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Abstract. Continuing our investigation on generalizations of Kendall’s τ , started in Part I of the
paper, here we elaborate on the intrinsic meaning and degree of such polynomial-type concordance
measures, as well as present many examples of their computation. In particular, we interpret
generalized Kendall’s τϕ as the difference between the average capacities of concordance and
discordance, and, for power-type distortion functions ϕ, we obtain polynomial-type concordance
measures of various degree, which could stimulate further research of their characterization
as achieved for degree-one polynomial-type concordance measures by Taylor, Edwards, and
Mikusiński.
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convex capacity, supermodular.

1 Introduction

The idea of probing the object of interest on different scales, using different means,
techniques, and measures is ubiquitous in science and its applications in various in-
dustries and our daily life, in general. So one should not be surprised to see that many
measures of dependence, association, and concordance of random variables, vectors,
etc. are suggested and investigated in the literature. In the first part of this paper [16],
we have elaborated on various directions that many researchers explored regarding the
definitions, properties, and applications of such dependence measures. Therefore, not to
repeat ourselves, we refer the reader to that paper and the many references therein. In
this part, we will focus on the properties of the suggested generalizations of Kendall’s τ ,
as well as their computations for certain families of bivariate copulas. In particular, we
will elaborate on situations when we obtain polynomial-type concordance measures of
degree higher than one, which we believe could pave the way for more investigations into
how to characterize such measures and answer one of the old questions posed by Taylor
and his coauthors [6–8, 18, 24, 25]. In particular, Question 1 in [25, p. 235] reads: “Can
we give interesting examples of measures of concordance of degree m for every natural
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number m?, while Question 2 in the same paper goes a bit further: “Can we characterize
measures of concordance of degree one? Of degree m?” These are open problems for
n-dimensional (n > 2) copulas, in general, and our contribution is a first step, providing
relevant and abundant examples in the bivariate case. There is an analogy between the
moments of probability distributions and the values of various concordance measures for
copulas, so perhaps in the future one can find a family of concordance measures that could
characterize (important) copulas, in particular the independence copula, leading to new
statistical tests of independence.

In our work, we will also provide a discussion as to why considered generalizations of
concordance measures could rightfully be called as such – concordance in our setting is
measured not by using traditional probabilities but rather more general convex capacities,
which could have some applications in the economic decision theory. The many examples
we present in this paper also highlight the fact that, for many copula families, computation
of traditional Spearman’s ρS , Kendall’s τ or their generalizations can be hard, so analytic
expressions should not be expected in general. In some cases, though, they are possible.

The rest of this paper is organized as follows: In Section 2 we briefly recall the basic
notions and facts about copulas and concordance measures (in the sense of Scarsini)
needed to state our main results from Part I of the paper (Theorems 1 and 2) and set the
stage for further developments. In Section 3, we discuss the intrinsic meaning of Kendall’s
τ and the considered generalizations, highlighting the switch from a probability measure,
to weigh a random partition of the unit square, to a nonadditive measure (in our case,
convex (supermodular) capacity). Section 4 is devoted to computations of generalized
Kendall’s τ for Farlie–Gumbel–Morgenstern, Plackett, Frank copula families, as well as
two subfamilies of Fréchet–Mardia copulas, emphasizing the polynomial-type nature of
the proposed concordance measures when ϕ is a power function. Section 5 concludes.

2 Basic facts from copula theory

We begin by recalling the notion of a bivariate copula. Let I := [0, 1].

Definition 1. A bivariate copula1 (a copula for short) C is a function defined on I2 with
values in I such that
• (boundary conditions) C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for any
x ∈ I,

• (2-increasingness) for all x, x′, y, y′ ∈ I with x 6 x′ and y 6 y′,

VC
(
[x, x′]× [y, y′]

)
= C(x′, y′)− C(x, y′)− C(x′, y) + C(x, y) > 0.

The set of bivariate copulas will be denoted by C (or, more precisely, C2 if we need
explicit dependence on the dimension).

For numerous examples, see [5, 12, 19] and the references therein; among the most
important are the comonotonicity copula M(x, y) = min{x, y} = x ∧ y, independence

1One can also consider n-variate copulas for any n > 2 (see, e.g., [5,12,19]), but we will only be concerned
with bivariate copulas in this paper.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A few generalizations of Kendall’s tau. Part II 233

copula Π(x, y) = xy, and countermonotonicity copula W (x, y) = max{x+ y− 1, 0} =
(x+ y − 1)+ for (x, y) ∈ I2.

To each (bivariate) copula C ∈ C, one can associate a Borel measure µC such that
µC((0, x]× (0, y]) = C(x, y) for any x, y ∈ I, and vice versa (see, e.g., [5, Thm. 3.1.2],
where the result is stated for a general dimension d > 2). In what follows, integrals with
respect to a copula C ∈ C, e.g.,

∫
I2 f dC, will mean

∫
I2 f dµC .

On the set of bivariate copulas, one can consider a pointwise partial-order relation
defined as follows:

Definition 2. (See [19, Def. 2.8.1].) For any C1, C2 ∈ C, we say that C1 is smaller
(resp. larger) than C2 with respect to concordance order, and denote it by C1 ≺ C2 (resp.
C1 � C2) if C1(x, y) 6 C2(x, y) (resp. C1(x, y) > C2(x, y)) for any (x, y) ∈ I2.

In general, when d > 2, the concordance order is defined as

C1 ≺ C2 ⇐⇒ C1(x1, . . . , xd) 6 C2(x1, . . . , xd) and

C1(x1, . . . , xd) 6 C2(x1, . . . , xd) ∀(x1, . . . , xd) ∈ Id,

where C(x1, . . . , xd) = P (U1 > x1, . . . , Ud > xd), U1, . . . , Ud ∼ U(I) are uniformly
on I distributed random variables whose copula is C. In other words, C is the survival
function associated with copula C. For d = 2, C(x, y) = 1 − x − y + C(x, y), so
concordance order for bivariate copulas is equivalent to pointwise order.

Then the famous Fréchet–Hoeffding bounds for copulas (see [19, Eq. (2.2.5)] or [5,
Thm. 1.7.3]; for their applications in, e.g., risk management, we can recommend the book
by Rüschendorf [20]) can be written succinctly as W ≺ C ≺ M for any C ∈ C. Thus
(bivariate) copulas M and W are the largest and smallest elements, respectively, with
respect to concordance order. In dimension d > 2, W is no longer a copula, but the
Fréchet–Hoeffding bounds still hold. Also, any concordance measure κX,Y in the sense
of Scarsini (Kendall’s τ , Spearman’s ρ, Gini’s γ, etc. are examples; see [19, Def. 5.1.7]),
measuring the dependence between continuous random variables X and Y whose copula
is C, is nondecreasing with respect to concordance order, hence the name of the measure.

2.1 Transformations of copulas generated by symmetries of their domain

In relation to the axioms of concordance measures, of particular importance are the trans-
formations of bivariate (or, more generally, multivariate) copulas that are induced by the
symmetries of their domain I2 (or Id for d ∈ N, d > 3). The group of symmetries of the
unit square I2 can be generated by involutions π : I2 → I2 (permutation, i.e., reflection
with respect to the main diagonal) and σ1 : I2 → I2 (partial reflection with respect to the
axis x = 1/2) given by

π(x, y) = (y, x) and σ1(x, y) = (1− x, y).

Involution means that π2 = σ2
1 = e, the identity transformation. Also, one can get the

partial reflection σ2(x, y) = (x, 1 − y) with respect to the axis y = 1/2 as σ2(x, y) =
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(π ◦ σ1 ◦ π)(x, y). Combining the two reflections, we get the so-called total reflection

ς(x, y) = (σ1 ◦ σ2)(x, y) = (σ2 ◦ σ1)(x, y) = (1− x, 1− y).

Altogether the group of symmetries of the unit square, also called the dihedral group D4,
has 8 = 2! 22 elements:

D4 = {e, π, σ1, σ2, ς, π ◦ σ1, π ◦ σ2, π ◦ ς}.

It is important to note that D4 is not commutative since

π ◦ σ1 = σ2 ◦ π.

Given a symmetry ξ ∈ D4, there is a corresponding transformation ξ∗ : C → C given by

ξ∗(C)(x, y) := µC
(
ξ
(
[0, x]× [0, y]

))
, (x, y) ∈ I2. (1)

For the partial reflections σ1, σ2 and total reflection ς , one easily gets

σ∗1(C)(u, v) = µC
(
[1− u, 1]× [0, v]

)
= µC

(
[0, 1]× [0, v]

)
− µC

(
[0, 1− u]× [0, v]

)
= C(1, v)− C(1− u, v) = v − C(1− u, v),

σ∗2(C)(u, v) = C(u, 1)− C(u, 1− v) = u− C(u, 1− v),
ς∗(C)(u, v) = u+ v − 1 + C(1− u, 1− v), u, v ∈ I,

while the transpose of C is given by CT(u, v) := π∗(C)(u, v) = C(v, u). Note that
ς∗(C)(u, v) = Ĉ(u, v), the survival copula corresponding to C.

2.2 Scarsini’s axioms of concordance measures

Henceforth we will deal with the family of functionals on the set of copulas C, which
measure the “degree of association” of continuous random variables having a given copula
and preserve concordance order. This family was axiomatized by Scarsini in 1984 (see
[21, 22]; for extensions to the multidimensional case, see [4, 24]).

Definition 3. (See [5, Def. 2.4.7].) A measure of concordance is a mapping κ : C → R
such that

(κ1) κ is defined for every copula C ∈ C,
(κ2) for every C ∈ C, κ(C) = κ(CT),
(κ3) κ(C1) 6 κ(C2) whenever C1 ≺ C2,
(κ4) κ(C) ∈ [−1, 1],
(κ5) κ(Π) = 0,
(κ6) κ(σ∗1(C))=κ(σ

∗
2(C))=−κ(C) for the partial reflections σ1, σ2 and any C∈C,

(κ7) (continuity) if Cn → C uniformly2 as n→∞, then limn→∞ κ(Cn) = κ(C).

2For copulas, pointwise convergence is enough.
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One can observe that some authors, e.g., Nelsen [19, Def. 5.1.17, Property 2] and
Fuchs [10, Sect. 3], also require

(κ′5) κ(M) = 1,

which can be achieved by a simple normalization, i.e., defining the new measure κ′(C) :=
κ(C)/κ(M), if the original concordance measure κ does not satisfy this condition and is
nontrivial (κ(C) 6= 0 for some C ∈ C).

The most often used concordance measures are Spearman’s ρ, Kendall’s τ , Gini’s γ,
Blomqvist’s β; see [19, Chap. 5], [5, Sect. 2.4]. On the other hand, Spearman’s foot-rule
is not a concordance measure; see [19, Exr. 5.21].

These measures are succinctly defined in terms of the so-called biconvex form given
by

[C,D] :=

∫
I2

C dD, C,D ∈ C, (2)

which is linear in each place with respect to convex combinations of copulas, hence the
terminology. In fact (see [19]), for a copula C ∈ C,

• Spearman’s ρ is given by ρS(C) = 12[C,Π]− 3 = 12[C −Π, Π],
• Kendall’s τ is defined as τ(C) = 4[C,C]− 1 = 4([C,C]− [Π,Π]),
• Gini’s γ is γ(C) = 4([C,M ] + [C,W ])− 2.

In our earlier work [15], we have constructed several generalizations of Spearman’s
ρ, Gini’s γ, etc., while generalizations of Kendall’s τ were presented in [16]. The latter
were based on an appropriate distortion function ϕ : [0, 1]→ R and the form

[C,D]ϕ :=

∫
I2

ϕ(C) dD =
[
ϕ(C), D

]
, C,D ∈ C.

When ϕ(x) = x, x ∈ I, [C,D]ϕ = [C,D], the usual biconvex form in (2) (see [9]), used
to define various concordance measures for bivariate copulas. In fact, for Kendall’s τ , we
have

τ(C) = 4[C,C]− 1 =
∑
ξ∈R

(−1)|ξ|[ξ∗(C), ξ∗(C)], C ∈ C, (3)

where R denotes the commutative subgroup of D4 generated by partial reflections of I2,
that is, R = {e, σ1, σ2, ς = σ1 ◦ σ2 = σ2 ◦ σ1 | σ2

1 = σ2
2 = e}, and ξ∗(C) is defined

in (1). At the level of random variables (i.e., if U and V are random variables distributed
uniformly on the interval I and joined by copula C ∈ C, (U, V ) ∼ C),

(1− U, V ) ∼ σ∗1(C), (U, 1− V ) ∼ σ∗2(C), and (1− U, 1− V ) ∼ ς∗(C).

We generalized Kendall’s τ in [16], replacing [C,D] in (3) by [C,D]ϕ and normaliz-
ing appropriately:

τϕ(C) := aϕ
∑
ξ∈R

(−1)|ξ|
[
ξ∗(C), ξ∗(C)

]
ϕ
, C ∈ C, (4)

Nonlinear Anal. Model. Control, 30(2):231–251, 2025
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where

aϕ :=

(
2

1∫
0

(
ϕ(x)− ϕ(0)

)
dx

)−1
, (5)

which is positive as ϕ is assumed nonconstant, nondecreasing, and convex. In the case,
ϕ(x) = x on I, aϕ = 1, and thus we recover in (4) the usual Kendall’s τ in (3). For
ϕ(x) = xp with p ∈ N, p > 2, one easily gets aϕ = (p+ 1)/2.

Recall the following theorems:

Theorem 1. (See [16, Thm. 2].) If ϕ : [0, 1] → R is a nonconstant, nondecreasing,
and convex function such that ϕ(1) = ϕ(1−) = 1, ϕ(0) = 0, then τϕ : C → [−1, 1] is
a measure of concordance, generalizing Kendall’s τ .

Theorem 2. (See [16, Thm. 3].) Let ϕ : [0, 1] → R be a nondecreasing function such
that ϕ(1) = ϕ(1−) = 1, ϕ(0) = 0. Assume, furthermore, that ϕ is nonconstant, dif-
ferentiable, and convex on (0, 1). Then the measure of concordance τϕ given in (4) can
be equivalently expressed as follows:

τϕ(C) = aϕ

{∫
I2

ϕ′
(
C
)
dΠ −

∫
I2

Gϕ(C)∂1C∂2C dΠ

}
, (6)

where for any C ∈ C and u, v ∈ (0, 1),

Gϕ(C)(u, v) := ϕ′
(
C(u, v)

)
+ ϕ′

(
σ̃∗1(C)(u, v)

)
+ ϕ′

(
σ̃∗2(C)(u, v)

)
+ ϕ′

(
C(u, v)

)
;

σ̃∗1(C)(u, v) = σ∗1(C)(1− u, v) = v − C(u, v);
σ̃∗2(C)(u, v) = σ∗2(C)(u, 1− v) = u− C(u, v);

C(u, v) = 1− u− v + C(u, v) (survival function corresponding to C).

Remark 1. Whenever ϕ′ is convex, letting

x1 = C(u, v), x2 = u− C(u, v),
x3 = v − C(u, v), x4 = 1− u− v + C(u, v),

we have xi ∈ I, i = 1, . . . , 4,
∑4
i=1 xi = 1 for any u, v ∈ I and C ∈ C. Also, if

x = (x1, x2, x3, x4) and g(x) =
∑4
i=1 ϕ

′(xi), then it follows that g : I4 → R is Schur-
convex (cf. [17, p. 92, C.1 Prop.]), and so

4ϕ′
(
1

4

)
6 g(x) 6 ϕ′(1) + 3ϕ′(0) (7)

since (
1

4
,
1

4
,
1

4
,
1

4

)
l (x1, x2, x3, x4)l (1, 0, 0, 0),
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where “l” denotes the majorization relation3 for vectors (as defined by Hardy, Little-
wood, and Pólya; see, e.g., [17, p. 80, A.1 Def.]), i.e., for x,y ∈ Rn,

xl y ⇐⇒
k∑
i=1

x[i] 6
k∑
i=1

y[i] ∀k = 1, 2, . . . , n− 1 and

n∑
i=1

x[i] =

n∑
i=1

y[i]

(8)

with x[i], y[i] denoting the ith largest entries of x, y, respectively. For more information
about majorization and its applications, see the book [17]. Furthermore, the bounds in (7)
are sharp since for ϕ(t) = t2, we get equalities. Also, if ϕ′ is concave, then g is Schur-
concave, and the inequalities in (7) are reversed.

Example 1. As a sanity check, choose ϕ(x) = x, x ∈ I. Then, clearly, aϕ = 1,∫
I2 ϕ
′(C) dΠ = 1, Gϕ(C) = 4, and so

τϕ(C) = 1− 4

∫
I2

∂1C ∂2C dΠ = τ(C)

as expected (see [19, Eq. (5.1.12)]).

As a nontrivial example, we have

Example 2. Consider ϕ(x) = x2, x ∈ I. Then aϕ = 3/2,∫
I2

ϕ′
(
C
)
dΠ = 2

∫
I2

C dΠ = 2

∫
I2

C dΠ =
ρS(C) + 3

6
,

where ρS denotes Spearman’s rho. Also,

Gϕ(C)(u, v) = 2
{
C(u, v) +

[
v − C(u, v)

]
+
[
u− C(u, v)

]
+
[
1− u− v + C(u, v)

]}
= 2,

and so

τϕ(C) =
3

2

(
ρS(C) + 3

6
− 2

∫
I2

∂1C∂2C dΠ

)
=

1

4
ρS(C) +

3

4
τ(C),

a much simpler expression compared to (4) or (6). We also note a curious similarity with
a concordance measure considered by Borroni [1, Eq. (27)], where the author obtained
γϕ∆(C) = (1/4)ρS(C) + (3/4)γ(C) with γ(C) being the Gini’s gamma of copula C.

3The symbol l is used here instead of the typical ≺ adopted in [17] to avoid abuse of notation; cf. Defini-
tion 2.
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3 Intrinsic meaning of generalized Kendall’s τ

In this section, we revisit the meaning of Kendall’s τ and elaborate what its generalization
provided in Eq. (4) really measures.

First, if (X1, Y1) and (X2, Y2) are independent copies of a continuous random vector
(X,Y ) such that X has distribution function F , Y has distribution function G, and their
copula is C, i.e., P(X 6 x, Y 6 y) = C(F (x), G(y)), x, y ∈ R, then it is well
known (see, e.g., [19, Thm. 5.1.1]) that Kendall’s τ measures the difference between the
probabilities of concordance and discordance, that is,

τ(C) = P
(
(X1 −X2)(Y1 − Y2) > 0

)
−P

(
(X1 −X2)(Y1 − Y2) < 0

)
.

The expression in (3) has 4 terms, which for uniformly on I distributed random variables
U and V such that (U, V ) ∼ C, can be written as follows:[

e∗(C), e∗(C)
]
= EC(U, V ) = P(X1 > X2, Y1 > Y2)

= P
(
(X1 −X2)(Y1 − Y2) > 0, Y1 > Y2

)
,[

σ∗1(C), σ
∗
1(C)

]
= E

[
σ∗1(C)(1− U, V )

]
= E

[
V − C(U, V )

]
= P

(
(1−X1) > (1−X2), Y1 > Y2

)
= P

(
(X1 −X2)(Y1 − Y2) < 0, Y1 > Y2

)
,[

σ∗2(C), σ
∗
2(C)

]
= E

[
σ∗2(C)(U, 1− V )

]
= E

[
U − C(U, V )

]
= P

(
X1 > X2, (1− Y1) > (1− Y2)

)
= P

(
(X1 −X2)(Y1 − Y2) < 0, Y2 > Y1

)
,[

ς∗(C), ς∗(C)
]
= E

[
ς∗(C)(1− U, 1− V )

]
= E

[
1− U − V + C(U, V )

]
= P

(
(1−X1) > (1−X2), (1− Y1) > (1− Y2)

)
= P

(
(X1 −X2)(Y1 − Y2) > 0, Y2 > Y1

)
,

so that [
e∗(C), e∗(C)

]
+
[
ς∗(C), ς∗(C)

]
= probability of concordance,

and [
σ∗1(C), σ

∗
1(C)

]
+
[
σ∗2(C), σ

∗
2(C)

]
= probability of discordance.

Also, given (U, V ) ∈ I2, we can define random sets (see Fig. 1)

A1
(U,V ) = [0, U ]× [0, V ], A2

(U,V ) = [U, 1]× [0, V ],
(9)

A3
(U,V ) = [U, 1]× [V, 1], A4

(U,V ) = [0, U ]× [V, 1].

Then if µC denotes the probability measure induced by copula C, that is, µC([0, u] ×
[0, v]) = C(u, v) for any (u, v) ∈ I2, which is extended for other Borel sets of I2 using

https://www.journals.vu.lt/nonlinear-analysis
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Figure 1. Random partition of I2 using a point (U, V ) ∼ C. Regions 1 to 4 correspond to sets A1
(U,V )

to
A4

(U,V )
defined in Eq. (9). Regions 1 and 3 (dashed; in yellow) contribute to concordance, while regions 2 and

4 (plain; in cyan) contribute to discordance.

standard measure-theoretic arguments, we get[
e∗(C), e∗(C)

]
+
[
ς∗(C), ς∗(C)

]
= E

(
µC(A

1
(U,V )) + µC

(
A3

(U,V )

))
,[

σ∗1(C), σ
∗
1(C)

]
+
[
σ∗2(C), σ

∗
2(C)

]
= E

(
µC
(
A2

(U,V )

)
+ µC

(
A4

(U,V )

))
,

where the expectations are taken with respect to the joint law of (U, V ) ∼ C.
The generalized Kendall’s τ in Eq. (4) can be similarly written as the scaled (by aϕ)

difference of two sums:[
e∗(C), e∗(C)

]
ϕ
+
[
ς∗(C), ς∗(C)

]
ϕ
= E

(
ϕ
(
µC
(
A1

(U,V )

))
+ ϕ

(
µC
(
A3

(U,V )

)))
and[

σ∗1(C), σ
∗
1(C)

]
ϕ
+
[
σ∗2(C), σ

∗
2(C)

]
ϕ
= E

(
ϕ
(
µC
(
A2

(U,V )

))
+ ϕ

(
µC
(
A4

(U,V )

)))
.

So in fact, instead of probabilities of concordance and discordance, in the setting of
Theorem 1, we are measuring capacities (for some applications of convex capacities
in economic decision theory, see, e.g., [2, 3, 23]; see also the recent developments of
integration theory based on monotone measures [14]) of sets contributing to concordance
and discordance as the set function ν := νϕ,C = ϕ ◦ µC defines a (convex) capacity on
the class K of compacts of I2. Indeed, ν(∅) = 0, ν(I2) = 1, and, moreover,

• ν is monotone, i.e., if A,B ∈ K, A ⊂ B, then ν(A) 6 ν(B). This follows since ϕ
is assumed nondecreasing.

• ν is supermodular (also called convex capacity in the literature), i.e., forA,B ∈ K,
we have

ν(A ∩B) + ν(A ∪B) > ν(A) + ν(B)

since µC is a probability measure and ϕ is assumed convex. Indeed, if

x1 = µC(A ∩B), x2 = min
{
µC(A), µC(B)

}
,

x3 = max
{
µC(A), µC(B)

}
, x4 = µC(A ∪B),

x1 6 x2 6 x3 6 x4, x1 + x4 = x2 + x3,
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then ϕ(x1) + ϕ(x4) > ϕ(x2) + ϕ(x3) since (x2, x3) ≺ (x1, x4) (cf. (8)) and the
function g((u, v)) = ϕ(u)+ϕ(v) is Schur-convex on I2 (see [17, p. 92, C.1 Prop.]).

• ν is continuous from the right, that is, if A ∈ K and ε > 0 are arbitrary, then there
is an open set V ⊃ A such that for all B ∈ K satisfying A ⊂ B ⊂ V , ν(B) 6
ν(A) + ε. This follows from the (uniform) continuity of ϕ on I and the regularity
of Borel probability measure µC . Indeed, given ε > 0, we can find a δ = δ(ε) > 0
such that |ϕ(x)−ϕ(y)| < ε whenever |x− y| < δ, x, y ∈ I. As any Borel measure
is outer regular, for a given A ∈ K, we can find an open set V ⊂ I2 such that
µC(A) 6 µC(V ) 6 µC(A)+ δ. Then for any B ∈ K such that A ⊂ B ⊂ V , using
the monotonicity of ϕ, we obtain

ν(B) = ϕ ◦ µC(B) 6 ϕ ◦ µC(V ) 6 ϕ ◦ µC(A) + ε = ν(A) + ε.

4 Computations of τϕ for various copula families

This section is devoted to various examples when the new concordance measures could
be computed analytically or at least be given in a more tractable form than suggested by
the general expressions in (4) or (6). In this regard, several copula families stand out,
namely those which are ς∗-invariant and which are mapped to copulas in the same family
by reflections σ∗i , i = 1, 2. Among such we find the Farlie–Gumbel–Morgenstern (FGM),
Plackett, and Frank families. They will be discussed in the following subsections. Finally,
we will consider a couple of Fréchet–Mardia subfamilies in relation to concordance mea-
sures of polynomial type.

4.1 Farlie–Gumbel–Morgenstern family

The Farlie–Gumbel–Morgenstern (FGM) family of copulas is often chosen to illustrate
what could happen if one deviates from independence. This family is very tractable, yet
does not provide the full possible range of dependence as measured by Spearman’s ρS or
Kendall’s τ . To be more precise, the FGM family is defined (see [13, Sect. 4.29] or [19,
Ex. 3.12]) as

Cδ(u, v) := uv
(
1 + δ(1− u)(1− v)

)
, δ ∈ [−1, 1], u, v ∈ I.

This family is absolutely continuous with the copula density

cδ(u, v) =
∂2Cδ
∂u∂v

(u, v) = 1 + δ(1− 2u)(1− 2v), u, v ∈ I.

It is also well known (see, e.g., [13, p. 213]) that

ρS(Cδ) =
δ

3
∈
[
−1

3
,
1

3

]
, τ =

2δ

9
∈
[
− 2

9
,
2

9

]
and

σ∗i (Cδ) = C−δ(u, v), i = 1, 2.
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Table 1. Values of τϕ(Cδ) (rounded to 5 places if given as decimal
fractions) for ϕ(t) = tp and various p. Spearman’s ρS and Kendall’s τ
are provided for comparison.

p δ

1/10 1/4 1/2 3/4 1
2 0.02500 0.06250 0.12500 0.18750 1/4
3 0.02400 0.06001 0.12007 0.18023 884/3675
4 0.02222 0.05557 0.11122 0.16703 787/3528
5 0.02041 0.05104 0.10216 0.15346 656431/3201660

10 0.01389 0.03473 0.06952 0.10442 0.13950
ρS 1/30 1/12 1/6 1/4 1/3
τ 2/90 1/18 1/9 1/6 2/9

Therefore, (4) reduces to

τϕ(Cδ) = 2aϕ
(
[Cδ, Cδ]ϕ − [C−δ, C−δ]ϕ

)
. (10)

In particular, for ϕ(t) = tp, p ∈ N, one has aϕ = (p+ 1)/2 and

τϕ(Cδ) = (p+ 1)

∫
I2

[(
Cδ(u, v)

)p
cδ(u, v)−

(
C−δ(u, v)

)p
c−δ(u, v)

]
dudv.

As the integrand is a polynomial in u and v, the evaluation of the latter integral poses no
difficulty and could be done using, e.g., Maple software. The exact analytical expression
is cumbersome and therefore omitted. A few values of τϕ(Cδ) are presented in Table 1.

4.2 Plackett family

Given a parameter ν ∈ [0,∞) and setting η := ν−1, one defines a comprehensive family
(i.e., containing W , Π , and M as its members) of Plackett copulas Cν as follows: for
ν 6= 1,

Cν(u, v) :=
1

2η

{
1 + η(u+ v)−

[(
1 + η(u+ v)

)2− 4νηuv
]1/2}

, u, v ∈ I,

while C1(u, v) := uv. This family appears from algebraic considerations and possesses
similar symmetries (see [19, Exr. 3.36]):

σ∗i (Cν)(u, v) = C1/ν(u, v), ς∗(Cν)(u, v) = Cν(u, v), u, v ∈ I.

Thus our suggested concordance measure takes a similar form as in (10):

τϕ(Cν) = 2aϕ
(
[Cν , Cν ]ϕ − [C1/ν , C1/ν ]ϕ

)
.

Spearman’s ρS for this family is known and given by

ρS(Cν) =
ν + 1

ν − 1
− 2ν

(ν − 1)2
ln ν

(see [19, Exr. 5.8] or [13, p. 164]), yet Kendall’s τ does not seem to have a closed-form
expression, thus we also do not anticipate a simple analytic form of τϕ(Cν).
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4.3 Frank family

Among Archimedean copulas, Frank family is another popular choice in applications due
to being comprehensive (see, e.g., [19, p. 118, table notes]). It is defined as

Cθ(u, v) := −
1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ R \ {0}, u, v ∈ I,

and C0(u, v) := Π(u, v) = uv.
It is well known [19, Table 4.1 (4.2.5)]) that the (strict) generator ψθ : [0, 1]→ [0,+∞]

of this family is given by

ψθ(t) = − ln
e−θt − 1

e−θ − 1
,

so that Cθ(u, v) = ψ−1θ (ψθ(u) + ψθ(v)). It is also known (see, e.g., [13, p. 166]) that

σ∗(Cθ)(u, v) = C−θ(u, v) and ς∗(Cθ)(u, v) = Cθ(u, v), u, v ∈ I.

Moreover, among all Archimedean copulas, Frank family is the only which is invariant
with respect to the total reflection ς∗.

So for this family, we again have

τϕ(Cθ) = 2aϕ
(
[Cθ, Cθ]ϕ − [C−θ, C−θ]ϕ

)
, (11)

where by considering Kendall’s distribution function of the copulaCθ, namelyKCθ
(t) :=

P(C(U, V ) 6 t), t ∈ R, (U, V ) ∼ Cθ, one has

[Cθ, Cθ]ϕ = Eϕ
(
Cθ(U, V )

)
=

∫
I2

ϕ(Cθ) dCθ =

1∫
0

ϕ(t) dKCθ
(t).

If, as before, we consider ϕ(x) = xp, p ∈ N, then the latter integral can be rewritten as

[Cθ, Cθ]ϕ = ϕ(t)KCθ
(t)
∣∣1
0
−

1∫
0

KCθ
(t)ϕ′(t) dt = 1−

1∫
0

(
t− ψθ(t)

ψ′θ(t)

)
ϕ′(t) dt

=

1∫
0

φ(t) dt+

1∫
0

ψθ(t)

ψ′θ(t)
ϕ′(t) dt.

Note that above we have used the known fact (see [19, Thm. 4.3.4]) that, for an Archimedean
copula C, Kendall’s distribution function is given by

KC(t) = t− ψC(t)

ψ′C(t
+)
,
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and, since concave functions are differentiable almost everywhere, the right-hand side
derivative ψ′C(t

+) can be replaced by ψ′C(t) inside the integral (see [19, proof of
Cor. 5.1.4]). Recalling that aϕ = (p+1)/2 for the considered ϕ(x), we can write (11) as

τϕ(Cθ) = p(p+ 1)

1∫
0

(
ψθ(t)

ψ′θ(t)
− ψ−θ(t)

ψ′−θ(t)

)
tp−1 dt,

where, after straightforward simplification,

ψθ(t)

ψ′θ(t)
− ψ−θ(t)

ψ′−θ(t)
= (1− t)

(
1− e−θt

)
+

2

θ

(
cosh(θt)− 1

)
ln

1− e−θt

1− e−θ
.

As known expressions for Spearman’s ρS and Kendall’s τ , namely

ρS(Cθ) = 1− 12

θ

[
D1(θ)−D2(θ)

]
, τ(Cθ) = 1− 4

θ

[
1−D1(θ)

]
(see, e.g., [19, Exr. 5.9]), involve special Debye functions Di(x), i = 1, 2, given by

Dk(x) :=
k

xk

x∫
0

tk

et − 1
dt, k ∈ N, x > 0,

we do not expect simpler expressions for τϕ(Cθ).

4.4 Fréchet–Mardia subfamilies

In this section, we will again focus on a special case of the function ϕ, namely, for any
p > 1, we will let ϕ(x) = xp. By taking a convex combination of A,B ∈ C, namely
Kt := tA + (1 − t)B, t ∈ I , one always has ξ∗(Kt) = tξ∗(A) + (1 − t)ξ∗(B) for any
ξ ∈ R (see Eq. (1) and below in Section 2.1). Moreover,4[

ξ∗(Kt), ξ
∗(Kt)

]
ϕ

= t

∫ (
ξ∗(Kt)

)p
dξ∗(A) + (1− t)

∫ (
ξ∗(Kt)

)p
dξ∗(B), (12)

which is always a polynomial in t of degree at most n + 1, and hence the same is also
true about τϕ(Kt). Nevertheless, not all choices of A and B will give the maximal degree
of p + 1. To illustrate this, we will compute τϕ(Kt) for Kt := Ct := tM + (1 − t)Π
and Kt = Dt := tM + (1 − t)W , two subfamilies of Fréchet–Mardia copulas. This
will affirmatively answer (in the bivariate case) one of Taylor’s questions mentioned in
the Introduction, namely about examples of concordance measures of polynomial type
of any degree m > 1, and will compliment our findings in [15], where examples of
certain even-degree polynomial concordance measures were not given. Along the way,
the computed analytic expressions for τϕ(Ct) and τϕ(Dt) will highlight some similarities
and differences of the new concordance measures.

4This was kindly pointed out by one of the reviewers.
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4.4.1 The case of Ct

First, we have the following:

Theorem 3. For any integer p > 1 and ϕ(x) = xp,

τϕ(Ct) = (p+ 1)
(
I1(t; p)− I2(t; p)

)
,

where

I1(t; p) :=
[
tM + (1− t)Π, tM + (1− t)Π

]
ϕ

=

p∑
m=0

p!(p+m)!

m!(2p+ 1)!
tp−m+1 + 2

p∑
m=0

(−1)m(p!)2(1− t)m+1

(p−m)!(p+ 2 +m)!
, (13)

I2(t; p) :=
[
tW + (1− t)Π, tW + (1− t)Π

]
ϕ

=
(p!)2t(1− t)p

(2p+ 1)!
+

(p!)2(1− t)p+1

(2p+ 2)!
+

p∑
k=0

p!k!(1− t)k+1

(p+ 2 + k)!
. (14)

Proof. First, recall that the normalizing constant in (5) in the considered setting is aϕ =
(p+ 1)/2. Next, note that, for any reflection ξ ∈ R,

ξ∗(Ct) = t
(
M1ξ∈{e,ς} +W1ξ∈{σ1,σ2}

)
+ (1− t)Π,

so τϕ(Ct) = (p + 1)(I1(t; p) − I2(t; p)), where I1(t; p) and I2(t; p) are as defined
in (13) and (14), respectively, so we only have to compute both of these expressions.
Also, notice that, by [16, Lemma 1], I1(t; p) > I2(t; p) for any t ∈ I as tW +(1− t)Π ≺
tM + (1− t)Π .

Now we compute the needed integrals. First, taking advantage of (12), we have

I1(t; p) = tI11(t; p) + (1− t)I12(t; p), (15)

where, using [16, Ex. 1] and properties of the beta function,

I11(t; p) :=

∫
I2

(
tM + (1− t)Π

)p
dM =

1∫
0

(
tu+ (1− t)u2

)p
du

=

1∫
0

up
p∑

m=0

(
p

m

)
um
(
t(1− u)

)p−m
du

=

p∑
m=0

(
p

m

)
tp−m

(p+m)!(p−m)!

(2p+ 1)!
=

p∑
m=0

p!(p+m)!

m!(2p+ 1)!
tp−m (16)
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and

I12(t; p) :=

∫
I2

(
tM + (1− t)Π

)p
dΠ = 2

1∫
0

u∫
0

(
tv + (1− t)uv

)p
dudv

=
2

p+ 1

1∫
0

up+1
(
t+ (1− t)u

)p
du =:

2

p+ 1
Jp(t; p). (17)

Here, using integration by parts, for any integer k ∈ {1, . . . , p}, we obtain

Jk(t; p) :=

1∫
0

u2p+1−k(t+ (1− t)u
)k

du =
1

2p+ 2− k
− k(1− t)

2p+ 2− k
Jk−1(t; p),

where, of course, J0(t; p) =
∫ 1

0
u2p+1 du = 1/(2p+ 2).

Iterating the above formula, we get for k ∈ {0, . . . , p},

Jk(t; p) =

k∑
m=0

(−1)m k!(2p+ 1− k)!(1− t)m

(k −m)!(2p+ 2 +m− k)!
.

Substituting into (17) (with k = p) yields

I12(t; p) = 2

p∑
m=0

(−1)m (p!)2(1− t)m

(p−m)!(p+ 2 +m)!
. (18)

Substituting (16) and (18) into (15) yields the expression in (13), as claimed.
Now we deal with I2(t; p):

I2(t; p) = tI21(t; p) + (1− t)I22(t; p). (19)

Using again [16, Ex. 1] and properties of the Beta function gives

I21(t; p) :=

∫
I2

(
tW + (1− t)Π

)p
dW =

1∫
0

(
(1− t)u(1− u)

)p
du

=
(p!)2

(2p+ 1)!
(1− t)p. (20)

As for I22(t; p), we write

I22(t; p) :=

∫
I2

(
tW + (1− t)Π

)p
dΠ = I221(t; p) + I222(t; p), (21)
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where

I221(t; p) :=

1∫
0

1−u∫
0

(
(1− t)uv

)p
dudv =

(p!)2

(2p+ 2)!
(1− t)p (22)

and

I222(t; p) :=

1∫
0

1∫
1−u

(
uv − t(1− u)(1− v)

)p
dudv

=

1∫
0

up+1[1− ((1− t)(1− u))p+1]

(p+ 1)(1− (1− t)(1− u))
du

=

1∫
0

up+1

p+ 1

p∑
k=0

(
(1− t)(1− u)

)k
du =

p∑
k=0

p!k!(1− t)k

(p+ 2 + k)!
. (23)

Substituting (22) and (23) into (21) and then combining the result with (20) in (19) leads
to the formula in (14), as claimed, finishing the proof.

Example 3. Using Theorem 3 with p = 1, 2, 3, we obtain
• for p = 1, we recover Kendall’s τ (see [19, Ex. 5.3]), τ(Ct) = (t2 + 2t)/3;
• for p = 2, we obtain τϕ(Ct) = (t2 + 3t)/4;
• and for p = 3, we get τϕ(Ct) = (3/70)t4 + (4/105)t3 + (41/210)t2 + (76/105)t.

Plots of τϕ(Ct), t ∈ I, for ϕ(x) = xp, p = 1, 2, 3, are illustrated in Fig. 2. For larger
values of p, polynomials become more complicated, but the graphs remain surprisingly
similar.

From the above example, one can guess that, for even p, τϕ(Ct) is a polynomial of
degree p, while for odd p, we get a polynomial of degree p + 1. This is indeed the case,
and we have

Corollary 1. Let p > 1 be an integer, and let ϕ(x) = xp. Then for the Fréchet–Mardia
family {Ct}t∈I,

deg τϕ(Ct) =

{
p if p ∈ 2Z;

p+ 1 if p ∈ 2Z+ 1.

Proof. Looking at (13) and (14), it is clear that τϕ(Ct) is a polynomial in t of degree at
most p + 1, as such are both I1(t; p) and I2(t; p). So we only have to compute a couple
of coefficients, bp+1 and bp, in the expansion τϕ(Ct) = bp+1t

p+1 + bpt
p + · · ·+ b0. We

have

bp+1 = (p+ 1)

(
(p!)2

(2p+ 1)!
− 2(p!)2

(2p+ 2)!
− (−1)p(p!)2

(2p+ 1)!
+

2(−1)p(p!)2

(2p+ 2)!

)
=
p(1− (−1)p)(p!)2

(2p+ 1)!
=

{
0 if p ∈ 2Z;
2p(p!)2

(2p+1)! if p ∈ 2Z+ 1.
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Also, when p ∈ 2Z, we evaluate bp to make sure it does not vanish:

bp = (p+ 1)

(
(p+ 1)!p!

(2p+ 1)!
+

2(p+ 1)(p!)2

(2p+ 2)!
− 2(p!)2

(2p+ 1)!
+

(−1)pp(p!)2

(2p+ 1)!

+
(−1)p+1(p+ 1)(p!)2

(2p+ 2)!
+

(−1)p+1p!(p− 1)!

(2p+ 1)!
+

(−1)p+1(p+ 1)(p!)2

(2p+ 2)!

)
=

(p− 1)(p− 1)!(p+ 1)!

(2p)!
.

4.4.2 The case of Dt

This time let us consider another subfamily of Fréchet–Mardia copulas, namely Dt :=
tM + (1− t)W , t ∈ I. We have

Theorem 4. For copulas Dt, t ∈ I, and ϕ(x) = xp, p > 1, we have

τϕ(Dt) = 2−p
{
tp − (1− t)p +

p∑
m=1

2p−k
(
tm − (1− t)m

)}
. (24)

Proof. As in the proof of Theorem 3, we get, for any reflection ξ ∈ R,

ξ∗(Dt) = t
(
M1ξ∈{e,ς} +W1ξ∈{σ1,σ2}

)
+ (1− t)

(
W1ξ∈{e,ς} +M1ξ∈{σ1,σ2}

)
,

so
τϕ(Dt) = (p+ 1)

[
J1(t; p)− J2(t; p)

]
,

where

J1(t; p) := t[Dt,M ]ϕ + (1− t)[Dt,W ]ϕ

= t

1∫
0

(
tu+ (1− t)(2u− 1)+

)p
du+ (1− t)

1∫
0

(
t
(
u ∧ (1− u)

))p
du

= t

(
tp

1/2∫
0

up du+

1∫
1/2

(
tu+ (1− t)(2u− 1)

)p
du

)
+ 2(1− t)tp

1/2∫
0

up du

= t

(
tp

2p+1(p+ 1)
+

1− (t/2)p+1

(p+ 1)(2− t)

)
+

(1− t)tp

2p(p+ 1)

=
tp+1

2p+1(p+ 1)
+

t

2p+1(p+ 1)

p∑
k=0

2p−ktk +
(1− t)tp

2p(p+ 1)

and
J2(t; p) := t[Dt,W ]ϕ + (1− t)[Dt,M ]ϕ = J1(1− t; p).

Equation (24) now follows by simplifying

2tp+1 + 2(1− t)tp − 2(1− t)p+1 − 2t(1− t)p = 2
(
tp − (1− t)p

)
and after letting m = k + 1 in the remaining sum over k from 0 to p− 1.
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Example 4. Using Theorem 4 with p = 1, 2, 3, 4, we obtain

• for p = 1, we recover Kendall’s τ (see [19, Ex. 5.3]), namely τ(Dt) = 2t− 1;
• for p = 2, τϕ(Dt) = 2t− 1;
• for p = 3, τϕ(Dt) = (1/2)t3 − (3/4)t2 + (9/4)t− 1;
• and for p = 4, τϕ(Dt) = (3/4)t3 − (9/8)t2 + (19/8)t− 1.

Plots of τϕ(Dt), t ∈ I, for ϕ(x) = xp, p = 1, 2, 3, 4, can be found in Fig. 3. For larger
values of p, as in Example 3, polynomials become more complicated, but the graphs again
remain surprisingly similar.

More generally, we have

Corollary 2. Let p > 1 be an integer, and let ϕ(x) = xp. Then for the Fréchet–Mardia
family {Dt}t∈I,

deg τϕ(Dt) =

{
p− 1 if p ∈ 2Z;
p if p ∈ 2Z+ 1.

Proof. Inspecting Eq. (24), we see that, for p ∈ 2Z+ 1, the coefficient of tp is

2−p
(
2
(
1− (−1)p

))
= 2−(p−2) > 0.

On the other hand, when p ∈ 2Z, the coefficient of tp vanishes, while that of tp−1 is

2−p
(
−2p(−1)p−1 + 2

(
1− (−1)p−1

))
= (p+ 2)2−(p−1) > 0.

Figure 2. Graphs of τϕ(Ct), t ∈ I, for ϕ(x) = xp, p ∈ {1, 2, 3, 10, 100, 151}, respectively.
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Figure 3. Graphs of τϕ(Dt), t ∈ I, for ϕ(x) = xp, p ∈ {1, 2, 3, 4, 10, 50, 100}, respectively.

5 Conclusions and future directions

In this part of our investigation of concordance measure constructions, we have provided
more examples of computation of generalized Kendall’s τ . We have employed mostly
power-type distortion functions ϕ, but other choices are possible, e.g., piecewise linear or
polynomial. This is related to copula-based local dependence framework explored in [11].
We have then looked at the intrinsic meaning of our generalizations and established that
they are achieved by replacing a probability measure µC (induced by a given copula C)
with a nonadditive measure (in our case, convex (supermodular) capacity, ν = ϕ ◦ µC).
Such measures have found their place in the economic decision theory, so we hope that
our generalizations could be of use there, too.

Having many examples to work with calls for taking a shot at several open prob-
lems about the structure of polynomial-type concordance measures, both bivariate and
multivariate; see the works of Edwards, Mikusiński, Taylor [6–8], Fuchs [9, 10] and
the references therein. We hope that our work, providing many more polynomial-type
concordance measures, will be useful in this direction. A recent work by Borroni [1]
also deserves a closer look. We intend to look for more examples and constructions of
“generators”, as Borroni calls them, used to define concordance measures and provide
a different point of view towards what exactly a particular concordance measure measures.
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