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Abstract. In this paper, we are concerned with the study of the existence of fixed points for
single and multivalued three-points contractions. Namely, we first introduce a new class of single-
valued mappings defined on a metric space equipped with three metrics. A fixed point theorem
is established for such mappings. The obtained result recovers that established recently by the
second author [E. Petrov, Fixed point theorem for mappings contracting perimeters of triangles,
J. Fixed Point Theory Appl., 25(3):74, 2023] for the class of single-valued mappings contracting
perimeters of triangles. We next extend our study by introducing the class of multivalued three
points contractions. A fixed point theorem, which is a multivalued version of that obtained in the
above reference, is established. Some examples showing the validity of our obtained results are
provided.

Keywords: fixed points, single-valued three-points contractions, multivalued three-points
contractions, mappings contracting perimeters of triangles.

1 Introduction

Banach’s contraction principle [3] is one of the most celebrated fixed point theorems. This
theorem states that, if F is a self-mapping defined on a complete metric space (M,d) and
satisfies

d(Fu, Fv) 6 λd(u, v), (u, v) ∈M ×M, (1)
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where λ ∈ [0, 1) is a constant, then F possesses one and only one fixed point. Moreover,
for any u0 ∈ M , the Picard sequence {un} ⊂ X defined by un+1 = Fun, n > 0,
converges to the unique fixed point of F . The mapping F satisfying inequality (1) with
λ ∈ [0, 1) is called a contraction. The literature includes several interesting generaliza-
tions and extensions of the above result. We may distinguish at least two categories of
generalizations and extensions. In the first one, the contractive nature of the mapping is
weakened; see, e.g., the series of papers [6, 9, 15, 16, 26, 28, 29, 31] and the monograph
[1]. In the second category, the topology of the underlying space is weakened; see,
e.g., [7, 8, 13, 18, 20].

The study of fixed points for multivalued mappings was first considered in the paper
[19] by Nadler, where he proved the following interesting result.

Theorem 1. (See [19].) Let (M,d) be a complete metric space and F :M → CB(M) be
a given multivalued mapping, where CB(M) denotes the family of all nonempty bounded
and closed subsets of M . Assume that

H(Fu, Fv) 6 λd(u, v), (u, v) ∈M ×M,

where λ ∈ (0, 1) is a constant, andH is the Hausdorff–Pompeiu metric on CB(M). Then
F possesses at least one fixed point.

Theorem 1 was generalized and extended in various directions; see, e.g., [2,10,12,14,
17, 24, 30]. More recent references can be found in [25, 32].

Recently, the second author [22] obtained a generalization of Banach’s fixed point
theorem by introducing the class of single-valued mappings contracting perimeters of
triangles (three-points contractions). Namely, he studied the existence of fixed points for
the following class of mappings.

Definition 1. Let (M,d) be a metric space with |M | > 3. A single-valued mapping
F : M → M is said to be a mapping contracting perimeters of triangles on M if there
exists λ ∈ [0, 1) such that the inequality

d(Fx, Fy) + d(Fy, Fz) + d(Fz, Fx) 6 λ
[
d(x, y) + d(y, z) + d(z, x)

]
holds for all three pairwise distinct points x, y, z ∈M .

The following fixed point result was established in [22].

Theorem 2. Let (M,d) be a complete metric space with |M | > 3, and let the mapping
F :M →M satisfies the following two conditions:

(i) For all u ∈M , F (Fu) 6= u, provided Fu 6= u;
(ii) F is a mapping contracting perimeters of triangles on M .

Then Fix(F ) 6= ∅ and |Fix(F )| 6 2, where Fix(F ) denotes the set of fixed points of F .

Other fixed point results, related to mappings contracting perimeters of triangles, can
be found in [4,5,27]. Three-point analogs of the well-known Kannan and Chatterjea fixed
point theorems were considered in [23] and [21], respectively.
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We fix below some notations and recall some basic definitions.
Throughout this paper, by R+ we mean the interval [0,∞). We denote by M an

arbitrary nonempty set. By |M | we mean the cardinal of M . For a single-valued mapping
F :M →M , we denote by Fix(F ) the set of its fixed points, that is,

Fix(F ) = {u ∈M : Fu = u}.

We define the sequence of mappings (Fn), where Fn :M →M , by

F 0 = IM
(
i.e., F 0x = x for all x ∈M

)
and

Fn+1 = F ◦ Fn, n > 0.

Similarly, for a given function ϕ : R+ → R+, we define the sequence of functions {ϕn},
where ϕn : R+ → R+, by

ϕ0 = IR+ , ϕn+1 = ϕ ◦ ϕn, n > 0.

Let (M,d) be a metric space. By CB(M) we denote the family of all nonempty
bounded and closed subsets of M . The distance between two subsets A and B of M is
denoted by D(A,B), that is,

D(A,B) = inf
{
d(a, b): a ∈ A, b ∈ B

}
.

The diameter of A,B ∈ CB(M) is denoted by D(A,B), that is,

D(A,B) = sup
(a,b)∈A×B

d(a, b).

We denote by H the Hausdorff–Pompeiu metric on CB(M) induced by d, that is,

H(A,B) = max
{
sup
a∈A

D(a,B), sup
b∈B

D(b, A)
}
, A,B ∈ CB(M).

Recall that (CB(M), H) is a metric space. Moreover, if (M,d) is complete, then the
space (CB(M), H) is also complete; see, e.g., [31].

Let P(M) be the family of all nonempty subsets of M . We say that u ∈M is a fixed
point of a multivalued mapping F : M → P(M) if u ∈ Fu. We also denote by Fix(F )
the set of fixed points of F , that is,

Fix(F ) = {u ∈M : u ∈ Fu}.

The rest of the paper is organized as follows. In Section 2, we introduce a certain
class of single-valued three-points contractions on M , where M is equipped with three
metrics di, i = 1, 2, 3. A fixed point theorem is established for this class of mappings. In
particular, we recover Theorem 2. In Section 3, we extend Theorem 2 from the single-
valued case to the multivalued case.
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2 Three-points single-valued contractions

Let us denote by Φ the set of functions ϕ : R+ → R+ satisfying the following conditions:

(C1) ϕ is nondecreasing;
(C2)

∑
n>1 ϕ

n(s) <∞ for every s > 0.

Remark 1.
(i) From (C2) we deduce that, if ϕ ∈ Φ, then

lim
n→∞

ϕn(s) = 0, s > 0. (2)

(ii) If ϕ ∈ Φ, then
ϕ(s) < s, s > 0. (3)

Indeed, if there exists s > 0 such that s 6 ϕ(s), then by (C1) we get

s 6 ϕn(s), n > 0.

Using (2) and passing to the limit as n → ∞ in the above inequality, we reach
a contradiction with s > 0, which proves (3).

(iii) From (3) we deduce immediately that

lim
s→0+

ϕ(s) = 0.

Some examples of functions ϕ ∈ Φ are provided below.

Example 1. A basic example of a function ϕ ∈ Φ is the function

ϕ(t) = λt, t ∈ R+,

where λ ∈ (0, 1) is a constant.

Example 2. Let ϕ : R+ → R+ be the function defined by

ϕ(t) =
1

2
ln(t+ 1), t ∈ R+.

Clearly, ϕ is nondecreasing. Moreover, for all t > 0, we have

ϕ(t) 6
1

2
t.

Setting above ϕ(t) instead of t, we get

ϕ2(t) 6
1

2
ϕ(t) 6

(
1

2

)2

t.

Then, by induction, we get

ϕn(t) 6

(
1

2

)n
t, n > 0, t > 0,

which implies that
∑
n>1 ϕ

n(t) <∞ for all t > 0. Consequently, ϕ ∈ Φ.
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Example 3. Let 0 < λ1 < λ2 < 1. Consider the function

ϕ(t) =

{
arctan(λ1t) if 0 6 t 6 1

λ1
,

arctan(λ2t) if t > 1
λ1
.

Clearly, ϕ is nondecreasing. On the other hand, for all t > 0, we have

ϕ(t) 6 max{λ1, λ2}t = λ2t,

which yields
ϕn(t) 6 (λ2)

nt, n > 0, t > 0.

Then
∑
n>1 ϕ

n(t) < ∞ for all t > 0, and ϕ ∈ Φ. Remark that in this example, the
function ϕ is not continuous.

In this section, we are concerned with the study of fixed points for the following class
of single-valued mappings.

Definition 2. Let di, i = 1, 2, 3, be three metrics on M with |M | > 3, and let ϕ ∈ Φ.
We denote by F(M,d1, d2, d3, ϕ) the class of mappings F : M → M satisfying the
three-points contraction

d1(Fx, Fy) + d2(Fy, Fz) + d3(Fz, Fx)

6 ϕ
(
d1(x, y) + d2(y, z) + d3(z, x)

)
(4)

for every three pairwise distinct points x, y, z ∈M .

Remark 2. Remark that, if F : (M,d)→ (M,d) is a mapping contracting perimeters of
triangles on M , in the sense of Definition 1, then F satisfies (4) with di = d, i = 1, 2, 3,
and ϕ(s) = λs, λ ∈ [0, 1), that is, F ∈ F(M,d, d, d, ϕ).

The following example shows that F ∈ F(M,d1, d2, d3, ϕ) can be discontinuous on
M with respect to one of the metrics di, i ∈ {1, 2, 3}.

Example 4. Let M = [0, 1], d1 be the Euclidean distance on M , and

d2(x, y) = d3(x, y) =

{
d1(x, y), x, y ∈ [0, 12 ] or x, y ∈ ( 12 , 1];

1 otherwise.

The reader can easily verify that d1 and d2 are metrics on M . Let F : M → M be the
mapping defined by

Fx =

{
1
3x, x ∈ [0, 12 ],
1
2x, x ∈ ( 12 , 1].

It is clear that F is discontinuous at x = 1/2 as a mapping from (M,d1) to (M,d1). For
every three pairwise distinct points x, y, z ∈M , let

R(x, y, z) =
d1(Fx, Fy) + d2(Fy, Fz) + d3(Fz, Fx)

d1(x, y) + d2(y, z) + d3(z, x)
.
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We claim that
R(x, y, z) 6

1

2
(5)

for every three pairwise distinct points x, y, z ∈ M . In order to show (5), it is sufficient
to check the four cases:

• x, y, z ∈ [0, 1/2],
• x, y, z ∈ (1/2, 1],
• x ∈ [0, 1/2] and y, z ∈ (1/2, 1],
• x, y ∈ [0, 1/2] and z ∈ (1/2, 1].

Case 1: x, y, z ∈ [0, 1/2]. In this case, we have

R(x, y, z) =
d1(

x
3 ,

y
3 ) + d1(

y
3 ,

z
3 ) + d1(

z
3 ,

x
3 )

d1(x, y) + d1(y, z) + d1(z, x)
=

1

3
.

Case 2: x, y, z ∈ (1/2, 1]. In this case, we have

R(x, y, z) =
d1(

x
2 ,

y
2 ) + d1(

y
2 ,

z
2 ) + d1(

z
2 ,

x
2 )

d1(x, y) + d1(y, z) + d1(z, x)
=

1

2
.

Case 3: x ∈ [0, 1/2] and y, z ∈ (1/2, 1]. In this case, we have

R(x, y, z) =
d1(

x
3 ,

y
2 ) + d1(

y
2 ,

z
2 ) + d1(

z
2 ,

x
3 )

d1(x, y) + d2(y, z) + d3(z, x)

=
d1(

x
3 ,

y
2 ) + d1(

y
2 ,

z
2 ) + d1(

z
2 ,

x
3 )

d1(x, y) + d1(y, z) + 1

=
1

2

d1(
2x
3 , y) + d1(y, z) + d1(z,

2x
3 )

d1(x, y) + d1(y, z) + 1
. (6)

On the other hand, we have

d1(
2x
3 , y) + d1(y, z) + d1(z,

2x
3 )

d1(x, y) + d1(y, z) + 1
6 1. (7)

Indeed, since

x < y,
2x

3
< y, x < z,

2x

3
< z,

then (7) is equivalent to
x

3
+ (1− z) > 0.

This inequality evidently holds since x > 0 and z 6 1. Then from (6) and (7) we obtain

R(x, y, z) 6
1

2
.
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Case 4: x, y ∈ [0, 1/2] and z ∈ (1/2, 1]. In this case, we have

R(x, y, z) =
d1(

x
3 ,

y
3 ) + d2(

y
3 ,

z
2 ) + d3(

z
2 ,

x
3 )

d1(x, y) + 1 + 1
6

1
2d1(x, y) +

1
2 + 1

2

d1(x, y) + 1 + 1

=
1

2

d1(x, y) + 2

d1(x, y) + 2
6

1

2
.

From the above discussions we deduce that (5) holds for every three pairwise distinct
points x, y, z ∈ M . This shows that F ∈ F(M,d1, d2, d3, ϕ), where ϕ(t) = t/2 for
every t ∈ R+.

Our main result in this section is the following fixed point theorem.

Theorem 3. Let di, i = 1, 2, 3, be three metrics on M such that |M | > 3 and (M,d1)
are complete. Let F :M →M be a mapping satisfying the following conditions:

(i) For all u ∈M , F (Fu) 6= u, provided Fu 6= u;
(ii) F is continuous on (M,d1);

(iii) F ∈ F(M,d1, d2, d3, ϕ) for some ϕ ∈ Φ.

Then Fix(F ) 6= ∅ and |Fix(F )| 6 2.

Proof. We first show that Fix(F ) 6= ∅. Let u0 ∈ M . Consider the Picard sequence
{un} ⊂M defined by

un = Fnu0, n > 0.

If un−1 = un for some n > 1, then un−1 ∈ Fix(F ), and the theorem is proved. So,
without restriction of the generality, we may assume that

un−1 6= un, n > 1,

which implies by (i) that
un−1 6= un+1, n > 1.

Consequently, for all n > 1, un−1, un, and un+1 are three pairwise distinct points.
By (iii), taking (x, y, z) = (u0, u1, u2) in (4), we obtain

d1(Fu0, Fu1) + d2(Fu1, Fu2) + d3(Fu2, Fu0)

6 ϕ
(
d1(u0, u1) + d2(u1, u2) + d3(u2, u0)

)
,

that is,
d1(u1, u2) + d2(u2, u3) + d3(u3, u1)

6 ϕ
(
d1(u0, u1) + d2(u1, u2) + d3(u2, u0)

)
,

which implies by (C1) that

ϕ
(
d1(u1, u2) + d2(u2, u3) + d3(u3, u1)

)
6 ϕ2

(
d1(u0, u1) + d2(u1, u2) + d3(u2, u0)

)
. (8)
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Similarly, taking (x, y, z) = (u1, u2, u3) in (4), we obtain

d1(u2, u3) + d2(u3, u4) + d3(u4, u2)

6 ϕ
(
d1(u1, u2) + d2(u2, u3) + d3(u3, u1)

)
,

which implies by (8) that

d1(u2, u3) + d2(u3, u4) + d3(u4, u2)

6 ϕ2
(
d1(u0, u1) + d2(u1, u2) + d3(u2, u0)

)
.

Continuing in the same way, we obtain by induction that

d1(un, un+1) + d2(un+1, un+2) + d3(un+2, un)

6 ϕn
(
d1(u0, u1) + d2(u1, u2) + d3(u2, u0)

)
for all n > 0, which yields

d1(un, un+1) 6 ϕn(τ0), n > 1, (9)

where
τ0 = d1(u0, u1) + d2(u1, u2) + d3(u2, u0) > 0.

We now prove that {un} is a Cauchy sequence on (M,d1). For all n, p > 1, making use
of the triangle inequality and (9), we get

d1(un, un+p) 6 d1(un, un+1) + d1(un+1, un+2) + · · ·+ d1(un+p−1, un+p)

6 ϕn(τ0) + ϕn+1(τ0) + · · ·+ ϕn+p−1(τ0)

=

n+p−1∑
m=n

ϕm(τ0) =

n+p−1∑
m=0

ϕm(τ0)−
n−1∑
m=0

ϕm(τ0),

which implies by (C2) that

d1(un, un+p) 6

( ∞∑
m=0

ϕm(τ0)−
n−1∑
m=0

ϕm(τ0)

)
→ 0 as n→∞.

This proves that {un} is a Cauchy sequence on the metric space (M,d1). Since (M,d1)
is complete, there exists u∗ ∈M such that

lim
n→∞

d1(un, u
∗) = 0, (10)

which implies by the continuity of F on (M,d1) that

lim
n→∞

d1(un+1, Fu
∗) = lim

n→∞
d1(Fun, Fu

∗) = 0. (11)
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Since every metric is continuous, by (10), we have

lim
n→∞

d1(un+1, Fu
∗) = d1(u

∗, Fu∗). (12)

Then, by (11) and (12), we get u∗ = Fu∗, that is, u∗ ∈ Fix(F ).
We now show that |Fix(F )| 6 2. We argue by contradiction supposing that x, y,

and z are three pairwise distinct fixed points of F . Then, making use of (4) with the
equalities Fx = x, Fy = y, and Fz = z, we get

d1(x, y) + d2(y, z) + d3(z, x) 6 ϕ
(
d1(x, y) + d2(y, z) + d3(z, x)

)
. (13)

On the other hand, since

d1(x, y) + d2(y, z) + d3(z, x) > 0,

it follows from property (3) that

ϕ
(
d1(x, y) + d2(y, z) + d3(z, x)

)
< d1(x, y) + d2(y, z) + d3(z, x),

which contradicts (13). This shows that F admits at most two fixed points. The proof of
Theorem 3 is then completed.

We now study some particular cases of Theorem 3. Recall that for a given metric
space X , a point x ∈ X is said to be an accumulation point of X if every open ball
centered at x contains infinitely many points of X .

Proposition 1. Let di, i = 1, 2, 3, be three metrics on M such that |M | > 3 and

max
{
d2(u, v), d3(u, v)

}
6 κd1(u, v), u, v ∈M, (14)

for some constant κ > 0. If F ∈ F(M,d1, d2, d3, ϕ) for some ϕ ∈ Φ, then F is
continuous on (M,d1).

Proof. Let us show that F is continuous at every point z0 ∈M .
Case 1: z0 is an isolated point in (M,d1). In this case, F is obviously continuous

at z0.
Case 2: z0 is an accumulation point in (M,d1). For all ε > 0, let

δε =
ε

1 + 3κ
. (15)

Since z0 is an accumulation point in (M,d1), there exist points y, z ∈M such that y 6= z,

0 < d1(z0, y) < δε and 0 < d1(z0, z) < δε. (16)

Remark that from (16) z0, z, and y are three pairwise distinct points. Then, making use
of (4), we obtain

d1(Fz0, Fz) + d2(Fz, Fy) + d3(Fy, Fz0)

6 ϕ
(
d1(z0, z) + d2(z, y) + d3(y, z0)

)
,
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which implies that

d1(Fz0, F z) 6 ϕ
(
d1(z0, z) + d2(z, y) + d3(y, z0)

)
. (17)

Since d1(z0, z) + d2(z, y) + d3(y, z0) > 0, it follows from property (3) that

ϕ
(
d1(z0, z) + d2(z, y) + d3(y, z0)

)
< d1(z0, z) + d2(z, y) + d3(y, z0),

which implies by (14) and the triangle inequality that

ϕ
(
d1(z0, z) + d2(z, y) + d3(y, z0)

)
< d1(z0, z) + κd1(z, y) + κd1(y, z0)

6 d1(z0, z) + κd1(z, z0) + κd1(z0, y) + κd1(y, z0).

Then from (15) and (16) we deduce that

ϕ
(
d1(z0, z) + d2(z, y) + d3(y, z0)

)
< δε(1 + 3κ) = ε. (18)

Finally, by (17) and (18), we get

d1(Fz0, F z) < ε,

which proves that F is continuous at z0. This completes the proof of Proposition 1.

Remark 3. Having traced the proofs of Theorem 3 and Proposition 1, we see that nowhere
properties of metrics d2 and d3, such as triangle inequalities, continuity, etc., have been
used. Thus, Theorem 3 and Proposition 1 are valid under the assumption that d2 and d3
are semimetrics. Recall that semimetric is a function d : X ×X → R+ satisfying for all
x, y ∈ X only two axioms of metric space:

1. (d(x, y) = 0) ⇔ (x = y),
2. d(x, y) = d(y, x).

A pair (X, d), where d is a semimetric on X , is called a semimetric space. Such
spaces were first examined by Fréchet in [11], where he called them “classes (E)”. Later,
these spaces attracted the attention of many mathematicians.

From Theorem 3 and Proposition 1 we deduce the following result.

Corollary 1. Let di, i = 1, 2, 3, be three metrics on M such that |M | > 3, (M,d1)
is complete, and (14) holds for some constant κ > 0. Let F : M → M be a mapping
satisfying the following conditions:

(i) For all u ∈M , F (Fu) 6= u, provided Fu 6= u;
(ii) F ∈ F(M,d1, d2, d3, ϕ) for some ϕ ∈ Φ.

Then Fix(F ) 6= ∅ and |Fix(F )| 6 2.
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Remark 4. Taking in Corollary 1 di = d, i = 1, 2, 3, κ = 1, and ϕ(t) = λt, λ ∈ [0, 1),
we obtain Theorem 2; see Remark 2.

We provide below an example illustrating Theorem 3.

Example 5. Let M = {w1, w2, w3, w4} ⊂ R2, where

w1 =

(
−9

4
, 0

)
, w2 = (0, 0),

w3 =

(
175

72
, −

√
9−

(
175

72

)2 )
, w4 =

(
−55

24
,
5
√
23

24

)
.

Consider the mapping F :M →M defined by

Fw1 = w1, Fw2 = w2, Fw3 = w4, Fw4 = w1.

Let δ be the discrete metric on M , that is,

δ(wi, wj) =

{
0 if i = j,

1 if i 6= j.

Remark that F is not a mapping contracting perimeters of triangles on (M, δ) (in the
sense of Definition 1 with d = δ). Indeed, we have

δ(Fw1, Fw2) + δ(Fw2, Fw3) + δ(Fw3, Fw1)

δ(w1, w2) + δ(w2, w3) + δ(w3, w1)

=
δ(w1, w2) + δ(w2, w4) + δ(w4, w1)

δ(w1, w2) + δ(w2, w3) + δ(w3, w1)
= 1.

We now consider the three metrics d1, d2, d3 on M , where d1 = δ and

d2(wi, wj) = d3(wi, wj) = ‖wi − wj‖, i, j ∈ {1, 2, 3, 4}. (19)

Here ‖·‖ denotes the Euclidean norm. Elementary calculations show that

‖wi − wj‖ =



9
4 if (i, j) = (1, 2),

5 if (i, j) = (1, 3),

1 if (i, j) = (1, 4),

3 if (i, j) = (2, 3),
5
2 if (i, j) = (2, 4),

5.46846 if (i, j) = (3, 4).

Clearly, (M,d1) is a complete metric space, and F satisfies conditions (i) and (ii) of
Theorem 3. We claim that

d1(Fwi, Fwj) + d2(Fwj , Fwk) + d3(Fwk, Fwi)

6
23

25

(
d1(wi, wj) + d2(wj , wk) + d3(wk, wi)

)
(20)

for every three pairwise distinct indices i, j, k ∈ {1, 2, 3, 4}.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Fixed point results for single and multivalued three-points contractions 323

Table 1. The values of A(i, j, k), B(i, j, k) and R(i, j, k).

(i, j, k) A(i, j, k) B(i, j, k) R(i, j, k)

(1, 2, 3) 9/2 9 1/2
(1, 3, 2) 23/4 25/4 23/25
(2, 3, 1) 17/4 33/4 17/33
(1, 2, 4) 13/4 9/2 13/18
(1, 4, 2) 9/2 23/4 18/23
(2, 4, 1) 13/4 27/4 13/27
(1, 3, 4) 2 6.46846 0.3091
(1, 4, 3) 2 11.46846 0.1743
(3, 4, 1) 2 7 2/7
(2, 3, 4) 17/4 8.96846 0.4738
(2, 4, 3) 9/2 8.46846 0.5313
(3, 4, 2) 23/4 13/2 23/26

For every three pairwise distinct indices i, j, k ∈ {1, 2, 3, 4}, let

R(i, j, k) =
d1(Fwi, Fwj) + d2(Fwj , Fwk) + d3(Fwk, Fwi)

d1(wi, wj) + d2(wj , wk) + d3(wk, wi)
=
A(i, j, k)

B(i, j, k)
.

Remark that by (19)
R(i, j, k) = R(j, i, k).

So, for every three pairwise distinct indices i, j, k ∈ {1, 2, 3, 4}, we have just to show that
(20) holds for (i, j, k), (i, k, j), (j, k, i). Namely, we have to check twelve cases. Table 1
provides the different values of A(i, j, k), B(i, j, k), and R(i, j, k), which confirm (20).

Consequently, F ∈ F(M,d1, d2, d3, ϕ) with ϕ(t) = 23/25t for all t ∈ R+. Then
Theorem 3 applies. On the other hand, observe that Fix(F ) = {w1, w2}, which confirms
the result given by Theorem 3.

3 Three-points multivalued contractions

In this section, we are concerned with the study of fixed points for the following class of
multivalued mappings.

Definition 3. Let (M,d) be a metric space with |M | > 3 and λ ∈ (0, 1). We denote by
F̃(M,d, λ) the class of multivalued mappings F : M → CB(M) satisfying the three-
points multivalued contraction

H(Fx, Fy) +H(Fy, Fz) +D(Fz, Fx) 6 λ
(
d(x, y) + d(y, z) + d(z, x)

)
(21)

for every three pairwise distinct points x, y, z ∈M .

The following lemma (see [19]) will be used later.

Lemma 1. Let (M,d) be a metric space and A,B ∈ CB(M). Then, for all a ∈ A and
ε > 0, there exists b ∈ B such that

d(a, b) 6 H(A,B) + ε.
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We first establish the following result.

Proposition 2. Let (M,d) be a metric space with |M | > 3 and λ ∈ (0, 1). If F ∈
F̃(M,d, λ), then F : (M,d)→ (CB(M), H) is continuous.

Proof. Let z0 ∈M . We distinguish two cases.
Case 1: z0 is an isolated point in (M,d1). In this case, F is obviously continuous

at z0.
Case 2: z0 is an accumulation point in (M,d1). For all ε > 0, let

δε =
ε

4λ
. (22)

Since z0 is an accumulation point in (M,d1), there exist points y, z ∈M such that y 6= z,

0 < d1(z0, y) < δε and 0 < d1(z0, z) < δε. (23)

Then, by (23), z0, z, and y are three pairwise distinct points. Hence, making use of (21),
we obtain

H(Fz0, F z) +H(Fz, Fy) +D(Fy, Fz0) 6 λ
(
d(z0, z) + d(z, y) + d(y, z0)

)
,

which implies by the triangle inequality, (23), and (22) that

H(Fz0, Fz) 6 λ
(
d(z0, z) + d(z, y) + d(y, z0)

)
6 λ

(
d(z0, z) + d(z, z0) + d(z0, y) + d(y, z0)

)
= 2λ

(
d(z0, z) + d(z0, y)

)
< 2λ

(
δε + δε

)
= 4λδε = ε.

This shows the continuity of F at z0.

Our main result in this section is the following fixed point theorem.

Theorem 4. Let (M,d) be a complete metric space with |M | > 3. Let F :M → CB(M)
be a multivalued mapping satisfying the following conditions:

(i) For all u, v ∈M , we have that v ∈ Fu, u 6= v, implies u /∈ Fv;
(ii) F ∈ F̃(M,d, λ) for some λ ∈ (0, 1).

Then Fix(F ) 6= ∅.

Proof. Let u0 ∈M and u1 ∈ Fu0. By Lemma 1, there exists u2 ∈ Fu1 such that

d(u1, u2) 6 H(Fu0, Fu1) + λ,

and there exists u3 ∈ Fu2 such that

d(u2, u3) 6 H(Fu1, Fu2) + λ2.

Continuing in the same way, by induction, we construct a sequence {un} ⊂M such that

un+1 ∈ Fun, n > 0 (24)
and

d(un, un+1) 6 H(Fun−1, Fun) + λn, n > 1. (25)
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If un = un+1 for some n > 0, then by (24), un ∈ Fix(F ), and the theorem is proved.
Then, without restriction of the generality, we may suppose that un 6= un+1 for all n > 0,
which implies by (24) and (i) that un /∈ Fun+1. Since un+2 ∈ Fun+1, then un 6= un+2.
Consequently, for all n > 0, un, un+1, and un+2 are three pairwise distinct points in M .
On the other hand, by (25), we have

d(un−1, un) 6 H(Fun−2, Fun−1) + λn−1, n > 2. (26)

Furthermore, by the definition of the diameter, we have

d(un+1, un−1) 6 D(Fun, Fun−2), n > 2. (27)

Then it follows from (25), (26), and (27) that

d(un−1, un) + d(un, un+1) + d(un+1, un−1)

6 H(Fun−2, Fun−1) +H(Fun−1, Fun) +D(Fun, Fun−2)
+ λn−1 + λn, n > 2. (28)

Taking into consideration that for all n > 0, un, un+1, and un+2 are three pairwise
distinct points and making use of (21) with (x, y, z) = (un−2, un−1, un), we obtain

H(Fun−2, Fun−1) +H(Fun−1, Fun) +D(Fun, Fun−2)
6 λ

(
d(un−2, un−1) + d(un−1, un) + d(un, un−2)

)
, n > 2. (29)

Then from (28) and (29) we deduce that

d(un−1, un) + d(un, un+1) + d(un+1, un−1)

6 λ
(
d(un−2, un−1) + d(un−1, un) + d(un, un−2)

)
+ λn−1 + λn, n > 2,

that is,

pn 6 λpn−1 + λn + λn+1, n > 1, (30)
where

pn = d(un, un+1) + d(un+1, un+2) + d(un+2, un), n > 0. (31)

From (30) we get

p1 6 λp0 + λ+ λ2,

p2 6 λp1 + λ2 + λ3 6 λ2p0 + 2
(
λ2 + λ3

)
,

p3 6 λp2 + λ3 + λ4 6 λ3p0 + 3
(
λ3 + λ4

)
,

...
pn 6 λnp0 + n

(
λn + λn+1

)
, n > 0,

which implies by (31) that

d(un, un+1) 6 λnp0 + n
(
λn + λn+1

)
, n > 0. (32)
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Since 0 < λ < 1, we get λn+1 < λn. Hence, it follows from (32) that

d(un, un+1) < λnp0 + n
(
λn + λn

)
= λn(p0 + 2n), n > 0. (33)

We now show that {un} is a Cauchy sequence on (M,d). Indeed, making use of (33) and
the triangle inequality, for all n, k > 1, we obtain

d(un, un+k) 6
n+k−1∑
m=n

d(um, um+1) < p0

n+k−1∑
m=n

λm + 2

n+k−1∑
m=n

mλm

= p0

(
n+k−1∑
m=0

λm −
n−1∑
m=0

λm

)
+ 2

(
n+k−1∑
m=0

mλm −
n−1∑
m=0

mλm

)
. (34)

On the other hand, since 0 < λ < 1, the two series
∑
m>0 λ

m and
∑
m>0mλ

m are
convergent. Then, by (34), we obtain

d(un, un+k) < p0

( ∞∑
m=0

λm −
n−1∑
m=0

λm

)
+ 2

( ∞∑
m=0

mλm −
n−1∑
m=0

mλm

)
→ 0 as n→∞,

which shows that {un} is a Cauchy sequence on (M,d). Then from the completeness of
(M,d) we deduce that there exists u∗ ∈M such that

lim
n→∞

d(un, u
∗) = 0. (35)

We now prove that u∗ is a fixed point of F . Since F : (M,d) → (CB(M), H) is
continuous (by (ii) and Proposition 2), we deduce from (35) that

lim
n→∞

H(Fun, Fu
∗) = 0. (36)

Then, making use of (24), (35), and (36), we get

D(u∗, Fu∗) 6 d(u∗, un+1) +D(un+1, Fu
∗)

6
(
d(u∗, un+1) +H(Fun, Fu

∗)
)
→ 0 as n→∞.

Consequently, we obtain D(u∗, Fu∗)=0. Since Fu∗ is closed, we deduce that u∗∈Fu∗,
that is, u∗ ∈ Fix(F ). The proof of Theorem 4 is then completed.

Definition 4. Let (M,d) be a metric space with |M | > 3 and λ ∈ (0, 1). We denote by
F̃ ′(M,d, λ) and F̃ ′′(M,d, λ) the classes of multivalued mappings F : M → CB(M)
satisfying the three-points multivalued contractions

H(Fx, Fy) +D(Fy, Fz) +D(Fz, Fx) 6 λ
(
d(x, y) + d(y, z) + d(z, x)

)
,

D(Fx, Fy) +D(Fy, Fz) +D(Fz, Fx) 6 λ
(
d(x, y) + d(y, z) + d(z, x)

)
for every three pairwise distinct points x, y, z ∈M , respectively.
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Since the inequalities

H(Fx, Fy) +H(Fy, Fz) +D(Fz, Fx)
6 H(Fx, Fy) +D(Fy, Fz) +D(Fz, Fx),
6 D(Fx, Fy) +D(Fy, Fz) +D(Fz, Fx)

hold, we obtain the inclusions F̃ ′′(M,d, λ) ⊆ F̃ ′(M,d, λ) ⊆ F̃(M,d, λ). Hence, we get
the following.

Corollary 2. Theorem 4 holds for the classes F̃ ′(M,d, λ) and F̃ ′′(M,d, λ).

We give below an example to illustrate Theorem 4.

Example 6. Let M = {v1, v2, v3} and d be the discrete metric on M , that is,

d(vi, vj) =

{
0 if i = j,

1 if i 6= j.

Consider the multivalued mapping F : (M,d)→ (CB(M), H) defined by

Fv1 = {v1}, Fv2 = {v1}, Fv3 = {v1, v3},

where H is the Hausdorff–Pompeiu metric on CB(M) induced by d.
Observe that F satisfies condition (i) of Theorem 4. Indeed, we have

v1 ∈ Fv2, v1 6= v2, v2 /∈ Fv1 = {v1}
and

v1 ∈ Fv3, v1 6= v3, v3 /∈ Fv1 = {v1}.

On the other hand, for (i, j, k) = (1, 2, 3), we have

H(Fvi, Fvj) +H(Fvj , Fvk) +D(Fvk, Fvi)
= H

(
{v1}, {v1}

)
+H

(
{v1}, {v1, v3}

)
+D

(
{v1, v3}, {v1}

)
= 0 + 1 + 1 = 2

and
d(vi, vj) + d(vj , vk) + d(vk, vi) = 3,

which show that

H(Fvi, Fvj) +H(Fvj , Fvk) +D(Fvk, Fvi)
d(vi, vj) + d(vj , vk) + d(vk, vi)

=
2

3
. (37)

Similar calculations show that for every three pairwise distinct indices i, j, k ∈ {1, 2, 3},
(37) holds. Consequently, F ∈ F̃(M,d, λ) for every 2/3 6 λ < 1. Then F satisfies also
condition (ii) of Theorem 4. Furthermore, we have

Fix(F ) = {v1, v3},

which confirms that Fix(F ) 6= ∅.
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Observe also that in this example, Nadler’s fixed point theorem (Theorem 1) is inap-
plicable. This can be easily seen remarking that

H(Fv1, Fv3)

d(v1, v3)
= H(Fv1, Fv3) = H

(
{v1}, {v1, v3}

)
= 1.

Definition 5. Let (M,d) be a metric space with |M | > 3 and λ ∈ (0, 1/2). We denote
by F(M,d, λ) the class of multivalued mappings F :M → CB(M) satisfying the three-
points multivalued contraction

H(Fx, Fy) +H(Fy, Fz) +H(Fz, Fx) 6 λ
(
d(x, y) + d(y, z) + d(z, x)

)
(38)

for every three pairwise distinct points x, y, z ∈M .

Similarly to Proposition 2, we establish the following.

Proposition 3. Let (M,d) be a metric space with |M | > 3 and λ ∈ (0, 1/2). If F ∈
F(M,d, λ), then F : (M,d)→ (CB(M), H) is continuous.

Theorem 5. Let (M,d) be a complete metric space with |M | > 3. Let F :M → CB(M)
be a multivalued mapping satisfying the following conditions:

(i) For all u, v ∈M , we have that v ∈ Fu, u 6= v, implies u /∈ Fv;
(ii) F ∈ F(M,d, λ) for some λ ∈ (0, 1/2).

Then Fix(F ) 6= ∅.

Proof. The beginning of the proof of this theorem repeats word for word the proof of
Theorem 4 up to inequality (26).

Further, it follows from the triangle inequality, (25), and (26) that

d(un−1, un) + d(un, un+1) + d(un+1, un−1)

6 d(un−1, un) + d(un, un+1) + d(un−1, un) + d(un, un+1)

= 2
(
d(un−1, un) + d(un, un+1)

)
6 2
(
H(Fun−2, Fun−1) +H(Fun−1, Fun)

)
+ 2λn−1 + 2λn, n > 2. (39)

Taking into consideration that for all n > 0, un, un+1, and un+2 are three pairwise
distinct points and making use of (38) with (x, y, z) = (un−2, un−1, un), we obtain

H(Fun−2, Fun−1) +H(Fun−1, Fun) +H(Fun, Fun−2)

6 λ
(
d(un−2, un−1) + d(un−1, un) + d(un, un−2)

)
, n > 2,

and

H(Fun−2, Fun−1) +H(Fun−1, Fun)

6 λ
(
d(un−2, un−1) + d(un−1, un) + d(un, un−2)

)
, n > 2. (40)
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Then from (39) and (40) we deduce that

d(un−1, un) + d(un, un+1) + d(un+1, un−1)

6 2λ
(
d(un−2, un−1) + d(un−1, un) + d(un, un−2)

)
+ λn−1 + 2λn, n > 2,

that is,
pn 6 2λpn−1 + 2λn + 2λn+1, n > 1, (41)

where

pn = d(un, un+1) + d(un+1, un+2) + d(un+2, un), n > 0. (42)

From (41) we get

p1 6 2λp0 + 2λ+ 2λ2,

p2 6 2λp1 + 2λ2 + 2λ3 6 4λ2p0 + 6
(
λ2 + λ3

)
,

p3 6 2λp2 + 2λ3 + 2λ4 6 8λ3p0 + 14
(
λ3 + λ4

)
,

...
pn 6 (2λ)np0 + 2(2n − 1)

(
λn + λn+1

)
, n > 0,

which implies by (42) that

d(un, un+1) 6 (2λ)np0 + 2
(
2n − 1

)(
λn + λn+1

)
, n > 0.

Since 0 < λ < 1/2, we get λn+1 < λn. Hence, it follows from (32) that

d(un, un+1) < (2λ)np0 + 2
(
2n − 1

)(
λn + λn

)
= (2λ)np0 + 4

(
2n − 1

)
λn, n > 0.

We now show that {un} is a Cauchy sequence on (M,d). Indeed, making use of (33) and
the triangle inequality, for all n, k > 1, we obtain

d(un, un+k) 6
n+k−1∑
m=n

d(um, um+1)

< p0

n+k−1∑
m=n

(2λ)m + 4

n+k−1∑
m=n

(
2m − 1

)
λm

= p0

(
n+k−1∑
m=0

(2λ)m −
n−1∑
m=0

(2λ)m

)

+ 4

(
n+k−1∑
m=0

(
2m − 1

)
λm −

n−1∑
m=0

(
2m − 1

)
λm

)
. (43)
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On the other hand, since 0<λ<1/2, the two series
∑
m>0(2λ)

m and
∑
m>0(2

m−1)λm

are convergent. Then, by (43), we obtain

d(un, un+k) < p0

( ∞∑
m=0

(2λ)m −
n−1∑
m=0

(2λ)m

)

+ 4

( ∞∑
m=0

(
2m − 1

)
λm −

n−1∑
m=0

(
2m − 1

)
λm

)
→ 0 as n→∞,

which shows that {un} is a Cauchy sequence on (M,d). Then from the completeness of
(M,d) we deduce that there exists u∗ ∈M such that limn→∞ d(un, u

∗) = 0.
The fact that u∗ is a fixed point of F can be proved in a similar way as in Theorem 4

only with the difference that, instead of Proposition 2, we use Proposition 3.
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