1.
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Theorem 1. Suppose conditions (H0), (H1) hold. If

0 <

e∫
1

f
(
τ, (ln τ)i, (ln τ)i−1

) dτ

τ
< +∞, (17)

then we have the following conclusions:

(i) The p-Laplacian fractional-order differential problem (3)–(4) has a positive solu-
tion v∗(t) ∈ K. Let u∗(t) =

∫ t
1
v∗(t) dt/t, v(t) ∈ K, that is, BVP (1)–(2) has

a positive solution u∗(t) ∈ Ke, where

Ke =

{
u(t) ∈ K: there exist two numbers Du > 1 > du > 0

such that
du
i

e(t) 6 u(t) 6
Du

i
e(t)

}
;

(ii) For any initial value v0 ∈ Ke, the sequence of functions defined by

vn =

e∫
1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ,HI1+vn−1(τ), vn−1(τ)

) dτ

τ

)
ds

s
, n > 1,

converges uniformly to v∗(t) on [1, e] as n → +∞, the corresponding sequence
u∗n(t) converges uniformly to u∗(t), and u∗(t) =

∫ t
1
v∗(t) dt/t, v(t) ∈ Ke;

(iii) There exists an error estimation

‖vn − v∗‖ 6
2√
ε

(
1− ε(q−1)

n)
‖v0‖,

that is, ‖un − u∗‖ 6 (2/
√
ε)(1 − ε(q−1)n)‖u0‖ and u0 =

∫ t
1
v0(t) dt/t, which

has the rate of convergence

‖vn − v∗‖ = o
(
1− ε(q−1)

n)
as n→ +∞,

that is,
‖un − u∗‖ = o

(
1− ε(q−1)

n)
as n→ +∞,

where 0 < ε < 1 is a positive constant which is determined by the initial value v0;
(iv) The positive solution is unique.

Proof. First, by (16), we know that a fixed point v of the operator A is a solution of the
fractional-order integro–differential problem (3)–(4), and let u(t) =

∫ t
1
v(t) dt/t, then

u(t) is a solution of the p-Laplacian fractional-order differential problem (1)–(2).
In what follows, we prove thatA is well defined andA : Ke → Ke. In fact, according

to the definition of Ke, for any v ∈ Ke, there are two numbers 0 < dv < 1 < Dv such
that

dve(t) 6 v(t) 6 Dve(t), t ∈ [1, e], (18)
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hence,

HI1+v(t) =

t∫
1

v(s)
ds

s
6 Dv(ln s)

i−1 ds

s
= Dv

t∫
1

(ln s)i−1 d(ln s)

=
Dv

i
(ln t)i, (19)

HI1+v(t) =

t∫
1

v(s)
ds

s
> dv(ln s)

i−1 ds

s
= dv

t∫
1

(ln s)i−1 d(ln s)

=
dv
i

(ln t)i. (20)

Thus, applying Lemmas 5, 6, formulas (17)–(19), and (H0), we get
e∫

1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+v(τ), v(τ)

) dτ

τ

)
ds

s

6

e∫
1

a(ln t)i−1ϕq

( e∫
1

H(e, s)f

(
τ,
Dv

i
(ln τ)i, Dv(ln τ)i−1

)
dτ

τ

)
ds

s

6 a

e∫
1

(
(Dv)

σ

∆Γ(β)

)q−1( e∫
1

f
(
τ, (ln τ)i, (ln τ)i−1

) dτ

τ

)q−1
ds

s
< +∞. (21)

On the other hand, by Lemmas 5, 6 and formulas (17), (18), and (20), we get
e∫

1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+v(τ), v(τ)

) dτ

τ

)
ds

s

>

e∫
1

∆(ln t)i−1g(s)ϕq

( e∫
1

(ln s)β−1H(e, τ)f
(
τ, HIv(τ), v(τ)

) dτ

τ

)
ds

s

=

e∫
1

∆(ln t)i−1g(s)(ln s)(q−1)(β−1)

× ϕq

( e∫
1

H(e, τ)f
(
τ,
dv
i

(ln τ)i, dv(ln τ)i−1
) dτ

τ

)
ds

s

=

e∫
1

∆(ln t)i−1g(s)(ln s)(q−1)(β−1)
(
σdv
i

)q−1
× ϕq

( e∫
1

H(e, τ)f
(
τ, (ln τ)i, (ln τ)i−1

) dτ

τ

)
ds

s
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=

e∫
1

∆g(s)(ln s)(q−1)(β−1)
(
σdv
i

)q−1
× ϕq

( e∫
1

H(e, τ)f
(
τ, (ln τ)i, (ln τ)i−1

) dτ

τ

)
ds

s
· (ln t)i−1. (22)

Formulas (21), (22) yield that A is well defined, and A(Ke) ⊂ Ke. Now given v0 ∈ Ke,
there exist four positive constants dv0 , Dv0 , d̃v0 , and D̃v0 such that

dv0e(t) 6 v0 6 Dv0e(t), d̃v0e(t) 6 Av0 6 D̃v0e(t). (23)

Then from (23) we have
d̃v0
Dv0

v0 6 Av0 6
D̃v0

dv0
v0.

For σ < 1/(q − 1), we choose a constant t0 such that

1 < t0 6 min

{
exp

{(
d̃v0
Dv0

)1/(1−σ(q−1))}
, exp

{(
D̃v0

dv0

)1/(1−σ(q−1))}}
,

and for above σ, we have

(ln t0)1−σ(q−1)v0 6 Av0 6

(
1

ln t0

)1−σ(q−1)

v0. (24)

Take x0 = v0 ln t0, y0 = v0/ ln t0, t0 ∈ (1, e). Clearly, x0 6 y0. Now we define the
iterative sequence as follows:

xn = Axn−1, yn = Ayn−1, n = 1, 2, . . . .

By (H0), we know that A is an increasing operator in v, and

A(rv) =

e∫
1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+rv(τ), rv(τ)

) dτ

τ

)
ds

s

> rσ(q−1)
e∫

1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+v(τ), v(τ)

) dτ

τ

)
ds

s

= rσ(q−1)Tv, 0 < r < 1, (25)

A(rv) =

e∫
1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+rv(τ), rv(τ)

) dτ

τ

)
ds

s

6 rσ(q−1)
e∫

1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+rv(τ), rv(τ)

) dτ

τ

)
ds

s

= rσ(q−1)Tv, r > 1. (26)
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It follows from (24)–(26) that

x1 = Ax0 > (ln t0)σ(q−1)Av0 > (ln t0)v0 = x0,

x1 = Ax0 6

(
1

ln t0

)σ(q−1)
Av0 >

1

ln t0
v0 = y0.

(27)

Hence, by (27), u0 6 v0, and induction, we have

x0 6 x1 6 · · · 6 xn 6 · · · yn 6 · · · 6 y1 6 y0. (28)

Since x0 = (ln t0)2y0, we have

x1 = Ax0 = A((ln t0)2y0) > (ln t0)2σ(q−1)Ay0 = (ln t0)2σ(q−1)y1.

Hence, by induction, we get xn > (ln t0)2[σ(q−1)]
n

yn, n = 0, 1, 2, . . . . Since K is
a normal cone with normality constant 1 and xn+m − xn 6 yn − xn, for any m ∈ N, we
get

‖xm − xn‖ 6 ‖yn − xn‖ 6
(
1− (ln t0)2[σ(q−1)]

n)
‖y0‖ → 0 as n→∞, (29)

which implies that {xn} is a Cauchy sequence, and xn converges to some v∗ ∈ K.
By (29) and

‖yn − v∗‖ 6 ‖yn − xn‖+ ‖xn − v∗‖,

we get yn → v∗. It follows from (28) that v∗ ∈ K is a fixed point of A, and v∗ ∈ [x0, y0].
Let u∗(t) =

∫ t
1
v∗(t)dt/t, v(t) ∈ K, then BVP (1)–(2) has a positive solution. Moveover,

since v∗ ∈ Ke and u(t) =
∫ t
1
v(t)dt/t, v(t) ∈ Ke, that means dve(t) 6 v(t) 6 Dve(t),

then by integral, we have

dv
i

(ln t)i =

t∫
1

dve(t)
dt

t
6 u(t) =

t∫
1

v(t)
dt

t
6

t∫
1

Dve(t)
dt

t
=
Dv

i
(ln t)i.

Then u∗ ∈ Ke, where

Ke =

{
u(t) ∈ K: there exist two numbers Du > 1 > du > 0

such that
du
i

e(t) 6 u(t) 6
Du

i
e(t)

}
,

then statement (i) of Theorem 1 is proved.
Hence, for any initial value v0 ∈ K, by x0 6 v0 6 y0, we have xn 6 vn 6 yn,

n = 1, 2, . . . . Hence, we get

‖vn − v∗‖ 6 ‖vn − xn‖+ ‖xn − v∗‖ 6 2‖yn − xn‖
6 2
(
1− (ln t0)2[σ(q−1)]

n)
‖y0‖,
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which implies that the sequence of functions defined by

vn =

e∫
1

G(t, s)ϕq

( e∫
1

H(s, τ)f
(
τ, HI1+vn−1(τ), vn−1(τ)

) dτ

τ

)
ds

s
,

n = 1, 2, . . . , converges uniformly to the positive solution v∗(t) of BVP (3)–(4) on [1, e]

as n → +∞. Let un(t) =
∫ t
1
vn(t) dt/t, vn ∈ K, n = 1, 2, . . . . Bring this expression

into the above iteration sequence, we get the sequence un, and un → +∞ as n → +∞.
Statement (ii) of Theorem 1 is proved.

Moreover, we have the error estimation

‖vn − v∗‖ 6
2√
ε

(
1− (ln t0)2[σ(q−1)]

n)
‖v0‖,

which has the rate of convergence

‖vn − v∗‖ 6 o(1−
(
ln t0

)2[σ(q−1)]n
)‖v0‖,

where 0 < ε = (ln t0)2 < 1 is a constant, which is determined by v0. Let un(t) =∫ t
1
vn(t) dt/t, vn ∈ K, n = 1, 2, . . . . There exists an error estimation

‖un − u∗‖ 6
2√
ε

(
1− (ln t0)2[σ(q−1)]

n)
‖u0‖,

where u0(t) =
∫ t
1
v0(t) dt/t, vn ∈ K, n = 1, 2, . . . , which has the rate of convergence

‖un − u∗‖ = o(1 − (ln t0)2[σ(q−1)]
n

), where 0 < ε < 1 is a positive constant, which is
determined by the initial value v0. Statement (iii) of Theorem 1 is proved.

Next, we prove that the positive solution of problem (3)–(4) is unique. In fact, suppose
v ∈ K is any fixed point of A, then we get Av = v. From v, v∗ ∈ K, the definition of
K, and assuming that t1 = sup{t > 0: v > tv∗}, we have 1 < t1 < +∞. We assert that
t1 > e. If not, we get 1 < t < e, hence

v = Av > (ln t1)σ(q−1)A(t1v
∗)

= (ln t1)σ(q−1)A(v∗) = (ln t1)σ(q−1)(v∗)

since 1 < q < 2, and we get (ln t1)q−1 > ln t1, a contradiction. Thus, we have that
t1 > e and v > v∗. By the same way, we get v 6 v∗, that is, v = v∗, and then v∗ is
a unique fixed point of A in Ke, that is, it is a unique positive solution of the fractional-
order p-Laplacian differential problem (3)–(4). Statement (iv) of Theorem 1 is proved.
Therefore, the proof of Theorem 1 is completed.

Remark 2. The iterative sequences in Theorem 1 can be chosen arbitrarily, thus we
can choose some simple function such 0 or (ln t)i−1, which is useful for computational
purpose.
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4 An example

Consider the following infinite-point p-Laplacian fractional differential problem:

HD
3/2
1+

(
ϕ3

(
CHD

7/2
1+ u

))
(t) + f

(
t, u(t), u′(t)

)
= 0, 1 < t < e,

u(1) = u′(1) = u′′′(1) = 0, u′′(e) =

∞∑
j=1

ηju(ξj),

CHD
7/2
1+ u(1) = 0, ϕ3

(
CHD

7/2
1+ u(e)

)
=

∞∑
j=1

ζjϕ3

(
CHD

7/2
1+ u(ξj)

)
.

(30)

Let v(t) = u′(t), then (30) is changed into the following (31):

HD
3/2
1+

(
ϕ3

(
CHD

5/2
1+ v

))
(t) + f

(
t,

t∫
1

v(t)
dt

t
, v(t)

)
= 0, 1 < t < e,

v(1) = v′′(1) = 0, v′(e) =

∞∑
j=1

ηjv(ξj),

CHD
5/2
1+ v(1) = 0, ϕ3

(
CHD

5/2
1+ v(e)

)
=

∞∑
j=1

ζjϕ3

(
CHD

5/2
1+ v(ξj)

)
,

(31)

where

f
(
t, u(t), u′(t)

)
=
u1/3(t) + (u′(t))1/4

(ln t)1/3
,

γ = 7/2, β = 3/2, ςj = 1/(3j3), ηj = 1/(2j2), ξj = e1/j
2

, i = 2, p = 3, q = 3/2.
Let

f(t, x, y) =
x1/3 + y1/4

(ln t)1/3
,

then f ∈ C((1, e)× [0,+∞)× [0,+∞), [0,+∞)), and for any fixed t ∈ (1, e), f(t, x, y)
is nondecreasing in x and y. Now we take σ = 2/3, r ∈ [1, e]. For any (t, x, y) ∈
(1, e)× [0,+∞)× [0,+∞), we get

f(t, rx, ry) =
x1/3 + y1/4

(ln t)1/3
> r2/3

x1/3 + y1/4

(ln t)1/3
= r2/3f(t, x, y).

Thus condition (H0) is satisfied.
By simple calculation, we have

∆ = (i− 1)!−
∞∑
j=1

ηj(ln ξj)
i−1 = 1− 1

2

∞∑
j=1

1

j4
= 0.4586 > 0,

∆ = 1−
∞∑
j=1

ζj(ln ξj)
β−1 = 1− 1

3

∞∑
j=1

1

j4
≈ 0.6392 > 0,
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so
∑∞
j=1 ηj(ln ξj)

i−1 < (i − 1)!,
∑∞
j=1 ζj(ln ξj)

β−1 < 1. Therefore, condition (H1) is
also satisfied. Now we check condition (17). In fact,

0 <

e∫
1

f
(
τ, (ln τ)i, (ln τ)i−1

) dτ

τ
=

e∫
1

f
(
τ, (ln τ)2, ln τ

) dτ

τ
< +∞

=

e∫
1

(ln τ)2/3 + (ln τ)1/4

(ln τ)1/3
dτ

τ
=

81

44
< +∞.

Then the p-Laplacian fractional-order differential problem (1)–(2) has a unique positive
solution u∗(t) =H Iv∗(t), v∗ ∈ K. Moreover, for any initial value v0 ∈ K, the sequence
of functions defined by

vn =

e∫
1

G(t, s)ϕq

( e∫
1

H(s, τ)
(HI1+vn−1)1/3(t) + (vn−1(t))1/4

(ln t)1/3
dτ

τ

)
ds

s
,

n = 1, 2, . . . , converges uniformly to v∗(t) on [1, e] as n → ∞. Let u(t) =
∫ t
1
v(t)dt/t,

v(t) ∈ K, we have that BVP (1)–(2) has a unique positive solution, and (i) of Theorem 1
is obtained.

Moreover, there exist an error estimation

‖un − u∗‖ = max
t∈[1,e]

∣∣HI(vn(t)− v∗(t)
)∣∣ 6 2√

ε

(
1− ε[σ(q−1)]

n)
‖v0‖

=
2√
ε

(
1− ε(1/3)

n)
‖v0‖,

where σ = 2/3, which has the rate of convergence

‖un − u∗‖ = o
(
1− ε(1/3)

n)
,

where 0 < ε < 1 is a positive constant, which is determined by the initial value v0.
Especially, if v0 = ln t by computation, we have 0.3065(ln t) 6 Av0 6 0.8574(ln t), and
(ii) Theorem 1 is obtained.

Take

t0 6 min

{
exp

{(
d̃v0
Dv0

)1/(1−σ(q−1))}
, exp

{(
D̃v0

dv0

)1/(1−σ(q−1))}}
= min{1.1849, 2.2120} = 1.1849,

then we get the error estimation

‖un − u∗‖ 6
2√
ε

(
1− ε(1/3)

n)
‖v0‖ = 11.7855 · (1− 0.0288(1/2)

n

) · 0.1697

and the estimate of convergence rate

‖un − u∗‖ = o
(
1− 0.0288(1/2)

n)
.

Then (iii) of Theorem 1 is obtained.
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5 Conclusions

By deriving the expression of Green function and some special properties, we establish
appropriate cone. Since the nonlinearity contains derivative terms, we overcome the dif-
ficulty caused by derivative terms by proper substitution. Then the existence of unique
iterative positive, error estimation, and convergence rate of approximate solution are
obtained for singular p-Laplacian Caputo–Hadamard fractional differential equation with
infinite-point boundary conditions. We choose some simple function such 0 or (ln t)i−1,
which is useful for computational purpose. The understanding of the properties of the
solution and its future application may provide convenient and theoretical guidance.

Acknowledgment. The authors would like to thank the referee for his/her valuable
comments and suggestions.
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