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Abstract. In this paper, we establish quantitative estimates for the nonlinear sampling Kantorovich
operators in the general setting of modular spaces Lρ. To achieve this, we consider a notion of
modulus of smoothness based on the convex modular functional ρ, which defines the space. The
approach proposed is new in the sense that, in the literature, theorems for the order of approximation
in Lρ are mainly qualitative, i.e., are proved considering functions belonging to Lipschitz classes;
here the estimates are achieved for every function belonging to the whole Lρ. To show the effec-
tiveness of the achieved results, several particular cases of modular spaces are presented in detail.

Keywords: modular spaces, modular inequalities, modulus of smoothness, order of approximation,
quantitative estimates.

1 Introduction

In the present paper, we focus on studying the order of approximation for the so-called
nonlinear sampling Kantorovich operators [18], which are defined by

(Kwf)(x) :=
∑
k∈Z

χ

(
wx− tk,

w

∆k

tk+1/w∫
tk/w

f(u) du

)
, x ∈ R,
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where f : R → R is a locally integrable function ensuring convergence of the series,
χ : R× R → R represents a kernel function satisfying certain properties, and (tk)k∈Z is
a suitable strictly increasing sequence of real numbers with ∆k := tk+1− tk > 0, k ∈ Z.
The choice of (tk)k∈Z allows to sample signals by an irregular scheme, and in particular,
if tk = k, k ∈ Z, we obtain uniformly spaced reconstruction algorithm.

Recently, the nonlinear operators received a lot of attention within the scientific com-
munity. Indeed, from the point of view of the applications, nonlinear version of the sam-
pling Kantorovich operators may be useful in order to approximate nonlinear signals as,
for example, a signal generated by an earthquake, an explosion, an eruption of a volcano,
and so on. The pioneer works of the theory of nonlinear integral operators, in connection
with approximation problems, can be reconducted to Musielak [15]. Later, it has been
extensively developed in the monograph by Bardaro, Musielak, and Vinti [2] and studied
by other authors; see, e.g., [1, 4, 13].

Concerning the problem of the order of approximation, quantitative estimates for the
aliasing error have been recently established in [4] in the setting of Orlicz spaces; and
now, we focus on extending such estimations within the broader setting of modular spaces
Lρ(R) using its typical modulus of smoothness. Its definition is given in the monograph
[2] (wherein its basic properties are also investigated) with respect to the modular ρ, which
generates the involved spaces.

However, in order to establish such estimations, there are quite a few challenges,
mainly due to nonlinear setting and to the general framework of modular spaces itself.
While the modular convergence results presented in [7] were obtained via density, achiev-
ing quantitative estimates necessitates the use of a direct approach. To address this issue,
we propose an innovative approach that combines the technical assumptions in [7] into
a single condition (see condition (4)) that establishes a relationship among three modulars
taken into consideration and the nonlinear kernel χ ofKw. Condition (4) holds in specific
cases such as Musielak–Orlicz spaces and function spaces with modulars lacking an
integral representation. Therefore, by imposing this and other suitable assumptions we
establish the validity of Theorem 2.

The rest of the paper is organized as follows. In Section 4.1 we investigate the case of
Musielak–Orlicz spaces, which contain the weighted Orlicz spaces and the Orlicz spaces
as well, and in Section 4.2 the spaces of functions equipped by modulars that are not
of integral type. Finally, Section 4.3 provides some direct quantitative estimates for the
nonlinear sampling Kantorovich operators acting on the set of uniformly continuous and
bounded functions.

2 Basic assumptions and notations

Let (R,ΣR, µR) be a measure space. Denoted by X(R) the space of all ΣR-measurable
real-valued functions on R, a functional ρ : X(R)→ [0,+∞] is said to be a modular on
X(R) if the following conditions hold:

(ρ1) ρ(f) = 0 if and only if f ≡ 0 µR-a.e. in R;
(ρ2) ρ(−f) = ρ(f) for every f ∈ X(R);
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(ρ3) ρ(αf + βg) 6 ρ(f) + ρ(g) for every f, g ∈ X(R)
and α, β ∈ R+

0 with α+ β = 1.

By means of the functional ρ we introduce the modular space Lρ(R) defined as follows:

Lρ(R) :=
{
f ∈ X(R): lim

λ→0
ρ(λf) = 0

}
.

It is easily verifiable that, if ρ is convex, the definition of Lρ(R) can be equivalently
expressed as follows:

Lρ(R) =
{
f ∈ X(R): ρ(λf) < +∞ for some λ > 0

}
.

It is well known that Lρ(R) is a vector subspace of X(R), and the most natural notion of
convergence on it is called the modular convergence. We will say that a net of functions
(fw)w>0 ⊂ Lρ(R) is modularly convergent (or ρ-convergent) to a function f ∈ Lρ(R) if

lim
w→+∞

ρ
(
λ(fw − f)

)
= 0

for some λ > 0. The modular convergence is weaker than the convergence induced by
the Luxemburg norm generated by the modular ρ. The latter is equivalent to say that the
above limit relation is satisfied for any λ > 0. A general theory of modular spaces can be
found in [14, 16].

The following notions concerning modular functionals will be used along the paper;
see [2, 15].

We say that a modular ρ is
(a) monotone if ρ(f) 6 ρ(g) whenever |f | 6 |g| for every f, g ∈ X(R);
(b) finite if the characteristic function 1A of every measurable set A of finite µR-

measure belongs to Lρ(R);
(c) strongly finite if each 1A as above belongs to Eρ(Ω);
(d) absolutely finite if ρ is finite and if for every ε, λ0 > 0, there exists δ > 0 such

that ρ(λ01B) < ε for every B ∈ ΣR with µR(B) < δ;
(e) absolutely continuous if there is α > 0 such that for every f ∈ X(R) with

ρ(f) < +∞, the following two conditions are satisfied:

(i) for every ε > 0, there is a measurable subset A ⊂ R such that µR(A) < +∞
and ρ(αf1Ω\A) < ε;

(ii) for every ε > 0, there exists δ > 0 such that ρ(αf1B) < ε for any
measurable subset B ⊂ R with µR(B) < δ;

(f) bounded if there exists a constant C > 1 and a measurable, bounded function
h : R → R+

0 such that h(t) → 0 as t → 0 and ρ(f(t + ·)) 6 ρ(Cf) + h(t),
t ∈ R, for all f ∈ X(R) such that ρ(f) < +∞;

(g) strongly bounded if ρ is bounded with h(t) = 0 for every t ∈ R.

Note that if ρ is convex, then any strongly finite modular is also finite.
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In order to establish quantitative estimates for the order of approximation of a family
of nonlinear operators, we recall the definition of the modulus of smoothness in modular
space Lρ(R) with respect to the modular ρ. For any fixed f ∈ Lρ(R), we denote

ωρ(f, δ) := sup
|t|<δ

ρ
(
f(t+ ·)− f(·)

)
with δ > 0. For further considerations, we need to recall the following theorem.

Theorem 1. (See [2, Thm. 2.4].) Let ρ be a monotone, absolutely finite, absolutely con-
tinuous, and bounded modular on X(R). Then for every function f ∈ Lρ(Ω), there exists
a constant λ > 0 such that

ωρ(λf, δ)→ 0 as δ → 0+.

Remark 1. Let f ∈ Lρ(R), that is, ρ(λff) < +∞ for some λf > 0, where ρ is a convex,
monotone, and bounded modular on X(R). It is easy to prove that the function f(t + ·),
for every fixed t ∈ R, also lies in Lρ(R). In fact, taking λ 6 λf/C, we have

ρ
(
λf(t+ ·)

)
6 ρ(Cλf) + h(t) 6 ρ(λff) + ‖h‖∞ < +∞

with C and h defined as in (f). Note that, since h is bounded, the above estimate is
independent (uniform) with respect to the shift parameter t.

In particular, if ρ is strongly bounded, the following inequality holds:

ρ
(
λf(t+ ·)

)
6 ρ(λff) < +∞. (1)

Now, we give the definition of the class of operators we work with.
Let Π = (tk)k∈Z be a sequence of real numbers with −∞ < tk < tk+1 < +∞,

limk→±∞ tk=±∞ and such that there exist ∆, δ>0 for which δ6∆k := tk+1−tk6∆.
A function χ : R×R→ R will be called (nonlinear) kernel if the following conditions

hold:

(χ1) (χ(wx− tk, u))k ∈ `1(Z) for every x, u ∈ R and w > 0;
(χ2) χ(x, 0) = 0 for every x ∈ R;
(χ3) χ is an (L,ψ)-Lipschitz kernel, i.e., there exist a measurable function L :

R → R+
0 and a nondecreasing function ψ : R → R+

0 with ψ(0) = 0 such
that ∣∣χ(x, u)− χ(x, v)

∣∣ 6 L(x)ψ
(
|u− v|

)
for every x, u, v ∈ R;

(χ4) there exists θ0 > 0 such that

Tw(x) := sup
u6=0

∣∣∣∣ 1u∑
k∈Z

χ(wx− tk, u)− 1

∣∣∣∣ = O
(
w−θ0

)
as w → +∞ uniformly with respect to x ∈ R.
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Moreover, we assume that the function L of condition (χ3) satisfies the following
additional assumptions:

(L1) There exists a convex, monotone, strongly finite, and absolutely continuous
modular ξR on X(R) such that, defining Lw(x) := wL(wx) for x ∈ R and
w > 0,

(i∗) there are α, α0,M > 0 such that, if we denote by Aα0,w ⊂ R, w > 0, the
set

Aα0,w :=
{
y ∈ R: |y| 6 w−α0

}
,

it turns out that, for w > 0 sufficiently large,

ξR(αLw1R\Aα0,w
) 6Mw−α0 . (2)

Moreover, we assume that Lw ∈ LξR(R) for every w > 0, and for any fixed
c > 0, there is Nc > 0 such that

ξR(cLw) 6 Nc for every w > 0. (3)

(L2) The absolute moment of order 0 is finite, i.e.,

m0,Π(L) := sup
x∈R

∑
k∈Z

L(x− tk) < +∞.

Remark 2. Condition (i∗) represents a natural quantitative version of property (i) of the
absolute continuity. This new condition becomes necessary to investigate the order of
approximation for the class of operators Kwf .

Remark 3. Note that, if the kernel χ is of the form χ(x, u) = L(x)u with L satisfying
assumptions (L1) and (L2), the operators Kwf reduces to the well-known linear ones.

Thus, forw > 0, the nonlinear sampling Kantorovich operators for any given kernel χ
are defined by

(Kwf)(x) :=
∑
k∈Z

χ

(
wx− tk,

w

∆k

tk+1/w∫
tk/w

f(u) du

)
, x ∈ R

for any given locally integrable function f : R → R such that the above series is con-
vergent for every x ∈ R. It is well known that the above operators are well defined for
f ∈ L∞(R) by (L2) and conditions (χ2) and (χ3); see [18].

3 Main result

In the case of functions belonging to modular spaces, the convergence of the nonlinear
sampling Kantorovich operators Kwf to f has been established in Theorem 4.5 of [7].
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In this section, the focus shifts to the quantitative analysis of the nonlinear Kantorovich
sampling operators by using the modulus of smoothness in modular spaces recalled in
Section 2. However, in order to establish quantitative estimates, there are quite a few
challenges, mainly due to nonlinear setting itself and to the general context of modular
spaces. Therefore, it becomes necessary to require some technical conditions on the
modulars taken into consideration. However, we will also show that these conditions are
satisfied in several concrete cases.

First and foremost, for the operators Kwf to be well defined in the general frame
of modular spaces, we need to introduce a growth condition that provides a connection
between pairs of modulars on X(R) and the function ψ of condition (χ3).

Let ρR, ηR be two modulars on X(R). We suppose that, for every λ ∈ (0, 1), there
exists a constant Cλ ∈ (0, 1) satisfying the inequality

ρR
(
Cλψ(g)

)
6 ηR(λg) for any g ∈ X(R). (H)

Remark 4. If ηR is monotone, the previous inequality holds also for any λ > 0. In fact,
if λ > 1, taking α = λ/(1 + λ) and the corresponding Cα ∈ (0, 1), we obtain

ρR
(
Cαψ(g)

)
6 ηR(αg) 6 ηR(λg).

Now, we introduce the following new condition in which the modulars ρR, ηR are
related to the functions L and ψ of condition (χ3) and the modular ξR arising from
condition (L1).

First, let us recall the classical first-order difference operator defined as

(τxf)(y) := f(y)− f(y + x)

with x, y ∈ R. Now, we also define the function Mψ by

Mψ(x) :=
∑
k∈Z

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

(τx−tk/wf)(u) du

)
, x ∈ R,

which is well defined by (L2) for any bounded and locally integrable function f .
We assume that there exist three positive constants C1, C2, C3 such that for every

λ ∈ (0, 1), there is zλ ∈ (0, 1) such that

ρR
(
zλM

ψ
)
6 C1ξR

(
C2Lw(·)ηR

(
C3λ|τ(·)f |

))
(4)

for sufficiently large w > 0, where (·) denotes the variable of the involved functions for
which we evaluate the modular.

Thus, we can give an estimate of the modular error of approximation ρR(µ(Kwf−f))
for sufficiently small µ > 0.

Theorem 2. Let ρR and ηR be convex, monotone, absolutely finite, and absolutely contin-
uous modulars satisfying condition (H). In addition, we also assume that ηR is strongly
bounded and suppose that condition (4) is satisfied. For any f ∈ LρR+ηR(R), there exist
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µ > 0, λ > 0, and further parameter λ1 > 0 such that

ρR
(
µ(Kwf − f)

)
6 C1NωηR

(
C3λf,

1

wα0

)
+ C1Mw−α0 + ωηR

(
λ∆f

δ
,
∆

w

)
+ w−θ0ρR(λ1f)

for every sufficiently largew > 0, whereCi, i = 1, 2, 3, are the constants of condition (4),
N := N2C2

is the constant of condition (3), M is the constant of condition (i∗), and
θ0 > 0 is the constant of condition (χ4). In particular, if µ > 0 and λ > 0 are sufficiently
small, the above inequality implies the modular convergence of Kwf to f .

Proof. Let f be as in the statement, i.e., it belongs both to LρR(R) and LηR(R). Let λ1>0
such that ρR(λ1f) < +∞. Since f ∈ LηR(R), we may say that limλ̃→0 ηR(λ̃f) = 0,
i.e., for every fixed ε > 0, there exists λ2 sufficiently small for which ηR(λ2f) < ε.
In addition, we recall that ηR is strongly bounded, hence definition (g) is satisfied with
a suitable constant C. Let now λ3 6 λ2/C be fixed; by (1) it follows that

ηR(λ3f̃t) := ηR
(
λ3f(t+ ·)

)
6 ηR(λ2f) < ε (5)

for every t ∈ R. Taking ε = α/(4C2) in (5), where α is the parameter of (i∗), we
denote by λ2 and λ3 the corresponding constants of (5). Finally, by Theorem 1 there
exists λ4 > 0 such that ωηR(λ4f, δ)→ 0 as δ → 0+. Now, considering the constants C1,
C2, C3 arising from condition (4), we can fix λ > 0 such that

λ < min

{
1,
λ1
2
,
λ2

2C3
,
λ3

2C3
,
λ4
C3

}
.

Correspondingly to λ, there is zλ ∈ (0, 1) for which (4) holds and, by condition (H) we
know that there exists Cλ ∈ (0, 1) such that ρR(Cλψ(g)) 6 ηR(λg), g ∈ X(R). At the
same time, by (χ4) there exist constants θ0,M1 > 0 such that

Tw(x) 6M1w
−θ0 (6)

uniformly with respect to x ∈ R for sufficiently large w > 0.
Now, defining dλ := min{zλ, Cλ}, we choose µ > 0 such that

µ 6 min

{
dλ
3
,

dλ
3m0,Π(L)

,
λ1

3M1

}
.

Taking into account that ρR is monotone and using (ρ3), we have

ρR
(
µ(Kwf − f)

)
6 ρR

(
µ|Kwf − f |

)
6 ρR

(
µ

∣∣∣∣∣Kwf −
∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)

https://www.journals.vu.lt/nonlinear-analysis
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+
∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)

−
∑
k∈Z

χ(w · −tk, f) +
∑
k∈Z

χ(w · −tk, f)− f

∣∣∣∣∣
)

6 ρR

(
3µ

∣∣∣∣∣Kwf(·)−
∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)∣∣∣∣∣
)

+ ρR

(
3µ

∣∣∣∣∣∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)

−
∑
k∈Z

χ(w · −tk, f)

∣∣∣∣∣
)

+ ρR

(
3µ

∣∣∣∣∑
k∈Z

χ(w · −tk, f)− f
∣∣∣∣)

=: I1 + I2 + I3,

where in the above computations, (·) denotes the variable of the involved functions.
By the (L,ψ)-Lipschitz condition, noting that 3µ 6 zλ, using assumption (4), we can

estimate I1 as follows:

I1 = ρR

(
3µ

∣∣∣∣∣Kwf −
∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)∣∣∣∣∣
)

= ρR

(
3µ

∣∣∣∣∣∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f(u) du

)

−
∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)∣∣∣∣∣
)

6 ρR

(
3µ
∑
k∈Z

∣∣∣∣∣χ
(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f(u) du

)

− χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)∣∣∣∣∣
)

6 ρR

(
3µ
∑
k∈Z

L(w · −tk)ψ

(
w

∆k

tk+1/w∫
tk/w

∣∣∣∣f(u)− f
(
u+ · − tk

w

)∣∣∣∣du
))

= ρR(3µMψ) 6 C1ξR
(
C2Lw(·)ηR

(
C3λ|τ(·)f |

))
.
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Taking into account condition (ρ3) and the parameter α0 arising from (i∗), we can rewrite
the above term as follows:

I1 6 C1ξR

(
1

2
2C2Lw(·)ηR

(
C3λ|τ(·)f |

)
1Aα0,w

(·)

+
1

2
2C2LwηR(·)

(
C3λ|τ(·)f |

)
1R\Aα0,w

(·)
)

6 C1ξR
(
2C2Lw(·)ηR

(
C3λ|τ(·)f |

)
1Aα0,w

(·)
)

+ C1ξR
(
2C2Lw(·)ηR

(
C3λ|τ(·)f |

)
1R\Aα0,w

(·)
)

=: I1,1 + I1,2.

Let us now focus on I1,1. By the definition of the modulus of smoothness on LηR(R), by
the convexity of the modular ξR, and by condition (3) we have

I1,1 6 C1ξR
(
2C2Lw ωηR

(
C3λf,w

−α0
)
1Aα0,w

)
.

Since C3λ 6 λ4, ωηR(C3λf,w
−α0) 6 ωηR(λ4f, w

−α0) < 1 for w sufficiently large;
consequently, by the convexity of the modular we get

I1,1 6 C1ωηR
(
C3λf,w

−α0
)
ξR(2C2Lw1Aα0,w

)

6 C1ωηR
(
C3λf,w

−α0
)
ξR(2C2Lw1Aα0,1

).

Taking c = 2C2, by (3) there exists N := N2C2 such that

I1,1 = C1ωηR
(
C3λf,w

−α0
)
ξR(cLw1Aα0,1

)

6 C1N ωηR
(
C3λf,w

−α0
)

for w > 0 sufficiently large. On the other hand, taking into account condition (ρ3) for the
modular ηR, for I1,2 we can write

I1,2 = C1ξR
(
2C2Lw(·)ηR

(
C3λ|τ(·)f |

)
1R\Aα0,w

(·)
)

6 C1ξR
(
2C2Lw(·)ηR

(
C3λ[|f |+ |f̃(·)|]

)
1R\Aα0,w

(·)
)

= C1ξR

(
2C2Lw(·)ηR

(
1

2
2C3λ|f |+

1

2
2C3λ|f̃(·)|

)
1R\Aα0,w

(·)
)

6 C1ξR
(
2C2Lw(·)

[
ηR
(
2C3λ|f |

)
+ ηR

(
2C3λ|f̃(·)|

)]
1R\Aα0,w

(·)
)
,

where we recall that f̃(·) is defined in (5). Recalling that both f ∈ LηR(R) and f̃x ∈
LηR(R) for every x ∈ R (see Remark 1), by (5) we assume that, for every x ∈ R,

ηR
(
2C3λ|f |

)
+ ηR

(
2C3λ|f̃x|

)
6 ηR

(
λ2|f |

)
+ ηR

(
λ3|f̃x|

)
6 ηR

(
λ2|f |

)
+ ηR

(
λ2|f |

)
6

α

4C2
+

α

4C2
=

α

2C2
,
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where α is the parameter of condition (i∗). Hence, using (2), we get

I1,2 6 C1ξR(Lwα1R\Aα0,w
) 6 C1Mw−α0 .

Now, we can proceed estimating I2. Using assumption (χ3) and the change of variable
u− tk/w = y, we have

I2 = ρR

(
3µ

∣∣∣∣∣∑
k∈Z

χ

(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)
−
∑
k∈Z

χ
(
w · −tk, f(·)

)∣∣∣∣∣
)

6 ρR

(
3µ
∑
k∈Z

∣∣∣∣∣χ
(
w · −tk,

w

∆k

tk+1/w∫
tk/w

f

(
u+ · − tk

w

)
du

)
− χ

(
w · −tk, f(·)

)∣∣∣∣∣
)

6 ρR

(
3µ
∑
k∈Z

L(w · −tk)ψ

(
w

∆k

tk+1/w∫
tk/w

∣∣∣∣f(u+ · − tk
w

)
− f(·)

∣∣∣∣du
))

= ρR

(
3µ
∑
k∈Z

L(w · −tk)ψ

(
w

∆k

∆k/w∫
0

∣∣f(y + ·)− f(·)
∣∣ dy))

6 ρR

(
3µ

[∑
k∈Z

L(w · −tk)

]
ψ

(
w

δ

∆/w∫
0

∣∣f(y + ·)− f(·)
∣∣ dy))

6 ρR

(
3µm0,Π(L)ψ

(
w

δ

∆/w∫
0

∣∣f(y + ·)− f(·)
∣∣dy)).

Then, applying condition (H) and Jensen inequality, since ηR is convex, we get

I2 6 ηR

(
λ
w

δ

∆

∆

∆/w∫
0

∣∣f(y + ·)− f(·)
∣∣dy) 6

w

∆

∆/w∫
0

ηR

(
λ
∆

δ

∣∣f(y + ·)− f(·)
∣∣)dy

6
w

∆
ωηR

(
λ
∆

δ
f,
∆

w

) ∆/w∫
0

dy = ωηR

(
λ
∆

δ
f,
∆

w

)
.

Finally, denoting by B0 ⊂ R the set of all points of R for which f 6= 0 a.e., by using (ρ1)
and condition (χ4) we can rewrite I3 as follows:

I3 = ρR

(
3µ

∣∣∣∣∑
k∈Z

χ
(
w · −tk, f(·)1B0

(·)
)
− f(·)1B0

(·)
∣∣∣∣)

= ρR

(
3µ
∣∣f(·)

∣∣∣∣∣∣ 1

|f(·)|
∑
k∈Z

χ
(
w · −tk, f(·)

)
− 1

∣∣∣∣1B0
(·)
)
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6 ρR
(
3µ
∣∣f(·)

∣∣Tw(·)1B0
(·)
)
6 ρR

(
3µM1fw

−θ0
)

6 w−θ0ρR(3µM1f) 6 w−θ0ρR(λ1f)

for positive constants M1 and θ0 of (6). This completes the proof.

4 Some applications

In the present section, we study some particular cases of modular spaces to which our
approach can be applied.

4.1 Quantitative estimates in Musielak–Orlicz spaces

As a first example, we can consider the well-known Musielak–Orlicz spaces, which have
been introduced by Nakano in the 50’s and deeply studied by Musielak and Orlicz; see,
e.g., [2,12,15,16]. In order to define them, we need to recall the expression of the modular
functionals characterizing these spaces.

Let ϕ : R× R+
0 → R+

0 be a function satisfying the following conditions:

(ρ1) ϕ(·, u) is measurable and locally integrable on R for every u ∈ R+
0 ;

(ρ2) for every t ∈ R, ϕ(t, ·) is convex on R+
0 with ϕ(t, 0) = 0 and ϕ(t, u) > 0 for

u > 0;
(ρ3) ϕ is τ -bounded, i.e., there are a constant C > 1 and a measurable function

F : R× R→ R+
0 such that for every t, s ∈ R and u > 0,

ϕ(t− s, u) 6 ϕ(t, Cu) + F (t, s).

A function ϕ, as above, is said to be a τ -bounded ϕ-function; for the sake of brevity,
we will simply call it a ϕ-function. For a sake of simplicity, from now on we only consider
ϕ-functions, which satisfy condition (ρ3) with F ≡ 0.

Then, let ϕ and ν be two fixed ϕ-functions, it can be easily shown that

ρR(f) := Iϕ(f) =

∫
R

ϕ
(
t,
∣∣f(t)

∣∣)dt, ηR(f) := Iν(f) =

∫
R

ν
(
t,
∣∣f(t)

∣∣)dt

are modulars on the space X(R), which satisfy properties (a)–(f) given in Section 2; see,
e.g., Examples 2.1(b), 2.2(a), and 2.4 in [2]. Furthermore, ηR also satisfies property (g),
i.e., it is strongly bounded; in fact, by the change of variable x+ t = y and by using (ρ3)
we have

ηR(f(t+ ·)) =

∫
R

ν
(
x,
∣∣f(t+ x)

∣∣)dx =

∫
R

ν
(
y − t,

∣∣f(y)
∣∣)dy

6
∫
R

ν
(
y, C

∣∣f(y)
∣∣)dy = ηR(Cf)
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for every f ∈ X(R) and t ∈ R. The modular spaces generated by ρR and ηR are called
Musielak–Orlicz spaces, and they are briefly denoted by L̃ϕ(R) and L̃ν(R), respectively.
In these instances, the ϕ-modulus of smoothness is defined by

ωϕ(f, δ) := sup
|t|6δ

∫
R

ϕ
(
t,
∣∣f(t+ s)− f(t)

∣∣) dt

for functions in L̃ϕ(R) (and with the same definition with ν in place of ϕ, in case of
functions f ∈ L̃ν(R)) with δ > 0. By Theorem 1 it is clear that for every f ∈ L̃ϕ(R) (or
L̃ν(R)), there exists λ > 0 such that ωϕ(λf, δ)→ 0 (or ων(λf, δ)) as δ → 0+.

In the present setting, the growth condition (H) can be rewritten requiring the fol-
lowing inequality involving the ϕ-functions ϕ and ν: for every λ ∈ (0, 1), there exists
Cλ ∈ (0, 1) satisfying

ϕ
(
t, Cλψ(u)

)
6 ν(t, λu) (Hϕ)

for every t ∈ R, u ∈ R+
0 . For useful examples of ϕ-functions satisfying condition (Hϕ),

see, for instance, [2].
Furthermore, we define the nonnegative integral functional

ξR(f) :=

∫
R

∣∣f(t)
∣∣dt, (7)

where f ∈ X(R), that is trivially convex, monotone, strongly finite, and absolutely
continuous and that generates the L1-space.

Remark 5. Note that, if L ∈ L1(R) and it is bounded in a neighborhood of the origin
0 ∈ R, then assumption (L1) obviously holds with any c > 0 andNc = c‖L‖1. Moreover,
condition (i∗) is true when L has compact support, e.g., suppL ⊂ [−R,R], R > 0
and for 0 < α0 < 1. Whereas, if L has not compact support, it may be possible to
require the following sufficient condition, which involves its continuous absolute mo-
ment:

Mν(L) :=

∫
R

L(u)|u|ν du < +∞

for ν > 0; see, e.g., [4]. In this case, (i∗) is satisfied with (1 − α0)ν in place of α0, and
M = αMν(L).

Therefore, denoting by γ the characteristic function of the set [0, 1] (i.e., γ(u) = 1
if u ∈ [0, 1], and γ(0) = 0 otherwise), condition (4) is verified in the present set-
ting. Indeed, in correspondence to a fixed λ > 0, there exists Cλ ∈ (0, 1) by condi-
tion (Hϕ), and 0 < zλ < min{1, Cλ/m0,Π(L)}. Hence, by using Jensen inequality
twice, condition (Hϕ), the change of variable wt − tk = y, and the τ -boundedness of ν
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we have

ρR
(
zλM

ψ
)

=

∫
R

ϕ

(
t,

∣∣∣∣∣zλ∑
k∈Z

L(wt− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

[
f(u)− f

(
u+ t− tk

w

)]
du

)∣∣∣∣∣
)

dt

6
1

m0,Π(L)

∫
R

∑
k∈Z

L(wt− tk)

× ϕ

(
t, zλm0,Π(L)ψ

(
w

∆k

tk+1/w∫
tk/w

∣∣∣∣f(u)− f
(
u+ t− tk

w

)∣∣∣∣du
))

dt

6
1

m0,Π(L)

∫
R

∑
k∈Z

L(wt− tk) ν

(
t, λ

w

∆k

tk+1/w∫
tk/w

∣∣∣∣f(u)− f
(
u+ t− tk

w

)∣∣∣∣du
)

dt

6
1

m0,Π(L)

∫
R

∑
k∈Z

L(wt− tk)
w

∆k

tk+1/w∫
tk/w

ν

(
t, λ

∣∣∣∣f(u)− f
(
u+ t− tk

w

)∣∣∣∣)dudt

=
1

m0,Π(L)

∫
R

∑
k∈Z

L(wy)
w

∆k

∫
R

ν

(
y +

tk
w
, λ
∣∣f(u)− f(u+ y)

∣∣)γ(wu− tk) dudy

6
1

δm0,Π(L)

∫
R

wL(wy)

∫
R

ν
(
y, Cλ

∣∣f(u)− f(u+ y)
∣∣)∑
k∈Z

γ(wu− tk) dudy

6
m0,Π(γ)

δm0,Π(L)

∫
R

wL(wy)

∫
R

ν
(
y, Cλ

∣∣f(u)− f(u+ y)
∣∣) dudy

=
m0,Π(γ)

δm0,Π(L)
ξR
(
Lw(·)ηR

(
Cλ|τ(·)f |

))
from which (4) follows with C1 = m0,Π(γ)/δm0,Π(L), C2 = 1, and C3 = C.

As a byproduct of Theorem 2, we can deduce the following estimate.

Theorem 3. Suppose that ϕ, ν are convex ϕ-functions satisfying condition Hϕ and f ∈
L̃ϕ+ν(R). Then there exist µ > 0, λ > 0, and further parameter λ1 > 0 such that

Iϕ
(
µ(Kwf − f)

)
6

2‖L‖1m0,Π(γ)

δm0,Π(L)
ων

(
Cλf,

1

wα0

)
+

m0,Π(γ)

δm0,Π(L)
Mw−α0

+ ων

(
λ∆f

δ
,
∆

w

)
+ Iϕ[λ1f ]w−θ0

for every sufficiently large w > 0, where m0,Π(L) < +∞, m0,Π(γ) < +∞ since γ is
bounded and with compact support, and θ0 > 0 is the constant of condition (χ4).
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As the weighted Orlicz spaces and the Orlicz spaces are particular instances of the
Musielak–Orlicz spaces, with a ϕ-function of product type, Theorem 3 also offers quan-
titative estimates in these contexts. Consequently, quantitative order of approximation
in Lp-spaces, Zygmund (or interpolation) spaces, and exponential-type spaces can be
deduced. For more details concerning these spaces, see e.g., [2, 17].

It is worth noting that quantitative estimates for the case of functions belonging to
Orlicz spaces have also been provided in [4] in the multivariate setting.

4.2 Quantitative estimates in modular spaces equipped by modulars that lack inte-
gral representation

In the preceding section, we discussed instances of modular spaces characterized by their
corresponding modular functionals having integral form. Now, we want to study examples
of modulars defined by the supremum operator, i.e., that cannot be expressed in terms of
integrals.

Let m be a measure on an interval [a, b[⊂ R, where b may be equal to +∞, defined
on the σ-algebra of all Lebesgue measurable subsets of [a, b[. Let W be a nonempty set
of indices, and let (a`(·))`∈W be a family of Lebesgue measurable positive real-valued
functions on [a, b[. Moreover, let Φ : [a, b[×R+

0 → R+
0 be a function satisfying the

following conditions:

(Φ1) Φ(x, u) is a convex function of u > 0 for every x ∈ [a, b[;
(Φ2) Φ(x, 0) = 0, Φ(x, u) > 0 for u > 0, and Φ(x, u)→ +∞ as u→ +∞ for every

x ∈ [a, b[;
(Φ3) there exists limx→b− Φ(x, u) = Φ̃(u) < +∞ for every u > 0;
(Φ4) Φ(x, u) is a Lebesgue measurable function on x in [a, b[ for every u > 0.

Let Φ and Ψ be two functions as above, we define the functionals AΦ and AΨ by means
of the formulas

ρR(f) := AΦ(f) = sup
`∈W

b∫
a

a`(x)

[ ∫
R

Φ
(
x,
∣∣f(t)

∣∣)dt

]
dm(x),

ηR(f) := AΨ (f) = sup
`∈W

b∫
a

a`(x)

[ ∫
R

Ψ
(
x,
∣∣f(t)

∣∣) dt

]
dm(x)

with f ∈ X(R). The functionals AΦ, AΨ are convex modulars, and under other suitable
assumptions (see [2, p. 19, (b) and p. 23, (b)]), they are monotone, strongly finite, abso-
lutely finite, and absolutely continuous. In addition,AΨ is trivially strongly bounded with
C = 1 since AΨ (f(t+ ·)) = AΨ (f) for every t ∈ R.

Herein, condition (H) can be deduced as follows: for every λ ∈ (0, 1), there exists
a constant Cλ ∈ (0, 1) such that

Φ
(
x,Cλψ(u)

)
6 Ψ(x, λu) (HΦ)

for every x ∈ R, u ∈ R+
0 .
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Considering the modular ξR defined as in (7) and proceeding similarly to the previous
section, we have that condition (4) holds with C1 = m0,Π(γ)/δm0,Π(L), C2 = 1, and
C3 = 1. Therefore, giving an analogous suitable definition of the modulus of smoothness
in this setting, all the assumptions of Theorem 2 are satisfied.

4.3 Quantitative estimates inC(R)C(R)C(R)

Finally, if we considerC(R) the space of all uniformly continuous and bounded functions,
then the usual sup-norm ρ(f) = ‖f‖∞ = supx∈R |f(x)| is a convex modular in C(R).
In such case, we provide a direct quantitative estimate for the rate of convergence of the
nonlinear sampling Kantorovich operators for f ∈ C(R), in terms of the modulus of
continuity, defined by

ω(f, δ) := sup
|t|6δ

∣∣f(t+ ·)− f(·)
∣∣

with δ > 0. Furthermore, it is interesting to point out that the following well-known
inequality

ω(f, λδ) 6 (1 + λ)ω(f, δ) (8)

holds with δ, λ > 0 (see [3]), which is not satisfied in general for the ρ-modulus of
smoothness instead. This property will be of fundamental importance to prove the follow-
ing theorems.

In addition, in such setting, we need to require a stronger assumption on the function
L of (L,ψ)-Lipschitz condition, that is,

(L∗2) there exists a number β0 > 0 such that

mβ0,Π(L) := sup
x∈R

∑
k∈Z

L(x− tk)|x− tk|β0 < +∞,

i.e., the absolute moment of order β0 is finite.

In fact, it is easy to prove that, if L ∈ L1(R) is bounded in a neighborhood of the origin
0 ∈ R as in Remark 5 and satisfies assumption (L∗2), then m0,Π(L) < +∞.

Moreover, from now on, we only consider functions ψ that are concave.
Now, we can prove the following.

Theorem 4. Let f ∈ C(R), and let L be a function satisfying condition (L∗2) with β0 > 1.
Then we have

‖Kwf − f‖∞ 6M2ψ

(
ω

(
f,

1

w

))
+M1‖f‖∞w−θ0

for sufficiently large w > 0, where M2 := m0,Π(L) + ∆m0,Π(L) + m1,Π(L), and
M1, θ0 > 0 are the constants of condition (χ4).
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Proof. Let x ∈ R be fixed. We have∣∣(Kwf)(x)− f(x)
∣∣

=

∣∣∣∣∣∑
k∈Z

χ

(
wx− tk,

w

∆k

tk+1/w∫
tk/w

f(u) du

)
− f(x)

∣∣∣∣∣
6

∣∣∣∣∣∑
k∈Z

χ

(
wx− tk,

w

∆k

tk+1/w∫
tk/w

f(u) du

)
−
∑
k∈Z

χ
(
wx− tk, f(x)

)∣∣∣∣∣
+

∣∣∣∣∑
k∈Z

χ
(
wx− tk, f(x)

)
− f(x)

∣∣∣∣
= I1 + I2. (9)

We estimate I1. Applying condition (χ3) and taking into account that ψ is nondecreasing,
we get

I1 6
∑
k∈Z

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

∣∣f(u)− f(x)
∣∣du)

6
∑
k∈Z

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

ω
(
f, |u− x|

)
du

)

6
∑
k∈Z

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

ω

(
f,

1

w

)[
1 + w|u− x|

]
du

)

=
∑
k∈Z

L(wx− tk)ψ

(
ω

(
f,

1

w

)[
1 +

w

∆k

tk+1/w∫
tk/w

w|u− x|du

])

for every w > 0, where the previous estimate is a consequence of (8) with λ = w|u− x|
and δ = 1/w. Now, for every x, u ∈ R, we may write

|u− x| 6
∣∣∣∣u− tk

w

∣∣∣∣+

∣∣∣∣ tkw − x
∣∣∣∣ 6 ∆

w
+
|wx− tk|

w
(10)

for every w > 0; therefore,

I1 6
∑
k∈Z

L(wx− tk)ψ

(
ω

(
f,

1

w

)[
1 +∆+ |wx− tk|

])
.
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Since ψ is concave, we have for u > 1,

uψ(v) = uψ

(
1

u
· vu

)
> u

1

u
ψ(vu) = ψ(vu) (11)

for every v > 0; consequently, we finally get

I1 6
∑
k∈Z

L(wx− tk)
[
1 +∆+ |wx− tk|

]
ψ

(
ω

(
f,

1

w

))
6 m0,Π(L) (1 +∆)ψ

(
ω

(
f,

1

w

))
+m1,Π(L)ψ

(
ω

(
f,

1

w

))
.

Now, setting again B0 := {x ∈ R: f 6= 0 a.e.}, we can rewrite I2 as follows:

I2 =

∣∣∣∣∑
k∈Z

χ
(
wx− tk, f(x)

)
− f(x)

∣∣∣∣ =

∣∣∣∣∑
k∈Z

χ
(
wx− tk, f(x)1B0(x)

)
− f(x)1B0(x)

∣∣∣∣.
Therefore, by condition (χ4) there exist constants M1, θ0 > 0 such that for sufficiently
large w > 0,

I2 =
∣∣f(x)

∣∣∣∣∣∣ 1

|f(x)|
∑
k∈Z

χ
(
wx− tk, f(x)1B0(x)

)
− 1B0(x)

∣∣∣∣
6
∣∣f(x)

∣∣Tw(x)1B0
(x) 6M1

∣∣f(x)
∣∣w−θ0 6M1‖f‖∞w−θ0

uniformly with respect to x ∈ R. This completes the proof.

Note that if ψ is continuous in 0, from Theorem 4 we can deduce the convergence
of the nonlinear sampling Kantorovich operators. Moreover, it is important to underline
that the estimate presented in Theorem 4 is valid only when condition (L∗2) holds with β0
being greater than or equal to one. However, there exists kernels for which the discrete
absolute moments of order β0 > 1 are not finite, but at the same time, condition (L∗2) is
satisfied for some values 0 < β0 < 1. In such case, Theorem 4 cannot be applied. For
this reason, we prove the following.

Theorem 5. Let f ∈ C(R), and let L be a function satisfying condition (L∗2) with 0 <
β0 < 1. Then we have

‖Kwf − f‖∞ 6M3 ψ
(
ω
(
f, w−β0

))
+ 2β0+1ψ

(
‖f‖∞

)
w−β0mβ0,Π(L)

+M1‖f‖∞w−θ0

for sufficiently large w > 0, where M3 := m0,Π(L) + mβ0,Π(L) + ∆β0m0,Π(L), and
M1, θ0 > 0 are the constants of condition (χ4).

Proof. Let x ∈ R be fixed. The approximation error |(Kwf)(x) − f(x)| can be decom-
posed by I1 + I2 as illustrated in the preliminary steps of the proof of Theorem 4; see (9).
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By the same computations it is clear that I2 6M1‖f‖∞w−θ0 , where M1, θ0 > 0 are the
constants of condition (χ4). On the other hand, we split the series in I1 as follows:

I1 6
∑
k∈Z

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

∣∣f(u)− f(x)
∣∣ du)

6
∑

|wx−tk|6w/2

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

∣∣f(u)− f(x)
∣∣du)

+
∑

|wx−tk|>w/2

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

∣∣f(u)− f(x)
∣∣du)

=: I1,1 + I1,2.

Before estimating I1,1, we observe that, for every u ∈ [tk/w, tk+1/w] and if |wx− tk| 6
w/2, we have

|u− x| 6
∣∣∣∣u− tk

w

∣∣∣∣+

∣∣∣∣ tkw − x
∣∣∣∣ 6 ∆

w
+

1

2
6 1

for w > 0 sufficiently large, and moreover, since 0 < β0 < 1, it is also easy to see that

ω
(
f, |u− x|

)
6 ω

(
f, |u− x|β0

)
.

Hence, by using the property for which ω(f, λδ) 6 (1+λ)ω(f, δ) with λ = (w|u−x|)β0

and δ = w−β0 we get

I1,1 6
∑

|wx−tk|6w/2

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

ω
(
f, |u− x|β0

)
du

)

6
∑

|wx−tk|6w/2

L(wx− tk)ψ

(
w

∆k

tk+1/w∫
tk/w

[
wβ0 |u− x|β0 + 1

]
ω
(
f, w−β0

)
du

)

=
∑

|wx−tk|6w/2

L(wx− tk)ψ

([
1 +

w

∆k

tk+1/w∫
tk/w

wβ0 |u− x|β0 du

]
ω
(
f, w−β0

))
.

Since ψ is concave and then subadditive, by (11) we have

I1,1 6
∑

|wx−tk|6w/2

L(wx− tk)

[
1 +

w

∆k

tk+1/w∫
tk/w

wβ0 |u− x|β0 du

]
ψ
(
ω
(
f, w−β0

))
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6 m0,Π(L)ψ
(
ω
(
f, w−β0

))
+ ψ

(
ω
(
f, w−β0

)) ∑
|wx−tk|6w/2

L(wx− tk)
w

∆k

tk+1/w∫
tk/w

wβ0 |u− x|β0 du

for w > 0 sufficiently large. By using again (10) and by exploiting the subadditivity of
the function |·|β0 with 0 < β0 < 1 we can write

I1,1 6 ψ
(
ω
(
f, w−β0

))[
m0,Π(L) +

∑
|wx−tk|6w/2

L(wx− tk)

(
wβ0

∣∣∣∣ tkw − x
∣∣∣∣β0

+∆β0

)]

6 ψ
(
ω
(
f, w−β0

))[
m0,Π(L) +

∑
|wx−tk|6w/2

L(wx− tk)|wx− tk|β0

+∆β0

∑
|wx−tk|6w/2

L(wx− tk)

]
6 ψ

(
ω
(
f, w−β0

))[
m0,Π(L) +mβ0,Π(L) + ∆β0m0,Π(L)

]
.

Finally, for what concerns I1,2, we have

I1,2 6 ψ
(
2‖f‖∞

) ∑
|wx−tk|>w/2

L(wx− tk)

6 ψ
(
2‖f‖∞

) ∑
|wx−tk|>w/2

|wx− tk|β0

|wx− tk|β0
L(wx− tk)

6

(
2

w

)β0

ψ
(
2‖f‖∞

) ∑
|wx−tk|>w/2

|wx− tk|β0L(wx− tk)

6 2β0+1ψ
(
‖f‖∞

)
w−β0 mβ0,Π(L).

Thus, the theorem is proved.

If we consider the Fejér kernel (see, e.g., [6, 10]), condition (L∗2) is satisfied only for
every β0 < 1 (then mβ0,Π(L) = +∞ for β0 > 1). Therefore, Theorem 4 cannot be
applied, while Theorem 5 holds.

Remark 6. In general, it is possible to give a condition on the kernels, which ensures that
(L∗2) holds for 0 6 β0 < β, for some β < 1, and mβ0,Π(L) = +∞ for β < β0 6 1. In
this regard, we refer the readers to [6].

Remark 7. In general, in order to construct suitable examples for the nonlinear sampling
Kantorovich operators, we consider kernel functions of the following form:

χ(wx− tk, u) = L(wx− tk)gw(u),

where (gw)w>0, gw : R→ R is a family of functions satisfying gw(u)→ u uniformly as
w → +∞ and such that there exists a function ψ with |gw(u)− gw(v)| 6 ψ(|u− v|) for
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every u, v ∈ R and w > 0. For concrete examples of function sequences (gw)w>0 and
specific functions L, we refer the readers to [2, 4, 5, 11, 18].

5 Conclusions

In conclusion, we have established a quantitative estimate for nonlinear sampling Kan-
torovich operators in the general framework of modular spaces. This represents a natural
advancement in the field and enables us to give a unifying approach that includes also the
linear case and applies to several settings of approximation problems, thanks to the gen-
erality of the employed modular spaces. The theory of modular spaces contains, in fact,
the Musielak–Orlicz and the Orlicz spaces, which are, for instance, generalizations of the
weighted Lp-spaces and the classical Lp-spaces, respectively. Also, the case of variable
exponentLp-spaces can be here included as they are specific instances of Musielak–Orlicz
spaces.

Finally, we stress again that the nonlinear sampling Kantorovich operators in the
very general setting of modular spaces have been considered for the first time from the
quantitative point of view in this paper. In the wide already existing literature concerning
the nonlinear sampling-type operators (also produced by the authors of the present pa-
per), only the modular convergence of such operators have been considered in [7], using
a density-based approach that is completely different with respect to the constructive-
direct one here proposed. For the sake of completeness, we also highlight the papers [8]
and [4, 9] in which the convergence and the degree of approximation have been respec-
tively considered for the multivariate version of such operators in the space of continuous
functions and in Orlicz spaces. Again, as observed above, Orlicz spaces are only one of the
possible cases of modular spaces, which, in general, represent a more general framework.
Also, several approximation results in both the univariate and multivariate cases can be
found in the literature for the special case of the linear sampling Kantorovich operators
(see, e.g., [6]) again arising as special cases of the (more general) nonlinear ones here
considered.
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