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Abstract. We prove the existence of at least one positive solution for a system of two nonlinear
second-order differential equations with nonlocal boundary conditions. One component of the solu-
tion is a concave function, and the other one is a convex function. A recent hybrid Krasnosel’skiı̆–
Schauder fixed point theorem is used to prove the existence of a positive solution. To illustrate the
applicability of the obtained result, an example is considered.
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1 Introduction

Recently, Infante et al. [10] established a fixed point theorem for operator system that
combines well-known Krasnosel’skiı̆–Benjamin fixed point theorem [1] and Schauder’s
fixed point theorem [11]: consider the operator system

x = T1(x, y), y = T2(x, y). (1)

If, for fixed y, the operator T1(·, y) satisfies the conditions of the Krasnosel’skiı̆–Benjamin
fixed point theorem and, for fixed x, the operator T2(x, ·) satisfies the conditions of the
Schauder’s fixed point theorem, then operator system (1) has a fixed point (x, y) such that
x is localized in a conical shell, and y is localized in a closed and convex set. The authors
in [10] showed the applicability of this result on a system of Hammerstein-type integral
operators and, as an example, proved existence of a positive solution for the system of
boundary value problems

x′′(t) + f
(
t, x(t), y(t)

)
= 0, t ∈ [0, 1],

y′′(t) + g
(
t, x(t), y(t)

)
= 0, t ∈ [0, 1],

x(0) = x(1) = 0 = y′(0) = y(1) + y′(1).

© 2025 The Author(s). Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

https://orcid.org/0009-0007-0795-640X
mailto:aleksey.antonyuk1@gmail.com
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


334 A. Anton, uks

Inspired by the article [10], in this paper, we apply the hybrid Krasnosel’skiı̆–Schauder
fixed point theorem [10, Thm. 2.4] to prove the existence of at least one positive solution
for the system of differential equations

x′′(t) + f
(
t, x(t), y(t)

)
= 0, t ∈ (0, 1),

y′′(t)− g
(
t, x(t), y(t)

)
= 0, t ∈ (0, 1),

(2)

coupled with nonlocal boundary conditions

ã0x(0)− b̃0x′(0) = ϕ̃0[x], a0y(0)− b0y′(0) = ϕ0[y] + c0,

ã1x(1) + b̃1x
′(1) = ϕ̃1[x], a1y(1) + b1y

′(1) = ϕ1[y] + c1.
(3)

Here ai, bi, ci, ãi, b̃i are nonnegative real constants, f, g : [0, 1]× [0,+∞)2 → [0,+∞)

are continuous functions, ϕi[y] =
∫ 1

0
y(s) dΦi(s) and ϕ̃i[x] =

∫ 1

0
x(s) dΦ̃i(s) are linear

functionals defined via Riemann–Stieltjes integrals with sign-changing measures, i.e.,
Φi, Φ̃i : [0, 1] → R are functions of bounded variation. So it is possible to consider
coefficients of both signs in multipoint conditions (if Φi is scale function) and consider
functions that may change the sign in integral conditions (if Φ′i is Riemann-integrable).

We call a pair (x, y) ∈ C2[0, 1] × C2[0, 1] a (strictly) positive solution of prob-
lem (2), (3) if (x, y) satisfies the differential equations (2), the boundary conditions (3)
and x(t) > 0, y(t) > 0 for all t ∈ (0, 1).

Note that x′′ 6 0 and y′′ > 0 in (2), hence x is concave function, and y is convex
function. Since we investigate the existence of positive solutions, it is natural to assume
that

0 < d = a0a1 + a0b1 + a1b0 and 0 < d̃ = ã0ã1 + ã0b̃1 + ã1b̃0.

Systems of boundary value problems were studied by many authors; see, for instance,
[4–10,19]. Such systems and their positive solutions are important in modeling biological
and medical phenomena and studying chemistry, physics, population, and fluid dynamics;
see [4,7,10,19] and references therein. In case of one boundary value problem the standard
method is to apply Krasnosel’skiı̆–Benjamin [1] or Guo–Krasnosel’skiı̆ [3] fixed point
theorem to prove existence of a positive solution. It is possible to apply these theorems
for systems of boundary value problems, but these theorems cannot guarantee that each
component of the solution is nontrivial.

For systems of boundary value problems, one could apply Krasnosel’skiı̆’s fixed point
theorem on each component of the solution in a pointwise manner. This result, due to
Precup [12], is called the vector version of Krasnosel’skiı̆’s fixed point theorem or the
Krasnosel’skiı̆–Precup fixed point theorem. For details and applications of this result, we
refer the reader to [2, 12–15].

In this article, to prove our main result, we apply the hybrid Krasnosel’skiı̆–Schauder
fixed point theorem [10, Thm. 2.4]. Let us recall it here. A nonempty closed convex subset
K ⊂ X of normed space (X, ‖·‖) is called a cone if λx ∈ K for every x ∈ K and for all
λ > 0, and K ∩ (−K) = 0.
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Theorem 1 [Hybrid Krasnosel’skiı̆–Schauder]. (See [10].) Let U and V be open and
bounded subsets of a cone K of the Banach space X such that 0 ∈ V ⊂ V ⊂ U , and let
W be a closed convex subset of the Banach space Y .

Assume that T = (T1, T2) : (U \ V ) ×W → K ×W is a completely continuous
map and there exists h ∈ K \ {0} such that either of the following conditions holds in
(U \ V )×W :

(i) T1(x, y) + µh 6= x if x ∈ ∂V and µ > 0, and T1(x, y) 6= λx if x ∈ ∂U and
λ > 1; or

(ii) T1(x, y) 6= λx if x ∈ ∂V and λ > 1, and T1(x, y) + µh 6= x if x ∈ ∂U and
µ > 0.

Then T has at least one fixed point (x, y) ∈ (U \ V )×W .

One of the applications of Theorem 1 in [10, Thm. 3.1] requires the existence of four
positive numbers ρ1, ρ2 (to define U \ V ) and α, β (to define W ). In this paper, we do
not require the existence of α, β and localize the convex component of the solution in
W = {y: y(t) ∈ [0, Q] for t ∈ [0, 1]}, where Q could be calculated. Our result comple-
ments the previous results in [10].

The outline of the rest of the paper is as follows. In Section 2, we rewrite problem (2),
(3) as a system of equivalent integral equations and show estimates of the corresponding
Green’s functions. In Section 3, we present sufficient conditions for a convex component
of the solution to be positive on (0, 1). Section 4 is devoted to the proof of our main result
Theorem 2. In Section 5, we illustrate the obtained result with an example.

2 Preliminaries

The standard approach of obtaining solutions of problem (2), (3) is to construct the
Green’s functions corresponding to the above mentioned problem and rewrite the problem
as a system of equivalent integral equations.

It is known (see, for instance, [8, 17, 20]) that the Green’s function G0 corresponding
to problem

u′′(t) + f̂(t) = 0, a0u(0)− b0u′(0) = 0 = a1u(1) + b1u
′(1)

is given by

G0(t, s) = d

{
u0(t)u1(s), 0 6 s 6 t 6 1,

u0(s)u1(t), 0 6 t 6 s 6 1,
(4)

where

u0(t) =
b1 + a1(1− t)

d
, u1(t) =

b0 + a0t

d
. (5)

Recall that d = a0a1 + a0b1 + a1b0 > 0. Let ũi and G̃0 be defined similar to (5) and (4),
respectively, in terms of ãi and b̃i. Observe that u0 is a decreasing function and u1 is an
increasing function.
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Throughout the paper, we assume that

(A1) 0 6 ϕ0[u0] 6 1, 0 6 ϕ0[u1], 0 6 ϕ1[u0], 0 6 ϕ1[u1] 6 1,

0 6 ϕ̃0[ũ0] 6 1, 0 6 ϕ̃0[ũ1], 0 6 ϕ̃1[ũ0], 0 6 ϕ̃1[ũ1] 6 1,

(A2) 0 < D =

∣∣∣∣1− ϕ0[u0] −ϕ1[u0]
−ϕ0[u1] 1− ϕ1[u1]

∣∣∣∣ and 0 < D̃ =

∣∣∣∣1− ϕ̃0[ũ0] −ϕ̃1[ũ0]
−ϕ̃0[ũ1] 1− ϕ̃1[ũ1]

∣∣∣∣,
(A3) 0 6 Gi(s) =

1∫
0

G0(t, s) dΦi(t), 0 6 G̃i(s) =
1∫

0

G̃0(t, s) dΦ̃i(t), i = 0, 1.

Here the notation |A| denotes the determinant of a square matrix A. The proof of a fol-
lowing Lemma 1 is standard and omitted. The technique of the proof could be found, for
instance, in [2, 5, 16, 18, 21].

Lemma 1. A function u is a solution of problem

u′′(t) + f̂(t) = 0,

a0u(0)− b0u′(0) = ϕ0[u] + c0,

a1u(1) + b1u
′(1) = ϕ1[u] + c1

if and only if u is a solution of the perturbed integral equation

u(t) =

1∫
0

G(t, s)f̂(s) ds+ Γ (t),

where

G(t, s) =
1

D

∣∣∣∣∣∣
u0(t) 1− ϕ0[u0] −ϕ1[u0]
u1(t) −ϕ0[u1] 1− ϕ1[u1]
G0(t, s) −G0(s) −G1(s)

∣∣∣∣∣∣ (6)

and

Γ (t) =
1

D

∣∣∣∣∣∣
u0(t) 1− ϕ0[u0] −ϕ1[u0]
u1(t) −ϕ0[u1] 1− ϕ1[u1]
0 −c0 −c1

∣∣∣∣∣∣ . (7)

Note that every element in (6) depends on ai, bi, or ϕi. Let G̃ be defined similar to (6)
in terms of ãi, b̃i, ϕ̃i.

Proposition 1. A pair (x, y) is a solution of problem (2), (3) if and only if (x, y) is
a solution of the system of integral equations

x(t) =

1∫
0

G̃(t, s)f
(
s, x(s), y(s)

)
ds, t ∈ [0, 1],

y(t) = −
1∫

0

G(t, s)g
(
s, x(s), y(s)

)
ds+ Γ (t), t ∈ [0, 1].
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Proof. The proof of this proposition directly follows from Lemma 1.

Let µ(t) = min {t, 1− t}. It is known that the following is valid (see [5, 10, 21]):

(B1) G(t, s) > 0, Γ (t) > 0 and G̃(t, s) > 0 for all (t, s) ∈ [0, 1]× [0, 1],

(B2) µ(t)G̃0(s, s) 6 G̃0(t, s) 6 G̃0(s, s) for all (t, s) ∈ [0, 1]× [0, 1],
(B3) ũi(t) > µ(t)ũi(i) for all t ∈ [0, 1] and i = 0, 1.

Note that µ(t) > min {l1, 1− l2} for t ∈ [l1, l2] ⊂ [0, 1].

Proposition 2. The Green’s function G̃ satisfies

µ(t)H̃(s) 6 G̃(t, s) 6 H̃(s), (t, s) ∈ [0, 1]× [0, 1],

where

H̃(s) =
1

D̃

∣∣∣∣∣∣
ũ0(0) 1− ϕ̃0[ũ0] −ϕ̃1[u0]
ũ1(1) −ϕ̃0[u1] 1− ϕ̃1[ũ1]

G̃0(s, s) −G̃0(s) −G̃1(s)

∣∣∣∣∣∣ .
Proof. First, we expand H̃(s) along the first column and see that H̃(s) > 0 for s ∈ [0, 1].
Next, by (B2) and (B3), we conclude that µ(t)H̃(s) 6 G̃(t, s) 6 H̃(s).

3 Convex component of the solution

In this section, we give sufficient conditions for a convex component of the solution to be
nonnegative on [0, 1] and positive on (0, 1). Let us define the function h : [0, 1]→ R by

h(t) = − t
2

2
+
a0
2d

(2b1 + a1)t+
b0
2d

(2b1 + a1).

Lemma 2. The Green’s function G, given by (6), satisfies

1∫
0

G(t, s) ds = − t
2

2
+ P1t+ P0,

where

P1 =
1

2dD

∣∣∣∣∣∣
−2a1 1− ϕ0[u0] −ϕ1[u0]
2a0 −ϕ0[u1] 1− ϕ1[u1]

a0(2b1 + a1) −ϕ0[h] −ϕ1[h]

∣∣∣∣∣∣ (8)

and

P0 =
1

2dD

∣∣∣∣∣∣
2b1 + 2a1 1− ϕ0[u0] −ϕ1[u0]

2b0 −ϕ0[u1] 1− ϕ1[u1]
b0(2b1 + a1) −ϕ0[h] −ϕ1[h]

∣∣∣∣∣∣ . (9)
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Proof. Observe that

1∫
0

G0(t, s) ds = d

t∫
0

u0(t)u1(s) ds+ d

1∫
t

u0(s)u1(t) ds

=
t(2b0 + a0t)(b1 + a1 − a1t)

2d
+

(1− t)(b0 + a0t)(2b1 + a1 − a1t)
2d

= − t
2

2
+
a0
2d

(2b1 + a1)t+
b0
2d

(2b1 + a1) = h(t)

and
1∫

0

Gi(s) ds =
1∫

0

1∫
0

G0(t, s) dΦi(t) ds =

1∫
0

1∫
0

G0(t, s) ds dΦi(t) = ϕi[h], i = 0, 1.

Therefore, by expanding G(t, s) along the first column, we have

1∫
0

G(t, s) ds =
b1 + a1(1− t)

dD

∣∣∣∣−ϕ0[u1] 1− ϕ1[u1]
−ϕ0[h] −ϕ1[h]

∣∣∣∣
− b0 + a0 t

dD

∣∣∣∣1− ϕ0[u0] −ϕ1[u0]
−ϕ0[h] −ϕ1[h]

∣∣∣∣+ h(t) = − t
2

2
+ P1t+ P0,

where P1 and P0 are given by (8) and (9), respectively.

Let Y : C[0, 1]× C[0, 1]→ C[0, 1] be an operator defined via

Y (x, y)(t) = −
1∫

0

G(t, s)g
(
s, x(s), y(s)

)
ds+ Γ (t),

where G(t, s) is given by (6), and Γ (t) is given by (7). Note that

Γ (t) =
a1(1− t)
dD

∣∣∣∣−ϕ0[u1] 1− ϕ1[u1]
−c0 −c1

∣∣∣∣− a0 t

dD

∣∣∣∣1− ϕ0[u0] −ϕ1[u0]
−c0 −c1

∣∣∣∣
+

1

dD

∣∣∣∣∣∣
b1 1− ϕ0[u0] −ϕ1[u0]
b0 −ϕ0[u1] 1− ϕ1[u1]
0 −c0 −c1

∣∣∣∣∣∣ .
We denote

Q2 =
a1
dD

∣∣∣∣−ϕ0[u1] 1− ϕ1[u1]
−c0 −c1

∣∣∣∣ , Q1 =
a0
dD

∣∣∣∣1− ϕ0[u0] −ϕ1[u0]
−c0 −c1

∣∣∣∣ , (10)

Q0 =
1

dD

∣∣∣∣∣∣
b1 1− ϕ0[u0] −ϕ1[u0]
b0 −ϕ0[u1] 1− ϕ1[u1]
0 −c0 −c1

∣∣∣∣∣∣ . (11)
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So that Y (x, y)(t) = −
∫ 1

0
G(t, s)g(s, x(s), y(s)) ds+Q2(1− t) +Q1t+Q0. We set

QM = max{Q2, Q1}+Q0. (12)

Proposition 3. Let r be a positive real constant, P1, P0, Q2, Q1, Q0, QM be given
by (8)–(12), respectively, and

M = max
{
g(t, x, y), (t, x, y) ∈ [0, 1]×Ω

}
, Ω = [0, r]× [0, QM ].

Suppose there exists s ∈ [0, 1] such that one of the following is satisfied:

(i) M(s2/2 + P0) +Q0 6 Q2 < Q1 −M(P1 − 2s); or
(ii) M(s2/2 + P0) +Q0 < Q2 6 Q1 −M(P1 − 2s).

Then 0 6 Y (x, y)(t) 6 QM for all (t, x, y) ∈ [0, 1] × Ω. Moreover, 0 < Y (x, y)(t) for
all (t, x, y) ∈ (0, 1]×Ω.

Proof. Observe that

Y (x, y)(t) 6 Γ (t) = Q2(1− t) +Q1t+Q0 6 QM , t ∈ [0, 1].

To show 0 6 Y (x, y), we need to verify that
1∫

0

G(t, s)g
(
s, x(s), y(s)

)
ds 6 Q2(1− t) +Q1t+Q0

= (Q1 −Q2)t+ (Q2 +Q0), t ∈ [0, 1].

By Lemma 2, we have
1∫

0

G(t, s)g
(
s, x(s), y(s)

)
ds 6M

1∫
0

G(t, s) ds =M

(
− t

2

2
+ P1t+ P0

)
for all (t, x, y) ∈ [0, 1]×Ω. Let us denote ψ(t) =M(−t2/2+P1t+P0). Now we show
ψ(t) < (Q1 −Q0)t+ (Q2 +Q0) for all t ∈ (0, 1), and not strict inequality sign is valid
for t ∈ [0, 1]. Observe that tangent to the ψ at a point z ∈ [0, 1] is given by

M(P1 − 2z)t+M

(
z2

2
+ P0

)
.

Since ψ is concave, we have

ψ(t) 6M(P1 − 2z)t+M

(
z2

2
+ P0

)
, (z, t) ∈ [0, 1]× [0, 1].

By assumption, there exists s ∈ [0, 1] such that

ψ(t) 6M(P1 − 2s)t+M

(
s2

2
+ P0

)
< (Q1 −Q2)t+ (Q2 +Q0), t ∈ (0, 1],

ψ(0) =M P0 6M

(
P0 +

s2

2

)
6 Q2 +Q0,

which completes the proof.
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4 Existence of a positive solution

Consider Banach space C[0, 1] endowed with the supremum norm

‖u‖ = max
t∈[0,1]

∣∣u(t)∣∣.
To prove our main result Theorem 2, we use well-known techniques; see, for instance,
[10, 21].

Theorem 2. Let QM be given by (12) and suppose there exist interval [l1, l2] ⊂ [0, 1]
(m = min {l1, 1− l2}) and constants r1, r2 > 0, r1 < r2 (resp. r2/m < r1) such that

(i) there exist two continuous functions f and f such that

f(t, x, y) 6 f(t), (t, x, y) ∈ [0, 1]× [0, r1]× [0, QM ],

f(t) 6 f(t, x, y), (t, x, y) ∈ [l1, l2]× [r2,
r2
m ]× [0, QM ]

and

r2 6 min
t∈[l1,l2]

l2∫
l1

G̃(t, s)f(s) ds, max
t∈[0,1]

1∫
0

G̃(t, s)f(s) ds 6 r1;

(ii) one of the following is valid:

(a) M(s2/2 + P0) +Q0 6 Q2 < Q1 −M(P1 − 2s); or
(b) M(s2/2 + P0) +Q0 < Q2 6 Q1 −M(P1 − 2s),

where P1, P0, Q2, Q1, Q0 are given by (8)–(11), respectively,

M = max {g(t, x, y): (t, x, y) ∈ [0, 1]×Ω},
Ω = [0, r2/m]× [0, QM ]

(
resp. Ω = [0, r1]× [0, QM ]

)
.

Then boundary value problem (2), (3) has at least one positive solution (x, y) such that

r1 6 ‖x‖, min
t∈[l1,l2]

x(t) 6 r2, ‖y‖ 6 QM(
resp. r2 6 min

t∈[l1,l2]
x(t), ‖x‖ 6 r1

)
.

Proof. Let us define cone

K =
{
x ∈ C[0, 1]: x(t) > 0 for t ∈ [0, 1], min

t∈[l1,l2]
x(t) > m‖x‖, ϕ̃i[x] > 0, i = 0, 1

}
,

open sets Uρ and Vρ by

Uρ =
{
x ∈ K: ‖x‖ < ρ

}
, Vρ =

{
x ∈ K: min

t∈[l1,l2]
x(t) < ρ

}
,
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closed and convex set W by

W =
{
y ∈ C[0, 1]: 0 6 y(t) 6 QM for t ∈ [0, 1]

}
,

and operator T = (T1, T2) : K ×W → C[0, 1]× C[0, 1] by

T1(x, y)(t) =

1∫
0

G̃(t, s)f
(
s, x(s), y(s)

)
ds,

T2(x, y)(t) = −
1∫

0

G(t, s)g
(
s, x(s), y(s)

)
ds+ Γ (t).

Boundary value problem (2), (3) has a solution if and only if operator T has a fixed
point. By a standard application of Arzelà–Ascoli theorem, it can be proved that T is
a completely continuous operator. First, we show that T1(x, y) satisfies the conditions of
the Krasnosel’skiı̆–Benjamin fixed point theorem, and then we show T : (V r2 \ Ur1) ×
W → K ×W .

Let x ∈ ∂Ur1 , i.e., ‖x‖ = r1. We show that ‖T1(x, y)‖ 6 ‖x‖. It is known that this
implies T1(x, y) 6= λx for λ > 1. Let (x, y) ∈ ∂Ur1 ×W and consider

T1(x, y)(t) =

1∫
0

G̃(t, s)f
(
s, x(s), y(s)

)
ds 6

1∫
0

G̃(t, s)f(s) ds

6 max
t∈[0,1]

1∫
0

G̃(t, s)f(s) ds 6 r1.

It follows that ‖T1(x, y)‖ 6 r1 = ‖x‖.
Now, on the contrary, suppose that there exists x ∈ ∂Vr2 such that T1(x, y) +µ1̂ = x

for µ > 0 and 1̂ : t 7→ 1. Note that since x ∈ ∂Vr2 ⊂ K, we have m‖x‖ 6
min {x(t), t ∈ [l1, l2]} = r2. Hence ‖x‖ 6 r2/m and

r2 6 x(t) 6
r2
m
, t ∈ [l1, l2].

Let (x, y) ∈ ∂Vr2 ×W and consider

x(t) =

1∫
0

G̃(t, s)f
(
s, x(s), y(s)

)
ds+ µ >

l2∫
l1

G̃(t, s)f
(
s, x(s), y(s)

)
ds+ µ

>

l2∫
l1

G̃(t, s)f(s) ds+ µ > r2 + µ.

Taking the minimum for t ∈ [l1, l2], we get r2 > r2 + µ, which is contradiction.
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Now we show T1((V r2 \Ur1)×W ) ⊂ K and T2((V r2 \Ur1)×W ) ⊂W . First, note
that T1(x, y) > 0. Let T1(x, y) achieves maximum value at point t0, i.e., ‖T1(x, y)‖ =
T1(x, y)(t0). By Proposition 2, we have

T1(x, y)(t) =

1∫
0

G̃(t, s)f
(
s, x(s), y(s)

)
ds >

1∫
0

µ(t)H̃(s)f
(
s, x(s), y(s)

)
ds

>

1∫
0

µ(t)G̃(t0, s)f
(
s, x(s), y(s)

)
ds = µ(t)

∥∥T1(x, y)∥∥.
Hence T1(x, y)(t) > m‖T1(x, y)‖ for t ∈ [l1, l2]. Next, consider

ϕ̃i
[
T1(x, y)

]
=

1∫
0

( 1∫
0

G̃(t, s) dΦ̃i(t)

)
f
(
s, x(s), y(s)

)
ds.

By (A1)–(A3), we have
∫ 1

0
G̃(t, s) dΦ̃i(t) > 0. Therefore ϕ̃i[T1(x, y)] > 0 and T1((V r2\

Ur1)×W ) ⊂ K.
By Proposition 3, we have 0 6 T2(x, y)(t) 6 QM for all (t, x, y) ∈ [0, 1] × (V r2 \

Ur1) ×W and 0 < T2(x, y)(t) for all (t, x, y) ∈ (0, 1] × (V r2 \ Ur1) ×W . Thus by
hybrid Krasnosel’skiı̆–Schauder fixed point theorem, boundary value problem (2), (3) has
at least one positive solution (x, y) ∈ (V r2 \ Ur1)×W .

Finally, note that if r2/m < r1, then the proof is analogous, but now considering the
operator T defined in the set (Ur1 \ Vr2)×W .

5 Example

Consider the system of boundary value problems

x′′(t) +
1

2
x2(t) + (1− t)y(t) = 0, t ∈ (0, 1),

y′′(t)− 1

6

(
x(t)y(t) + t

)
= 0, t ∈ (0, 1),

x(0)− 0.5x′(0) = 0, x′(1) = −
1∫

0

x(t) sin (2πt) dt,

2y(0)− y′(0) = 1, y(1) = 2y(0.3)− y(0.6) + 1.

Calculations show that

G̃(t, s) =
10π

3(2π − 1)

∣∣∣∣∣∣
1 1 0

0.5 + t 0 1− (2π)−1

G̃0(t, s) 0 (sin (2πs)− 2πs)/(4π2)

∣∣∣∣∣∣ ,
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G(t, s) =
3

2

∣∣∣∣∣∣
(1− t)/3 1 −1/3
(1 + 2t)/3 0 1− 1/3
G0(t, s) 0 −2G0(0.3, s) +G0(0.6, s)

∣∣∣∣∣∣ ,
P1 = −131

900
, P0 =

41

200
, Q2 =

1

3
, Q1 = −4

3
, Q0 =

2

3
, QM = 1.

Note that assumptions (A1)–(A3) are satisfied. Let r1 = 1.5, r2 = 6, l1 = 0.25, and
l2 = 0.75. In this example,

f(t, x, y) =
1

2
x2 + (1− t)y,

f(t) =
1.52

2
+ (1− t)QM = 1.125 + (1− t),

f(t) =
62

2
+ (1− t) · 0 = 18,

G̃0(t, s) =

{
0.5 + s, 0 6 s 6 t 6 1,

0.5 + t, 0 6 t 6 s 6 1.

To calculate integrals that involve G̃(t, s), we expand G̃(t, s) along the second column
(the obtained constants have been rounded to 3 decimal places unless exact).

max
t∈[0,1]

1∫
0

G̃(t, s)f(s) ds

= max
t∈[0,1]

1∫
0

(
− (0.5+t)(sin (2πs)−2πs)

4π2
+

(
1− 1

2π

)
G̃0(t, s)

)
(1.125 + 1− s) ds

= max
t∈[0,1]

(
0.739 + 1.478t− 0.893t2 + 0.140t3

)
= 1.464 6 1.5 = r1,

min
t∈[0.25,0.75]

0.75∫
0.25

G̃(t, s)f(s) ds

= min
t∈[0.25,0.75]

0.75∫
0.25

18

(
− (0.5+t)(sin (2πs)−2πs)

4π2
+

(
1− 1

2π

)
G̃0(t, s)

)
ds

= min
t∈[0.25,0.75]

(
3.669 + 12.068t− 7.568t2

)
= 6.213 > 6 = r2.

Recall that m = min{0.25, 1− 0.75} = 0.25 and r2/m = 24. Observe that

g(t, x, y) =
1

6
(xy + t) 6

25

6
=M, (t, x, y) ∈ [0, 1]× [0, 24]× [0, 1].
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Let s = 1/5. Then

M

(
s2

2
+ P0

)
−Q0 6 Q2 < Q1 −M(P1 − 2s),

25

6

(
1

50
+

41

200

)
− 2

3
6

1

3
< −4

3
− 25

6

(
− 131

900
− 2

5

)
,

13

48
6

1

3
<

203

216
.

All assumptions of Theorem 2 are satisfied, and hence the system of boundary value
problems (5) has at least one positive solution (x, y) such that

1.5 6 ‖x‖, min
t∈[0.25,0.75]

x(t) 6 6, ‖y‖ 6 1.
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