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Abstract. In a three-phase symmetric power system, we propose a transformation that converts
the original current to a current with minimal losses while preserving the standard constraints. The
selected transformation is realized in suitable geometric algebra and is not time-dependent. The
proposed transformation uses the group symmetry of conformal geometric algebra, mainly rotations
and tations.

Keywords: geometric algebra, PGA, CGA, three-phase systems.

1 Introduction

Geometric algebras (GA) represent an object-oriented approach allowing to replace the
matrix formalism by a linear notation [13, 16]. In the last years, there has been a rapid
development of their use in different areas [1, 8, 9, 17]. Currently, a wide range of other
applications are becoming available, in addition to classical applications such as robotics
[7, 11], computer graphics [4] or binocular vision [10].

In context of power systems, the concept of GA allows us to express electromagnetic
Maxwell’s equations uniformly instead of using variable tools like complex numbers,
matrices, etc. [15]. In particular, we deal with the three-phase or, generally, n-phase circuit
with voltages v1, . . . vn and currents i1, . . . , in at the branches. In this context, we can see
voltage (resp. current) as vectors v = v1e1+ · · ·+ vnen (resp. iorig = i1e1+ · · ·+ inen)
in n-dimensional Euclidean space.

With the help of the Clark transformation, the balanced three-phase circuit can be
expressed by only two coordinates because the current lies on a plane that goes through
the origin and is perpendicular to the vector (1, 1, 1). In the text, this plane will be denoted
as ρ0. The papers [5, 14] show how Clark transformation can be done by rotating plane
ρ0 to the plane xy. Note that even though we are dealing with a three-phase power system,

*Supported by the grant No. FSI-S-23-8161.

© 2025 The Author(s). Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

https://orcid.org/0009-0003-3817-1956
https://orcid.org/0000-0003-2460-7571
mailto:171519@vutbr.cz
mailto:qmhrdina@vutbr.cz
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


Notes on the losses compensation of a three-phase power system with DC offset 253

the GA are dimensional independent, and our apparatus can be applied to general n-phase
power systems.

Our paper deals with symmetric balanced power systems (Section 5) and with power
systems with DC offset (Section 6). In addition, the results of Section 4 are formulated
for any systems in a specific time.

In the text, we consider the given voltage v = vae1 + vbe2 + vce3 and current
iorig = iae1 + ibe2 + ice3. The scalar part of the power is given by the inner product
p = v · iorig (whole power contains also the bivector part v ∧ iorig). We aim to find
a current i to preserve the power while minimizing losses. Then we find a transformation
that transforms the original current iorig to the calculated one i, and its trajectories are the
shortest ones [2, 18].

We differ from the classical papers, like [14], in the choice of the particular GA. The
vector geometric algebra Gn, which is usually used, can represent rotations (or, more pre-
cisely, reflections with respect to planes passing through the origin). At distinct from that,
in projective geometric algebra (PGA), we can represent all the linear transformations and
objects, which enables us to find a plane τ of feasible currents. We will represent voltages
(resp. currents) by points with corresponding positional vectors. In PGA, we can easily
project points onto planes, while we still benefit from everything from group of rotations.

Finally, to find the optimal transformation in the case of a periodic signal, it is ben-
eficial to use the dilation, so it is a natural to use conformal geometric algebra (CGA).
We extend the workspace by an additional dimension to find the expected transformation.
Simultaneously, in the text, we demonstrate our approach through the specific examples.

2 Geometric algebras (GA)

The simplest geometric algebra (GA) is a Clifford algebra Cl(n, 0, 0), i.e., Clifford algebra
generated by a vector space Rn equipped with a positive definite quadratic form [13,
16]. This GA is called the vector geometric algebra (VGA) and denoted Gn. The main
operation is the geometric product, which is anticommutative on vectors, i.e.,

eiej =

{
−ejei if i 6= j

1 if i = j = 1, 2, . . . , n,

associative, and distributive. Another important operations are the wedge product ∧ and
the inner product · defined as projections of geometric product to maximal and zero
gradation.

The space of bivectors (second-grade elements) of this algebra forms the Lie alge-
bra isomorphic to the Lie algebra so(n) and the associated Lie group to the Lie group
Spin(n). In the case of n = 3, to the Lie algebra so(3) and a Lie group of unit quaternions.

2.1 Conformal geometric algebra (CGA)

By adding Witt pair {e0, e∞} to the VGA Gn we get an n-dimensional conformal ge-
ometric algebra (nCGA) [4, 6]. By Witt pair we mean a pair of generators {e0, e∞},
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which are orthogonal to the original ones and satisfies identities e20 = e2∞ = 0 and
e0 · e∞ = −1 [13]. We receive an Clifford algebra Cl(n + 1, 1) through this procedure,
and the inclusion ι : Rn → Cl(n+ 1, 1) is a map

ι(x1, . . . , xn) = e0 + x1e1 + · · ·+ xnen +
1

2

(
x21 + · · ·+ x2n

)
e∞.

Using nCGA, we can represent affine geometric objects O ⊂ Rn. With the help of
the inner and outer product, we can define two representations, direct and dual, in the
following:

x ∈ O ⇐⇒ x ·O = 0,

x ∈ O ⇐⇒ (x ·O)∗ = x ∧O∗ = 0,
(1)

respectively, where the duality is assigned by ∗ and means that A∗ = AI , where I is
pseudoscalar I = e1...n0∞ = e1 ∧ · · · ∧ en ∧ e0 ∧ e∞. Clearly, the objects from (1)
are represented by projective classes in this algebra, which means that for all
λ 6= 0 ∈ R, λA represents the same entity. Finally, to join points A = ι(x1, . . . , xn)
and B = ι(x1, . . . , xn), the operation join ∨ is used:

A ∨B = (A∗ ∧B∗)∗.

In the case of three-phase power systems, we will work in the algebra 3CGA. In case
n = 3, we are talking simply about conformal geometric algebra (CGA), and the inclusion
ι : R3 → Cl(4, 1) is a map

ι(x, y, z) = e0 + xe1 + ye2 + ze3 +
1

2

(
x2 + y2 + z2

)
e∞.

Table 1 gives us an overview of geometric objects that can be represented in CGA. In the
case of CGA, the bivectors form a conformal Lie algebra co(3) and hence an affine Lie
algebra aff(3) as its subalgebra. The corresponding rotations are in the form of

R = exp

(
−θ
2
(n1e23 + n2e31 + n3e12)

)
,

where n1e23 + n2e31 + n3e12 is a rotation plane, and θ is an angle of rotation. Finally,
translations are in the form

T = exp

(
−1

2
(t1e1∞ + t2e2∞ + t3e3∞)

)
,

where t1e1 + t2e2 + t3e3 is direction of translation.

Remark. Let us note that some previous considerations are determined by choosing
a particular geometric algebra and are not general rules. If n > 2, then all elements
of Spin(n) are exponentials of bivectors. This does not apply to every spin group. For
example, the group Spin+(1, 3)

∼= SL(2,C) contains elements that are not exponentials
of bivectors [13].
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Table 1. Geometric objects in PGA and CGA.

PGA CGA

direct dual direct dual

line (A ∨B)∗1 A ∨B (A ∧B ∧ e∞)∗2 A ∧B ∧ e∞
circle (A ∧B ∧ C)∗2 A ∧B ∧ C
plane (A ∨B ∨ C)∗1 A ∨B ∨ C (A ∧B ∧ C ∧ e∞)∗2 A ∧B ∧ C ∧ e∞
sphere (A ∧B ∧ C ∧D)∗2 A ∧B ∧ C ∧D

Here A∗1 = ](A∗) and A∗2 = Ae1230∞.

2.2 Projective geometric algebra (PGA)

We get projective geometric algebra (PGA) by taking only linear objects in the dual ver-
sion of CGA [3,12]. In particular, in CGA, we consider so called flat points ι(x1, x2, x3)∧
e∞, its dual and rename e∞ to e0 (this is only because, in PGA theory, the label e0 for
the additional element has been originally introduced). Formally, we use the mapping
] : CGA → CGA, which leaves ei, i ∈ {1, 2, 3} on place and overwrites e0 → e∞
and e∞ → e0 [12]. We demonstrate this correspondence in more detail by the following
calculation:

]
(
(ι(x, y, z) ∧ e∞)∗

)
= ]
(
(e0 ∧ e∞ + xe1 ∧ e∞ + ye2 ∧ e∞ + ze3 ∧ e∞)∗

)
= ]((1 + e0e∞ + xe1e∞ + ye2e∞ + ze3e∞)e123(−1− e∞e0))
= −]

(
(1 + e0e∞ + xe1e∞ + ye2e∞ + ze3e∞)e123 + e123(e∞e0)

)
= −]

(
1 + (e0e∞ + e∞e0) + xe1e∞ + ye2e∞ + ze3e∞

)
e123

= −](1− 2 + xe1e∞ + ye2e∞ + ze3e∞)e123

= −](−e123 − xe1e123e∞ − ye2e123e∞ − ze3e123e∞)

= ](e123 + xe23e∞ − ye13e∞ + ze12e∞)

= e123 + xe023 − ye013 + ze012.

The vectors {e1, e2, e3, e0} forms a Clifford algebra Cl(3, 0, 1) based on the quadratic
form of degenerate signature (3, 0, 1). The bivectors of this algebra correspond directly
to the affine Lie algebra aff(3), and its exponents to the spin affine group, which can
be seen as a semidirect product Spin(3) o R3. The origin is represented by the blade
o = e1 ∧ e2 ∧ e3, and the inclusion of R3 by the map

ι(x, y, z) = e1 ∧ e2 ∧ e3 + xe0 ∧ e2 ∧ e3 + ye1 ∧ e0 ∧ e3 + ze1 ∧ e2 ∧ e0. (2)

Note that we can see linear objects in CGA as objects in PGA and define a reduction of
the map A 7→ ](A∗) to PGA ⊂ CGA, we receive a PGA duality A 7→ A∗.

In this notation, we can see vectors x = xe1 + ye2 + ze3 from G3 as free vectors x∗

in PGA and the PGA inclusion (2) of the point X with positional vector x ∈ Rn as

X = (x+ e0)
∗ = ι(x, y, z).
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Table 1 gives us an overview of geometric objects that can be represented in PGA. For
example, in direct representation, the hyperplane π given by equation n · x = d, where
n ∈ Rn has representation

π = n+ de0, (3)

and the linear object given as the intersection of hyperplanes π and σ is given by π∧σ. In
PGA, it is convenient to use orthogonal projections, we get the projection Y of a point X
onto an object l

Y = (l ·X) ∧ l,
where l ·X represents the object passing through X perpendicular to l.

3 Three phase power systems with and without DC offset

Consider a symmetric three-phase power supply system with DC offset, i.e., three con-
ductors each carry an alternating current of the same frequency and voltage amplitude
such that the power system can be described using periodic functions as

va(t) = Vn +
√
2Vmax cos(ωt), ia(t) = In +

√
2Imax cos(ωt+ ϕ),

vb(t) = Vn +
√
2Vmax cos

(
ωt+

2

3
π

)
, ib(t) = In +

√
2Imax cos

(
ωt+

2

3
π+ϕ

)
,
(4)

vc(t) = Vn +
√
2Vmax cos

(
ωt− 2

3
π

)
, ic(t) = In +

√
2Imax cos

(
ωt− 2

3
π+ϕ

)
.

A phase difference is, in this case, one third of a cycle, but thanks to the nonzero offset, it
does not lie in the plane passing through the origin; see Fig. 1 for the three-phased power
system with DC offset.

As we mentioned before, in the phase space, we can understand expression (4) as
a circle in R3, where centers of such a parametrized circles are SV = [Vn, Vn, Vn] and
SI = [In, In, In], respectively. In Figs. 1 and 2 you can see that in the case of a zero
offset, i.e., Vn = In = 0, the circle passes through the origin (see Fig. 2(b)), and in the
case of a nonzero offset, the circuit is centered outside the origin (see Fig. 1(b)). On the
other hand, both circles have the same normal vector.

Finally, remark that a periodic signal in the symmetric and balanced form without
offset has the following description:

va(t) =
√
2Vmax cos(ωt), ia(t) =

√
2Imax cos(ωt+ ϕ),

vb(t) =
√
2Vmax cos

(
ωt+

2

3
π

)
, ib(t) =

√
2Imax cos

(
ωt+

2

3
π + ϕ

)
,

(5)

vc(t) =
√
2Vmax cos

(
ωt− 2

3
π

)
, ic(t) =

√
2Imax cos

(
ωt− 2

3
π + ϕ

)
.

In order to be able to work with the geometric interpretation of signals (and use GA
apparatus) in the following sections, let us summarize some basic facts.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Notes on the losses compensation of a three-phase power system with DC offset 257

(a) Normalized waveforms (b) Normalised phase space

Figure 1. Three-phased power system with DC offset.

(a) Normalized waveforms (b) Normalised phase space

Figure 2. Balanced three-phased power system.

Lemma 1. Let us have symmetric power system based on Eqs. (4). Then the scalar part
of the electric power p = v · iorig is constant (does not depend on t), and

p = 3
(
VnIn + VmaxImax cos(ϕ)

)
.

Proof. The straightforward computation

p = v · iorig = 3VnIn + 3VmaxImax cos(ϕ)

complete the proof.

Corollary 1. Let us have symmetric power system without offset, i.e., system based on
Eqs. (5). Then the scalar part of the electric power p = v · iorig is constant and is the
following:

p = 3VmaxImax cos(ϕ).

Lemma 2. The trajectory of voltage v ∈ R3 (5) is the circle in the plane ρ0 = e1+e2+e3;
see (3). The center is at the origin, and the radius is r =

√
3Vmax.
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Proof. The trajectory of voltage v ∈ R3 (5) is the circle in the plane ρ0 because the sum
of voltage coordinates is equal to zero for all t ∈ 〈0,∞):

√
2Vmax cos(t) +

√
2Vmax cos

(
ωt+

2π

3

)
+
√
2Vmax cos

(
ωt− 2π

3

)
= 0.

The fact that the centre is origin is clearly seen from parametrization (5), and the radius is
determined by the following straightforward calculation, where we denote cα = cos(α)
and sα = sin(α):

r =
√
2V 2

max

(
c2ωt + c2

(ωt+ 2π
3 )

+ c2(ωt−2π/3)
)

=
√
2Vmax

√
c2ωt + (cωtc(2π/3) − sωts(2π/3))2 + (cωtc(−2π/3) − sωtst(−2π/3))2

=
√
2Vmax

√
c2ωt + 2c2ωt

(
−1

2

)2

+ 2s2ωt

(√
3

2

)2

=
√
2Vmax

(
3

2

(
c2ωt + s2ωt

))0.5

=
√
2Vmax

√
3

2
=
√
3Vmax,

which completes the proof.

4 Current of power systems at a specific time

Consider a three-phases current and a three-phases voltage (4) in a specific time t0 and so
omit the time parameter t. In a specific time, a current and a voltage can be represented
as concrete vectors in G3, i.e.,

iorig = iae1 + ibe2 + ice3, v = vae1 + vbe2 + vce3,

respectively. Now, we express the real part of the power of the system as p = v · iorig in
a time t0 with the help of the inner product. The aim is to find a new vector i such that
the real part of the power

p = v · i (6)

is preserved, and at the same time, the losses of the system are minimal, where the losses
are functions defined as follows:

losses(i) = i · i+ (ia + ib + ic)
2 = i · i+ (i · n)2

= losnorm + lossum, (7)

where the losses i · i we will call losnorm, the other one (i · n)2 we will denote lossum,
and n = e1 + e2 + e3.

4.1 PGA realisation

Because we can interpret Eq. (6) as a plane in R3, we are looking for a solution lying on
a particular plane. So, we represent this problem in algebra PGA, i.e., the current will be
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Figure 3. The feasible solution lie on the plane τ .

represented as a PGA point
I = (i+ e0)

∗,

where symbol ∗ stands for PGA duality. Now, points I , which are feasible, that means
they satisfy relation (6), lie in the plane τ :

τ = v + pe0.

In Fig. 3, we see the green plane τ , red origin, and a yellow vector v (perpendicular to τ ).
The important information is the distance of τ from the origin, which codes the power p.
Our goal is to minimize the function losses(i) (7). The problem is that part losnorm(i)
of the function losses(i) is linear, whereas lossum(i) is quadratic. In the next section, we
will show how to linearize the whole problem by adding a dimension.

4.2 Linearization of the problem

To linearize the quadratic part lossum(i) and so the function losses(i) (7), we have to
extend the workspace by one additional dimension. We use 4D version of PGA, so we
add one more Euclidean dimension e4 to code the sum of coordinates. Now the points,
which represent currents in the form

I4D = iae1 + ibe2 + ice3 − (ia + ib + ic)e4 + e0, (8)

lie in the hyperplane
ρ4D0 = n4D = e1 + e2 + e3 + e4, (9)

and the projection into the original PGA simply forgets the e4 coordinate from (8) to
receive

I3D = iae1 + ibe2 + ice3 + e0.

Now the feasible solutions lie again on the hyperplane, which is in PGA represented by
object

τ = v + pe0, (10)

where v = vae1 + vbe2 + vce3.
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To satisfy conditions (9) and (10), the point I4D must be lying on the hyperline k4D,
which is an intersection of the hyperplanes ρ4D0 and τ , i.e.,

k4D = τ ∧ ρ4D0 = v ∧ n4D + pe0n
4D.

The function losses(i) is now in the form

losses
(
I4D

)
= losses

(
i4D
)
= I4D · I4D,

and the minimum is the nearest point to the origin from k. We get this point simply by the
projection of the origin e1234 to the hyperline k4D, i.e.,

I4D =
(
k4D · e1234

)
∧ k4D.

In coordinates, the previous geometric considerations are represented by the following
theorem.

Theorem 1. Let v = vae1 + vbe2 + vce3 ∈ R3 be a voltage and p ∈ R be a power of the
three-phase system. Then the current

i = p
(3va − vb − vc)e1 + (3vb − va − vc)e2 + (3vc − va − vb)e3

3(v2a + v2b + v2c )− 2(vavb + vbvc + vavc)
∈ R3 (11)

satisfies the property v · i = p, and the losses(i) is minimal.

Proof. We represent the current i as a point I4D in 4D PGA and compute the hyperline
k4D as follows:

k4D= (v + pe0) ∧ n4D = (vae1 + vbe2 + vce3) ∧ n4D − pn4De0

= (vb − vc)e23 + (vc − va)e31 + (va − vb)e12
+ vae14 + vbe24 + vce34 − pn4De0.

The hyperline l4D perpendicular to the hyperline k4D can be obtained by the inner product
as

l4D = k4D · e1234
= (vb − vc)e14 + (vc − va)e24 + (va − vb)e34 + vae23 + vbe13 + vce12,

and the intersection of the hyperline l4D and the hyperline k4D is then the projection of
the origin to the hyperline k4D, and therefore the final point

I4D = l4D ∧ k4D

= p(3va − vb − vc)e2340 + p(3vb − va − vc)e3140 + p(3vc − va − vb)e1240
+
(
3
(
v2a + v2b + v2c

)
− 2(vavb + vbvc + vavc)

)
e1234 + αe0123,

where α is a real number, but the blade e∗0123 = e4 is forgotten by the projection in to 3D.
Finally, after homogenization and projection, we received

I3D = i+ e0,

https://www.journals.vu.lt/nonlinear-analysis
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where

i = p
(3va − vb − vc)e1 + (3vb − va − vc)e2 + (3vc − va − vb)e3

3(v2a + v2b + v2c )− 2(vavb + vbvc + vavc)
,

which completes the proof.

Corollary 2. The current from (11) can also be expressed with the help of the inner
product as

i = p
4v − (va + vb + vc)n

4(v · v)− (va + vb + vc)2
.

Proof. The straightforward computation

i = p
(3va − vb − vc)e1 + (3vb − va − vc)e2 + (3vc − va − vb)e3

4(v · v)− (va + vb + vc)2

= p
4v − (va + vb + vc)n

3(v2a + v2b + v2c )− 2(vavb + vbvc + vavc)
= p

4v − (va + vb + vc)n

4(v · v)− (va + vb + vc)2

= p
4v − (v · n)n

4(v · v)− (v · n)2

completes the proof.

Corollary 3. If system (5) is symmetric, so va + vb + vc = 0, then the current from (11)
can be expressed in the form

i = p
v

(v · v)
.

The following theorem explains how the minimum losses for the observed current can
by computed.

Theorem 2. Let v = vae1 + vbe2 + vce3 ∈ R3 be a voltage, p ∈ R be a power of
the three-phase system, and current i be a current (11) from Theorem 1. Then the losses
function from (7) is in the following form:

losses(i) =
4p2

4‖v‖2 − (va + vb + vc)2
.

Proof. For current from Theorem 1, we have

i = α
(
4v − (va + vb + vc)n

)
= α

(
4(vae1 + vbe2 + vce3)− (va + vb + vc)(e1 + e2 + e3)

)
= α

(
(3va − vb − vc)e1 + (3vb − va − vc)e2 + (3vc − va − vb)e3

)
i · i = α2

(
(3va − vb − vc)2 + (3vb − va − vc)2 + (3vc − va − vb)2

)
= α2

(
11
(
v2a + v2b + v2c

)
− 10(vavb + vbvc + vavc)

)
,

Nonlinear Anal. Model. Control, 30(2):252–269, 2025
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(ia + ib + ic)
2 = α2(va + vb + vc)

2

= α2
(
v2a + v2b + v2c + 2(vavb + vbvc + vavc)

)
,

where α = p/(4(v · v)− (va + vb + vc)
2). Finally, because of

i · i+ (ia + ib + ic)
2 = 4α2

(
3
(
v2a + v2b + v2c

)
− 2(vavb + vbvc + vavc)

)
4(v · v)− (va + vb + vc)

2 = 3
(
v2a + v2b + v2c

)
− 2(vavb + vbvc + vavc),

we have

losses(i) =
4p2(3(v2a + v2b + v2c )− 2(vavb + vbvc + vavc))

(3(v2a + v2b + v2c )− 2(vavb + vbvc + vavc))2
= 4pα,

which completes the proof.

Example 1. We demonstrate our algorithm on the same example as in the paper [14], then
we have

v = −3e1 + 9e2 − 2e3, iorig = −9e1 + 2e2 − 5e3,

so the electric power is
p = v · iorig = 55.

Now we can use formula (11) from Theorem 1

i = 55
(−9− 9 + 2)e1 + (27 + 3 + 2)e2 + (−6 + 3− 9)e3

3((−3)2 + 92 + (−2)2)− 2(−27− 18 + 6)

= 55
−16e1 + 32e2 +−12e3

3(94)− 2(−39)
= 55

−16e1 + 32e2 +−12e3
360

=
−44e1 + 88e2 +−33e3

18
= −2.44e1 + 4.89e2 − 1.83e3,

and we get the same result as in the paper [14], where the losses are

losses(i) =
4 · 552

4(9 + 81 + 4)− 16
= 33, 61.

4.3 Compensation

By compensation we mean a transformation that optimally converts the original current
Iorig to the calculated current I . We will discuss compensation in the following sections
with respect to time t. Here we note that if the system were not time-dependent, the
optimal trajectory would be a line segment, and the compensation would be translation

T = 1− 0.5(i− iorig)e0.

In this case, the trajectory is still in hyperplane τ .
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5 Symmetric three phase voltage supply

In this section, we will consider the situation where harmonic three-phase voltage and
current inputs are in the form without offset, i.e.,

V = va(t)e1 + vb(t)e2 + vc(t)e3,

I = ia(t)e1 + ib(t)e2 + ic(t)e3,

where vs(t) and is(t), s ∈ {a, b, c}, are from (5), i.e., Vn = In = 0. In this case, we will
see that a current is in the same plane as a voltage. The given current Iorig and voltage V
are moving on concentric circles with a radius depending on amplitude Imax and Vmax,
and a current is shifted by ϕ. These facts follow directly from formulas (5).

Note that according to Lemma (2), we can represent the three-phase systems (5) as an
orbits with respect to rotation in the plane ρ0 = e1 + e2 + e3, i.e.,

Rv(t) = exp

(
−1

2
ωt
e23 + e31 + e12√

3

)
, where t ∈ 〈0,∞).

So, the plane τ(t) = v(t) + 3VmaxImax cos(ϕ)e0 depends on the time t, and the
optimal current I(t) is the projection of origin onto the plane τ . The value of a current
I(t) rotates on the circle with radius

√
3Imax cos(ϕ).

Example 2. In Fig. 4, we see the trajectories of currents Iorig(t), I(t) and voltage V (t)
for

Imax = 0.7, Vmax = 1.2, ϕ = 0.2π.

In the time t0 = 0, the given voltage V (t0) as point A[1.2,−0.6,−0.6], given current
Iorig(t0) as point B[0.57,−0.64, 0.07], and the optimal current I(t0) as point C[0.57,
−0.28,−0.28] (at time t = 0) are represented there.

Transformation from Iorig(t0) to I(t0) can be done directly by translation or by
rotation and dilation. The direction of translation I(t) − Iorig(t) (the points C−B in

Figure 4. Voltage moves along the outer circle, original current Iorig along the middle one, the final current I
along the inner one.
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264 J. Brdečková, J. Hrdina

Example 2 depends on time and can be represented in PGA by translator

T (t) = exp

(
−1

2
sin(ϕ)‖i‖ (v(t) ∧ n)e123

‖n‖‖v‖
e0

)
= exp

(
−1

2
sin(ϕ)

√
2Imax

(v(t) ∧ n)e123√
3Vmax

e0

)
or in CGA by translator

T (t) = exp

(
−1

2
sin(ϕ)‖i‖ (v(t) ∧ n)e123

‖n‖‖v‖
e∞

)
= exp

(
−1

2
sin(ϕ)

√
2Imax

(v(t) ∧ n)e123√
3Vmax

e∞

)
.

To eliminate the dependence on the time, we use CGA algebra, which may addition-
ally represent dilation with help of versor

D = 1 +
1− d
1 + d

e45.

The dilation is constant with proportion (ratio) equal to | cos(ϕ)|, so the versor is

D = 1 +
1− | cos(ϕ)|
1 + | cos(ϕ)|

e45.

If we rotate Iorig in the constant plane ρ0, then the angle of rotation ϕ is constant, too. By
rotationR of Iorig(t) we received the vector parallel to the vector V (t), where

R = cos
ϕ

2
− sin

ϕ

2

e23 + e31 + e12√
3

= exp

(
−1

2
ϕ
e23 + e31 + e12√

3

)
.

In particular, we need to map circle with radius Imax

√
1.5 of Iorig(t) to circle with radius

| cos(ϕ)|Imax

√
1.5 of I(t). Both circles have a center at the origin. In such a way, we

found the transformation DR from Iorig to I , which is not time-dependent, i.e.,

I = DRIorigR−1D−1.

5.1 Bivector corresponding to the dilation

During the generation of Fig. 3, we used the fact that we can represent transformations as
exponential of bivectors. If we introduce substitution d = e−2a, where a = −0.5 ln(d) =
−0.5 ln(| cos(ϕ)|), then the dilations can be rewritten as

D = 1 +
1− d
1 + d

e45 = 1 +
1− e−2a

1 + e−2a
e45 = 1 +

ea − e−a

ea + e−a
e45

= 1 + tanh(a)e45.
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Figure 5. Compensation based on rotation and dilation.

On the other hand, the Taylor expansion of function exp can be rewritten as

exp(ae45) =

∞∑
n=0

a2n

(2n)!
+

∞∑
n=0

a2n+1

(2n+ 1)!
e45 = cosh a+ sinh ae45

because of e245 = 1. So we can get

cosh(a)
(
1 + tanh(a)e45

)
= exp(ae45) = exp

(
−0.5 ln

(∣∣ cos(ϕ)∣∣)e45),
and finally, we can see that

D = exp
(
−0.5 ln

(∣∣ cos(ϕ)∣∣)e45)
after the expression is divided by cosh(d). Finally, note that composition of rotation and
dilation leads to

RD = exp

(
ϕ
e23 + e31 + e12

2
√
3

)
exp
(
−0.5 ln

(∣∣ cos(ϕ)∣∣)e45)
= exp

(
ϕ
e23 + e31 + e12

2
√
3

− 0.5 ln
(∣∣ cos(ϕ)∣∣)e45),

where these equations hold for angles |ϕ| < π/2.

6 Voltage supply with DC offset

In the more general case, we deal with three-phase power systems with DC offset. In
Section 5, the voltage and current lie in plane ρ0 = n. In a more general case (4), the
situation is not that simple, but still we know that current and voltage lie on planes parallel
to ρ0. In this case, the circle’s center must be a projection of the origin onto the plane for
the power to be constant in time. So we suppose they lie on circles, and their rotation has
the same frequency.
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Theorem 3. In three phased power system based on Eqs. (4), the optimal currency can
be represented by a circle

i(t) =
VnIn + VmaxImax cos(ϕ)

V 2
n + 4V 2

max

(
4v(t)− 3Vnn

)
(12)

with center
VnIn + VmaxImax cos(ϕ)

V 2
n + 4V 2

max

nVn

and radius
√
3
VnIn + VmaxImax cos(ϕ)

V 2
n + 4V 2

max

4Vmax.

Proof. We will compute the current i from Theorem 1 in the form

i = p
4v − (va + vb + vc)n

4(v · v)− (va + vb + vc)2
. (13)

The sum va + vb + vc of voltages from (4) is directly equal to 3Vn because the period
between phases is 2π/3. So the numerator of (13) gives us the direction 4v− 3Vnn. The
denominator of (13) can by directly computed as

12
(
V 2
n + V 2

max

)
− (3Vn)

2 = 12V 2
n + 3V 2

max,

and the power p is based on lemma 1, which completes the proof.

Corollary 4. Let v = vae1 + vbe2 + vce3 ∈ R3 be a voltage based on system (4), p ∈ R
be a power of the three-phase system, and the current i be a current (12) from Theorem 3.
Then the losses function from (7) is in the following form:

losses(i) =
4p2

4‖v‖2 − 9V 2
n

.

We are seeking a transformation from the original current circle, i.e., circle with the
center nIn and radius

√
3Imax, to the optimal one from Theorem 3.

Theorem 4. The dilation that maps the original current circle (4) to the current circle
based on (12) based on a ratio

d =
4Vmax

Imax

VnIn + VmaxImax cos(ϕ)

V 2
n + 4V 2

max

with the center

c = n
4VmaxIn − VnImax

4Vmax − Imax
V 2
n+2V 2

max

VnIn+VmaxImaxcos(ϕ)/2

.
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Proof. Both circles lie on the cone with the top c, and the ratio for dilation should be the
ratio of the radii

d =
4
VnIn+VmaxImax

1
2 cos(ϕ)

V 2
n+2V 2

max

√
3
2Vmax√

3
2Imax

=
4Vmax

Imax

VnIn + VmaxImax
1
2 cos(ϕ)

V 2
n + 2V 2

max

,

which completes the proof.

Corollary 5. In general, three-phase power system from (4) has an optimal currency

losses(i) =
4p2

3V 2
n + 6V 2

max

.

Proof. Straightforward calculation

losses(i) =
4p2

4‖v‖2 − (va + vb + vc)2
=

4p2

12V 2
n + 12V 2

max − 9V 2
n

=
4p2

3V 2
n + 12V 2

max

completes the proof.

Our aim is to map a circle with the centre s1 = nIn and the radius r1 =
√
3Imax into

a circle with the following centre s2 and radius r2:

s2 =
VnIn + VmaxImax cos(ϕ)

V 2
n + 4V 2

max

nVn, r2 =
√
3
VnIn + VmaxImax cos(ϕ)

V 2
n + 4V 2

max

4Vmax.

From Theorem 4 we know ratio d = r2/r1, and we can find the dilation with the center
in origin:

D = exp

(
−1

2
ln
(
|d|
)
e45

)
.

This transformation gives us a circle of the correct radius. We still need to solve for the
position. The translation in the direction of n by

T = exp

(
−1

2
se∞

)
,

where s = s2 − ds1, places the first circle on the second. Finally, rotate by an angle −ϕ
around n as in the previous section. Overall, the transformation is independent of time,
i.e.,

I = RT DIorigD−1T −1R−1.

The resulting motions could be characterized as a helix on a cone and are displayed in
Fig. 5, and the mentioned circles can bee seen in Fig. 6.
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Figure 6. Original circle (red), circle after dilation (black), final circle (green).

7 Conclusion

In a fix time t0, we find the current i for which the system has minimal losses due
to additional constraints. It holds for any power system (balanced, unbalanced, with or
without offset). This result is formalized in Theorem 1. Note that the current found in this
way lies on a parallel plane and a common cone.

For a symmetric system with or without DC offset, we find a conformal transformation
that converts iorig to i so that the trajectories of the transformation are optimal, and the
mentioned transformation is time-depending. This result is formalized in Theorem 4.

We showed that using the mathematical apparatus of geometric algebras allows us to
find a suitable transformation efficiently.
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