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Abstract. This paper presents a nonlinear two-dimensional-in-space mathematical model of self-
organization of aqueous bacterial suspensions. The reaction–diffusion–chemotaxis model is coupled
with the incompressible Navier–Stokes equations, which are subject to a gravitational force
proportional to the relative bacteria density and include a cut-off mechanism. The bacterial pattern
formation of luminous Escherichia coli is modelled near the inner lateral surface of a circular micro-
container, as detected by bioluminescence imaging. The simulated plume-like patterns are analysed
to determine the values of the dimensionless model parameters, the Schmidt number, Rayleigh
number and oxygen cut-off threshold, that closely match the patterns observed experimentally in
a luminous E. coli colony. The numerical simulation at the transient conditions was carried out
using the finite difference technique.

Keywords: chemotaxis, reaction–diffusion, bioconvection, pattern formation, mathematical
modelling.

1 Introduction

Bacteria are capable of detecting gradients of chemical signals in their environment and
direct their movement according to such gradients, forming millimeter-scale patterns
and exhibiting strong inhomogeneity in their density, mainly near contact lines and sur-
faces [9,11,12,56]. The interaction of different processes in suspensions of bacteria such
as Escherichia coli results in complex dynamic systems [49, 57, 59].

The directed movement of microorganisms including bacteria in response to chemical
gradients is called chemotaxis [18]. E. coli is capable not only to move up gradients
of attractants and down gradients of repellents, but also to seek optimal conditions of
pH, osmolarity and oxygen concentration as well as to avoid noxious substances and
crowding [1, 2, 47].
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Mathematical and computational modelling are contributing significantly to under-
standing how bacteria read, respond to and shape the sensory information in their envi-
ronment [21,26,40]. Although a number of models based on reaction–advection–diffusion
equations have been developed, the system introduced by Keller and Segel remains among
the most widely used [4,8,13,17,21,40]. The classical Keller–Segel model describes the
dynamics of bacteria, chemoattractant and nutrient by a system of nonlinear equations of
the reaction–diffusion–chemotaxis type [29, 30].

The Keller–Segel approach was also applied to investigate the bacterial self-organiza-
tion as experimentally detected by bioluminescence imaging [6,7,48,49,52]. The nonlin-
ear two-dimensional-in-space model was used to simulate the pattern formation in the liq-
uid cultures of bacteria near the inner lateral surface of a circular micro-container [6, 49].
Different functions modulating the rates of cell growth, the chemoattractant production
and the oxygen (nutrient) consumption were applied in modelling the bacterial population
dynamics [10, 19, 54, 56]. Although the simulated two-dimensional bamboo foam-like
structures were similar to the experimentally observed structures, the vertical as well as
horizontal distributions of cells were noticeably different from those noticed in physical
experiments where azimuthal waves or falling plumes were additionally observed [49–
51].

Hillesdon et al. coupled the Keller–Segel model with the fluid flow equation to model
the pattern formation in suspensions of swimming bacteria of the species Bacillus subtilis
in an incompressible fluid [24]. Aquatic bacteria like Bacillus subtilis swim upwards
through a response to oxygen (aerotaxis), which they consume. The mass of bacteria
generates a gravitational force that leads to Rayleigh–Taylor instability, causing biocon-
vection and forming structures such as falling plumes [3, 13, 15, 24, 56]. Tuval et al.
demonstrated the self-organized formation of a persistent hydrodynamic vortex that traps
cells near the contact line in suspensions of Bacillus subtilis [56]. E. coli also consumes
oxygen but swims to self-excreted chemoattractant (chemotaxis) [12, 58]. Plumes and
bioconvection patterns have also been experimentally observed in suspensions of different
swimming microorganisms, as well as even nonmotile bacteria, and modelled coupling
the Navier–Stokes equation with advection–diffusion equations [16, 25, 41, 45]. The hy-
drodynamic phenomena in suspensions of swimming bacteria and other microorganisms
were mathematically substantiated by Pedley and Kessler [41].

An analysis of the chemotaxis–diffusion–convection system showed that the instabil-
ity condition significantly depends on the bioconvection (taxis) Rayleigh number [15,23].
The bioconvection Rayleigh number is defined as the ratio of buoyancy and viscosity
forces, multiplied by the ratio of momentum and cell diffusivity, although the exact
expression may vary [15, 23, 39, 41]. The viscosity forces, which play a key role in the
dimensionless Rayleigh number, are related to the fluid’s kinematic viscosity, which
determines the strength and range of bacterial interactions with the surrounding fluid
through hydrodynamic forces [25, 34]. The kinematic viscosity is also involved in the
dimensionless Schmidt number, which relates the diffusivity of momentum (kinematic
viscosity) to the diffusivity of mass such as bacteria [25, 34].

Recent studies have shown the importance of a cut-off mechanism for modelling in the
bacterial pattern formation, as the bacterial activity ceases when the oxygen concentration
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falls below a critical cut-off value [13,19,45,56]. The cut-off mechanism was particularly
used to limit the chemoattractant emission [55, 61] and is typically modelled by the
Heaviside step function [35, 43, 54, 55].

The aim of this work was to improve the reaction–diffusion–chemotaxis model, which
involves the dynamics of bacterial density, the concentration of self-excreted chemoat-
tractant and oxygen concentration [6, 49, 52], by coupling the model with the cut-off
mechanism and the incompressible Navier–Stokes equations, subject to a gravitational
force proportional to the relative bacterial density [13, 24, 56]. Additionally, the work
sought to investigate the influence of gravity and cut-off mechanism on the spatiotemporal
pattern formation. In order to investigate the effects of gravity and the cut-off mecha-
nism, bacterial patterns were simulated for different values of three parameters of the
dimensionless governing equations: the Schmidt number, Rayleigh number and oxygen
cut-off threshold. The nonlinear two-dimensional-in-space model was used to simulate
the pattern formation in the liquid cultures of bacteria near the inner lateral surface of
a circular micro-container. The simulated patterns were analysed in order to determine
the values of the model parameters closely matching patterns experimentally observed in
a luminous E. coli colony [49–52]. The numerical simulation at the transient conditions
was carried out using the finite difference technique [6, 13, 46].

2 Mathematical modelling

2.1 Governing equations

The dynamics of bacteria, chemoattractant and oxygen have been modelled mathemati-
cally by the reaction–diffusion–chemotaxis equations [12, 57–59]. The pattern formation
in an aqueous suspension of luminous E. coli near the inner lateral surface of a circular
micro-container was described in the two-dimensional Cartesian system [6, 49, 52]. As-
suming that the bacterial circulation is affected by the downward gravitational forcing
leads to coupling the model with the incompressible Navier–Stokes equations subject
to a gravitational force proportional to the relative bacteria density [13, 24, 32, 56]. The
resulting coupled system of reaction–diffusion–chemotaxis–convection equations can be
written as follows:

∂n

∂t
+ u · ∇n = Dn∆n−∇(k1n∇c) + k2n

(
1− n

k3o

)
, (11)

∂c

∂t
+ u · ∇c = Dc∆c+

k4n

k5 + n
r(o)− k6c, (12)

∂o

∂t
+ u · ∇o = Do∆o− k7n, (13)

ρ

(
∂u

∂t
+ u · ∇u

)
= ν∇2u−∇p− nVbg(ρb − ρ)j, (14)

∇ · u = 0, (x, y) ∈ (0, l)× (0, h), t > 0, (15)
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where ∆ is the Laplacian in the Cartesian coordinates x and y, t stands for time, n(x, y, t)
denotes the cell density, c(x, y, t) is the chemoattractant concentration, o(x, y, t) is the
oxygen concentration, u = (ux(x, y, t), uy(x, y, t)) denotes the velocity field of water, ux
and uy are the horizontal and vertical components of the vector u, p is the pressure, ρ and
ν are the fluid density and (dynamic) viscosity, ρb and Vb are the mass density and volume
of bacteria, g ≈ 9.8 m/s2 is the gravitational acceleration, j is the upwards unit vector,
Dn, Dc and Do are the constant diffusion coefficients, r(o) is the cut-off function for
chemoattractant production, k1 is the chemotactic sensitivity, k2 denotes the population
growth rate, k3 stands for the linear dependence of bacterial carrying capacity on the
oxygen concentration, k4 and k5 stand for the saturating chemoattractant production,
k6 denotes the chemoattractant degradation, k7 is the rate of oxygen consumption by
bacteria, l is the circumference of the cylinder base, and h is the height of the cylinder [6,
24, 49, 54, 56–59]. Subject to incompressibility, defined by (15), the fluid equation (14)
uses the Boussinesq approximation in which the density variations caused by bacteria
appear only in the buoyant forcing.

The term Vbg(ρb−ρ)j in (14) describes the gravitational force exerted by a bacterium
on the fluid along the upward unit vector j. Since bacteria are only about 10% denser than
water and are diluted in the solvent, nVb(ρb − ρ)/ρ� 1 [13, 15, 16, 24, 32, 56].

Physical experiments showed that the peak of bacterial concentration is just below
the upper surface of the solution [19, 50]. To simulate this, a cut-off function r(o) for
chemoattractant production was introduced into the mathematical model. In this case, r(o)
models a threshold of partial inactivity of the bacteria due to the extremely high oxygen
supply. The cut-off function r(o) is typically modelled by the Heaviside step function
Θ(omax−o) [43,55], where omax is the maximal oxygen concentration at which chemoat-
tractant is excreted (omax 6 o0). When oxygen concentration is above the cut-off point
omax, chemoattractant is not produced, and bacteria move towards higher chemoattractant
concentration. Since the oxygen concentration at the top of the surface is equal to o0, this
forces bacteria to move just below the surface. A cut-off function has already been applied
to model the bacterial self-emission of the chemoattractant [55,61]. This mechanism was
also similarly used to model an insensitivity threshold in bacteria [13, 27, 56].

2.2 Initial and boundary conditions

The governing equations (1) are considered subject to the initial and boundary conditions
to form an initial-boundary value problem. Possibly non-uniform distributions of cells,
chemoattractant, oxygen and fluid velocity are assumed in the initial conditions (t = 0)
[6, 49, 52, 56],

n(x, y, 0) = n0(x, y), c(x, y, 0) = c0(x, y), o(x, y, 0) = o0(x, y),

u(x, y, 0) = u0(x, y), (x, y) ∈ [0, l]× [0, h].
(2)

Although the pattern formation, including falling bacterial plumes, is sometimes
mathematically analysed assuming different regular initial conditions [13, 31, 32, 45],
a small random initial perturbation of cells is required to obtain patterns similar to those
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experimentally observed due to the non-zero initial velocity field usually present in the
experimental set up [13, 15, 45].

At the top surface, the liquid medium comes into contact with the atmosphere, which
contains oxygen, and the oxygen dissolves into the liquid until it reaches saturation. There
is no flux of cells as well as of the chemoattractant, and the vertical fluid velocity and the
tangential fluid stress are assumed zero (t > 0),

∂n

∂y

∣∣∣∣
y=h

=
∂c

∂y

∣∣∣∣
y=h

=
∂ux
∂y

∣∣∣∣
y=h

= 0,

uy(x, h, t) = 0, o(x, h, t) = ō0, x ∈ [0, l],

(3)

where ō0 is the saturation concentration of oxygen in the liquid medium.
The zero-flux boundary condition is applied for all the species, and the fluid velocity

is supposed zero on the base of the glass vessel (t > 0),

∂n

∂y

∣∣∣∣
y=0

=
∂c

∂y

∣∣∣∣
y=0

=
∂o

∂y

∣∣∣∣
y=0

= 0, u(x, 0, t) = 0, x ∈ [0, l]. (4)

Due to the continuity of the lateral surface in the x-direction, the periodicity condition
is applied on sides of the domain (t > 0, y ∈ [0, h]),

∂n

∂x

∣∣∣∣
x=0

=
∂n

∂x

∣∣∣∣
x=l

, n(0, y, t) = n(l, y, t), (51)

∂c

∂x

∣∣∣∣
x=0

=
∂c

∂x

∣∣∣∣
x=l

, c(0, y, t) = c(l, y, t), (52)

∂o

∂x

∣∣∣∣
x=0

=
∂o

∂x

∣∣∣∣
x=l

, o(0, y, t) = o(l, y, t), (53)

∂ux
∂x

∣∣∣∣
x=0

=
∂ux
∂x

∣∣∣∣
x=l

, ux(0, y, t) = ux(l, y, t), (54)

∂uy
∂x

∣∣∣∣
x=0

=
∂uy
∂x

∣∣∣∣
x=l

, uy(0, y, t) = uy(l, y, t). (55)

2.3 Dimensionless model

A dimensionless mathematical model must be derived to obtain the main governing pa-
rameters of the mathematical model (1)–(5) [21,36,38]. The dimensionless variables were
derived similarly to those in [6, 13, 24, 32, 56],

n∗ =
n

n0
, c∗ =

k5k6c

k4n0
, o∗ =

k3o

n0
, u∗ =

u√
k6Dc

, t∗ = k6t,

x∗ =

√
k6
Dc

x, y∗ =

√
k6
Dc

y, l∗ =

√
k6
Dc

l, h∗ =

√
k6
Dc

h,
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D∗
n =

Dn

Dc
, D∗

o =
Do

Dc
, χ =

k1k4n0
k5k6Dc

, α =
k2
k6
, β =

n0
k5
,

λ =
k7k3
k6

, ν∗ =
ν

ρDc
, κ =

n0Vbg(ρb − ρ)
√
Dc

νk6
√
k6

.

This scale was chosen for consistency and comparison with previously published
work [6,49]. After dropping the asterisks from the dimensionless variables, the fluid equa-
tion is rewritten in the stream function-vorticity formulation by introducing the vorticity
and stream function. The governing equations (1) then take the following dimensionless
form:

∂n

∂t
+ u · ∇n = Dn∆n− χ∇(n∇c) + αn

(
1− n

o

)
, (61)

∂c

∂t
+ u · ∇c = ∆c+

n

1 + βn
Θ(omax − o)− c, (62)

∂o

∂t
+ u · ∇o = Do∆o− λn, (63)

∂ω

∂t
+ u · ∇ω = ν∆ω − κν ∂n

∂x
, (64)

∆Ψ = −ω, (x, y) ∈ (0, l)× (0, h), t > 0, (65)

where ω is the vorticity vector, and Ψ is the stream function defined as follows [13]:

ω =
∂uy
∂x
− ∂ux

∂y
, ux =

∂Ψ

∂y
, uy = −∂Ψ

∂x
. (7)

The form of the initial (2) and boundary (3)–(5) conditions remains unchanged; how-
ever, all the model parameters and variables are now treated as dimensionless.

After transforming the model to the dimensionless form, ν denotes the Schmidt num-
ber, κ can be considered as the Rayleigh number, and the product κν represents the
gravitational forces affecting the fluid [15, 34, 39, 41, 53].

3 Numerical simulation

Due to the nonlinearity of the governing equations (6), the initial boundary value prob-
lem (6)–(7), (2)–(5) was solved numerically using the finite difference technique [46].
The problem was discretized using a uniform grid of 250 × 112 points in the x and y
dimensions, respectively, and a constant dimensionless time step in the interval [2 · 10−4,
5 · 10−4] depending on the value of parameter ν was used. The alternating-direction
implicit method was used to solve the problem [44, 46]. The diffusion terms were treated
implicitly, while the other terms were treated explicitly. The Poisson equation (65) was
solved using successive over-relaxation method [44]. The simulations were performed
using software written by the authors in the Python programming language using the
NumPy package, and the results were visualised using the Matplotlib package [28].
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(a) (b) (c) (d)

Figure 1. A perspective view of the experimental culture (a) [48], a vertical profile of the bioluminescence
intensity measured along the depth (b) [49] and two spatiotemporal plots of the bioluminescence near the three-
phase contact line (c) and (d) [49, 52].

The mathematical model and the corresponding numerical model were validated
through computational simulations of bioluminescence patterns observed in small, clear
glass circular containers [49–51]. Figure 1 shows typical views of the experimental
culture, along with the corresponding vertical profile of the bioluminescence intensity
measured along the depth, and a spatiotemporal plot of the bioluminescence near the
three-phase contact line.

A profile of the vertical distribution nx of the simulated bacterial density was calcu-
lated by integrating the cell density over the tube’s circumference and then averaging [6,
49],

nx(y, t) =
1

l

l∫
0

n(x, y, t) dx, y ∈ [0, h], t > 0.

A quasi-one-dimensional profile of the bacterial density near the three-phase contact
line was obtained from the simulated cell densities on the inner lateral surface by inte-
grating over the detectable layer and then averaging [49],

ny(x, t) =
1

h0

h∫
h−h0

n(x, y, t) dy, x ∈ [0, l], t > 0,

where h0 ∈ (0, h] is the thickness of the detectable layer. In the simulations, it was as-
sumed that the thickness of the detectable layer is equal to half the height of the container,
h0 = 0.5h.

For an analysis of the overall dynamics of the bacterial population the average density
n̄ was also calculated and then visualised,

n̄(t) =
1

lh

l∫
0

h∫
0

n(x, y, t) dy dx, t > 0.
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(a) (b)

Figure 2. Spatiotemporal plot of the bacterial density ny along the contact line and average bacterial den-
sity n̄ (a), the bacterial density n and average bacterial density nx at different time moments indicated (b),
calculated at ν = 0, κ = 1, omax = 1. The other parameters are as defined in (8).

When viscosity is not taken into consideration (ν = 0) and the excretion of chemoat-
tractant by bacteria is independent of oxygen concentration (r(o) ≡ 1, omax = 1), the
model (6)–(7) approximates a known model used to simulate the dynamics of bacterial
density, self-excreted chemoattractant concentration and oxygen concentration [6, 49].
Assuming ν = 0 and omax = 1, the numerical solution of problem (6)–(7), (2)–(5) was
also validated using known numerical solutions [6, 49].

To investigate the impact of gravity and oxygen cut-off on pattern formation, the
patterns were simulated at different values of the Schmidt number ν, gravitational force
κ and oxygen cut-off parameter omax, while keeping all other parameters constant as
described in [49]:

l = 2π2.8, h = 0.45l, Dn = 0.04, Do = 0.12, omax = 1,

α = 1, β = 0.73, λ = 0.048, χ = 8.3, ō0 = 1,

n0(x, y) = 1 + ξ(x, y), c0(x, y) = 0, o0(x, y) = ō0,

u0(x, y) = 0, (x, y) ∈ [0, l]× [0, h],

(8)

where ξ is a 10% uniform random spatial perturbation with zero average.
Figure 2 shows simulated patterns at ν = 0, κ = 1 (no viscosity), omax = 1 (no

oxygen cut-off), and the other parameters are as defined in (8).
One can see in Fig. 2 four distinct stages of the pattern formation: initial chaos

(t . 10), oxygen saturated solution (t . 40), formation of oxygen gradient (t . 80)
and the final quasi-steady state. The chaotic initial stage occurs due to the chosen random
spatial perturbation of the initial cell density n0. Choosing different initial conditions
might significantly affect that stage, especially its duration, but the qualitative form of the
spatiotemporal patterns depends only slightly on the specificity of the initial conditions [5,
14, 22, 40]. In particular, Deleuze et al. reported that the initial conditions appear to
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have a small influence on the number of plumes, but the location of plumes can only
be predicted when a very simple initial condition is set up [15]. Figure 2 shows that,
eventually, patterns resembling foam emerge from the chaos. Because oxygen is initially
uniformly present throughout in the entire solution, the patterns can be observed across
the full height of the modelling domain. In models lacking the oxygen component, this
state becomes the final quasi-steady state configuration [49], which is far from what is
observed experimentally (Fig. 1(a)). Several stages were also experimentally observed in
a suspension of the bacterium Bacillus subtilis, beginning with upward accumulation and
culminating in the hydrodynamic formation of plumes [23, 24, 56]. It was justified that
when the vertical density gradient becomes sufficiently large, an overturning instability
occurs, analogous to Rayleigh–Bénard convection, eventually developing into complex
patterns [23, 24, 45].

As can be seen in Fig. 2, at t ≈ 40, an oxygen gradient starts to form due to the
oxygen consumption defined in (63) and boundary conditions (3) and (4). When the
oxygen concentration reaches a critically low level at the bottom of the domain, the foam
pattern starts to disappear and “moves” up. Eventually, at (t ≈ 80), the cell distribution
reaches a quasi-steady state and forms a bamboo foam (parallel venation) like pattern [49].
Examining the vertical profile of the cell density (Fig. 2(b)), two peaks are observed:
a large peak near the top of the vessel and a smaller peak at approximately one-fifth of
the height. Between the two peaks, multiple vertical aggregates of bacteria are observed.
The aggregates move horizontally and occasionally merge, but the number of aggregates
remains rather stable (5–6 aggregates). This state can be described as quasi-stable.

The simulated bamboo foam-like pattern of the bacteria (Fig. 2(b) and the vertical
aggregates (Fig. 2(a)) are similar to those observed in physical experiments (Fig. 1(a)) [49,
50]. However, the vertical distribution of the bacteria differs noticeably. The vertical
profiles in Fig. 2(a) show that, in simulations, the peak along the top rim of the modelling
domain is larger than the lower peak, which is located at roughly one-fifth of the height. In
physical experiments (Fig. 1(b)), however, the lower peak is the larger one. Additionally,
in the physical experiments, plumes of bacteria tend to sink downward, a phenomenon that
does not occur in the simulation. To achieve simulated patterns closer to the experimental
ones, the gravity (ν 6= 0 in (64)) and cut-off mechanism (r(o) 6≡ 1, omax < 1) were
introduced into the mathematical (1) and corresponding dimensionless (6) models.

4 Results and discussion

In order to investigate the effects of gravity and the cut-off mechanism, bacterial patterns
were simulated for different values of three parameters of the dimensionless governing
equations (6): the Schmidt number ν, Rayleigh number κ and oxygen cut-off threshold
omax.

4.1 Effect of viscosity

The Schmidt number, defined as the ratio of the viscous diffusion rate (kinematic viscos-
ity) to the mass diffusion rate, varies in orders of magnitude in real-world flows [34, 39,
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(a) (b) (c)

Figure 3. Spatiotemporal plots of the cell density ny along with the cell densities n̄, n and nx at t = 300 and
κ = 2 for three values of the Schmidt number ν: 0.1 (a), 10 (b) and 40 (c). Other parameters are the same as
in Fig. 2.

53]. The Schmidt number is often assumed to be in the hundreds or even thousands [13,
32,37,39,53], but numbers as low as 1 or even lower are also used to study flows [34,53].
Furthermore, increasing the Schmidt number increases the computational cost [34]. Due
to the variety of values, the effect of the Schmidt number on the flow remains poorly
understood [34].

Bacteria living in the fluid as active particles can reduce the apparent viscosity [33].
A decrease in the viscosity of E. coli suspensions to values lower than the viscosity of
the suspending fluid was also experimentally determined [20]. The decrease can continue
until even a negative apparent viscosity is achieved [33]. Estimations of the diffusion
coefficients of bacteria and chemoattractant also vary in an order of magnitude [11,42,58].
These circumstances make it difficult to accurately estimate the Schmidt number.

In order to investigate the effect of the viscosity on gravity-induced population dynam-
ics, the patterns were simulated using different values of the Schmidt number ν, starting
from a very small value, and without changing the Rayleigh number κ. Simulated typical
spatiotemporal plots and cell density distributions are presented in Fig. 3.

As one can see in spatiotemporal patterns, shown in Fig. 3, that at the beginning
of the process, the population behaviour is very similar to that shown in Fig. 2, where
the bacteria live in an idealised fluid with no internal friction (ν = 0). In both cases,
there are the same three initial stages until the quasi-steady state is reached: initial chaos,
oxygen saturation and the formation of an oxygen gradient. Nevertheless, as ν increases,
the quasi-steady state is reached at an earlier non-dimensional time moment (Fig. 3). The
quasi-steady state time is approximately equal to 120 at ν = 40 (Fig. 3(c)) and at ν = 10
(Fig. 3(b)), and it is approximately equal to 180 at ν = 0.1 (Fig. 3(a)).

After the quasi-steady state is reached (t & 70), the spatiotemporal patterns of ny and
snapshots of the cell density u are noticeably different from those shown in Fig. 2. Using
even very small value of the Schmidt number ν = 0.1 leads to reducing the number of
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horizontal aggregates (plumes) from 5–6 in Fig. 2, where ν = 0, to about 3 in Fig. 3(a).
Although the number of simulated horizontal aggregates is reduced almost twice, this
reduction does not seem as drastic because, in physical experiments, the ratio between the
largest and smallest numbers of aggregates was approximately equal to 2 [48, 49, 51, 52].
Figure 3 shows that further increase in ν to 40 affects the patterns only slightly.

In the quasi-stable stage plumes merge and new ones form, however, the number
of plumes remains in the range of 2–4. New plumes usually form between two others.
In some cases, two plumes start forming at the same time, but they merge during the
formation process. The plumes start forming near the bottom and then travel up towards
the top of the modelling area. At higher values of ν, the plumes start to form higher up
(Fig. 3(c)), at around 3/5 from the top of the modelling domain. At lower values of ν, the
plumes start to form closer to 4/5 from the top of the modelling domain (Fig. 3(a)).

Figure 3 also shows that in the quasi-steady state, plumes are not horizontally dis-
tributed uniformly and can be concentrated at different positions. Due to the continuity
of the lateral cylindrical surface and the periodicity of the boundary conditions therefore
used on the sides of the domain, the horizontal position can be neglected. However, the
concentration of plumes fluctuates only slightly, while in the case of ν = 0, aggregates
move horizontally noticeably more freely (Fig. 2). Similar smaller fluctuations are also
sometimes observed in physical experiments (Fig. 1(d)).

Further numerical experiments with greater values of the Schmidt number ν showed
chaotic patterns. The maximum value of the Schmidt number used in the simulations, ν =
40, seems small compared to values used in other works, e.g., Schmidt numbers of 500
and 1000 were considered typical for Bacillus subtilis [13, 56, 60]. In the dimensionless
governing equations (6), the model parameter Dn stands for the dimensionless diffusion
coefficient of cells, while the incompressible Navier–Stokes equation, coupled with the
continuity equations, is usually non-dimensionalized by rescaling the diffusion coefficient
of cells to unity [13, 56, 60]. For further rescaling the diffusion coefficient of cells in (61)
to unity, the Schmidt number ν in (64) should be divided by Dn. So, the value ν = 40,
used in our simulation, corresponds to 40/0.04 = 1000 when the dimensionless diffusion
coefficient of cells is assumed to be 1. Therefore, the value ν = 40 can be considered
suitable for simulating the dynamics of the bacterial population.

4.2 Influence of gravitational forces

In the context of gravity-driven flow at a isothermal conditions, the Rayleigh number
describes the potential for buoyancy-driven flow due to concentration differences in the
fluid [16, 39, 60]. Deleuze et al. showed that the taxis Rayleigh number, together with
the chemotaxis sensitivity, is an important parameter for the occurrence of instabilities
in a chemotaxis-diffusion-convection system [15]. Below a critical value of the Rayleigh
number the system remains stable [15, 39]. At high Rayleigh numbers, buoyancy forces
dominate, leading to convective flow and the formation of gravity-driven plumes, with
bacterial taxis primarily driven by gravitation [13, 15, 16, 39].

In governing equations (6), the Rayleigh number κ stands the gravitational forces
acting on the fluid due to the bacterial density, which is about 10% higher than that
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(a) (b) (c)

Figure 4. Spatiotemporal plots of the cell density ny along with the cell densities n̄, n and nx at t = 300 and
ν = 40 for three values of the Rayleigh number κ: 1 (a), 2 (b) and 5 (c). Other parameters are the same as in
Fig. 2.

of the surrounding solution [13, 24]. Initially, bacteria swim up a gradient of oxygen
concentration, causing the density of the suspension to become greater at the top than at
the bottom. When the vertical density gradient becomes sufficiently large, an overturning
convective instability ensues [24].

Depending on the number and specificity of the governing equations, as well as
on the non-dimensionalization of the mathematical model, the Rayleigh number can be
defined slightly differently [13, 15, 16, 39, 56]. Because of this, the Rayleigh number
varies by orders magnitude; its values can range from thousandths to thousands [39]. To
investigate the influence of gravitational forces, pattern formations were simulated using
various Rayleigh number κ values, starting from unity. Figure 4 shows simulated typical
spatiotemporal plots and cell density distributions.

At small value of the Rayleigh number (κ = 1), even when the Schmidt number
is relatively high (ν = 40) (Fig. 4(a)), the cell density n forms a pattern with 5–6
horizontal aggregates similar to the bamboo foam-like structure observed in simulations
where gravity is not considered (Fig. 2). In this case, the pattern formation is mainly
governed by diffusion and chemotaxis.

At Rayleigh number κ values that are larger than some critical value (Figs. 3, 4(b)
and 5 (κ = 1.5)), vortexes begin to form. A new quasi-stable state is reached, contain-
ing 2–3 plumes reaching approximately three quarters of the height. The plumes move
intensively, but are concentrated in slightly less than one half of the horizontal area.
As κ increases, the quasi-steady state is reached at an earlier time step. The Rayleigh
number is critical for gravitational instability and plume formation, which result from the
gravitational overturning [16, 31].

The critical value of the Rayleigh number κ for plume formation depends on the
value of the Schmidt number ν. While at ν = 0.1 the critical value of κ lies in the interval
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Figure 5. Quasi-steady state bacterial density n and average density nx, simulated with ν = 0.1, ν = 10
and ν = 40, as indicated by the rows, and κ = 1, κ = 1.5 and κ = 5, as indicated by the columns. Other
parameters are the same as in Fig. 2.

(1.4, 1.5), at ν = 10 the critical value is in the interval (1.1, 1.2), and at ν = 40 the
critical value is in the interval (1.0, 1.1).

At a high value of the Rayleigh number (κ = 5, Figs. 4(c) and 5), mushroom-
shaped plumes are observed. When the Schmidt number ν is low, the plume retains its
quasi-stable nature: new aggregates form near the plume before merging into the plume
(Fig. 5 (ν = 0.1 and ν = 10)). Additionally, at higher ν values, several mushroom-
shaped plumes can form (Fig. 5 (ν = 40)). As one can see from the spatiotemporal plot
depicted in Fig. 4(c), these two plumes practically stagnate, but nevertheless are slowly
approaching collision. The plumes converge much more slowly than those observed in
cases of smaller values of the Rayleigh number. The arrangement and shape of the plumes
generally depend on the Rayleigh number [39, 60].

Similarly to other works [13, 23, 24, 45], the above critical value of the Rayleigh
number κ, Figs. 4 and 5 (κ > 1) show upward fluid flow between the falling plumes
in which cells are transported to the surface, where the highest oxygen concentration is
maintained. The upward chemotaxis effect activates this flow. This mechanism causes
bacteria to accumulate at the surface, where gravity pulls them down and maintains the
fluid convection [45]. Increasing the Rayleigh number (κ = 5) leads to decreasing the
chemotaxis effect and changing the shape of the plumes. Then, as also observed by Qiao
and Evje [45], plumes fill a larger area in the lower part of the domain.

Similar mushroom-shaped plumes were also observed experimentally by Dunstan et
al. in suspensions of nonmotile bacterium Photobacterium phosphoreum [16]. Plumes
of similar shape were also simulated at high values of Rayleigh number, simulating
evaporation-driven convective flows [16, 31]. The plumes were considered an outcome
of the gravitational overturning [16].

The simulated patterns containing plumes (Figs. 3–5) are more similar to those ob-
served experimentally (Fig. 1) than the simulated bamboo foam-like structures where
gravity is not considered (Fig. 2). However, the simulated 2–3 plumes are notably fewer
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than the 5–6 plumes observed experimentally and in simulations where gravity is ignored.
Two mushroom-shaped plumes in Figs. 4(c) and 5 are initially distributed approximately
uniformly in horizontal direction. As the horizontal interval corresponds to the circum-
ference of the test tube used in physical experiments (Figs. 1(c) and 1(d)), the distance
between simulated 2–3, usually 2, plumes is approximately 6.3–9.4 mm, which is 2.5–3
times larger than the value observed experimentally. However, this distance is compara-
ble to the distance (9–10 mm) between adjacent plumes observed in the suspension of
P. phosphoreum living in a rectangular chamber [16].

The smaller number of simulated plumes (larger distance between adjacent plumes)
simulated by using model (6), (7), (2)–(5) can probably explained by the two-dimension-
ality of the modelling domain: lateral surface of a circular tube. As the bioconvection is
intrinsically three-dimensional [32], it seems that two-dimensional domain better reflects
the pattern formation in the central transverse section of the circular tube than at the
lateral surface. Moreover, the lateral surface attracts bacteria, but this phenomenon is
not reflected in the mathematical model. The simulated 2–3 plumes match the number
observed in the central transverse section of the circular tube in the physical experiment
(Fig. 1(a)) [48–50]. On the other hand, two mushroom-shaped plumes have four edges
(fringes, lobes) and can perhaps be considered as a form of evolution of four plumes with
increasing Rayleigh number.

4.3 Influence of oxygen cut-off

It is rather well known that the bacterial activity ceases when the oxygen concentration
falls below a critical cut-off value [13, 19, 56]. However, it is not entirely clear how this
mechanism affects the self-organization of E. coli population. Tsimring et al. simulated
top-view patterns similar to those observed in E. coli experiments by varying the details
of the initiation of the chemoattractant emission [55]. Elmas et al. showed that applying
a cut-off function based on oxygen concentration to the production of the chemoattractant
reduces the density of motile soil oxytactic bacteria Azospirillum brasilense near the top
of the modelling domain, while the peak around one-fifth of the height remains [19].

To simulate the upper peak of the vertical distribution of cells just below upper surface,
as observed in physical experiments (Fig. 1(b)) [48–50], and to investigate how gravity-
induced fluid dynamics interact with this modulation, the oxygen cut-off parameter omax

was set to 0.97 while varying the values of parameters ν and κ. The value omax = 0.97
was determined experimentally to remove the upper peak at the top of the modelling
domain while preserving the bamboo foam-like structure of the bacterial patterns. Fig. 6
illustrates the simulation results.

As shown in Fig. 6(a), at zero Schmidt number (ν = 0), the four stages observed
in the absence of oxygen cut-off (Fig. 2) are still present. However, an additional stage,
namely vertical aggregate formation, appears before the quasi-stable state. The bacterial
patterns during the stages, however, are different. Due to the hard cut-off function r(o),
during the initial chaotic stage (t . 10) a noticeable pattern of reappearing horizontal
aggregation of bacteria emerges. The oxygen-saturated solution stage (t . 30) and the
subsequent oxygen gradient formation stage (t . 70) are shorter. Before a quasi-stable
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(a) (b) (c)

Figure 6. Spatiotemporal plots of the cell density ny along with the cell densities n̄, n and nx at t = 320,
κ = 1.5 and omax = 0.97 for three values of ν: 0 (a), 0.1 (b) and 40 (c). Other parameters are the same as in
Fig. 2.

state is reached, a vertical aggregate formation stage occurs (t . 90). During this stage,
we observe a single horizontal aggregate at approximately one-fifth of the container’s
height. This corresponds to the smaller peak in the vertical profile of the baseline model’s
quasi-steady state. Eventually, 4 to 6 vertical aggregates form between the top of the
container and the horizontal aggregate. These aggregates move horizontally and occa-
sionally merge, however, their number remains stable, similar to when no oxygen cut-off
is applied. Notably, the top peak in the vertical profile view disappears.

When ν > 0 (Figs. 6(b) and 6(c)), vertical aggregates take the form of plumes. Plume
formation starts at approximately the same time as aggregate formation at ν = 0, but
takes significantly longer time to develop. When ν = 0.1 and κ = 1.5, plume formation
ends at t ≈ 210 (Fig. 6(b)). When ν = 48 and κ = 1.5, plume formation ends at t ≈ 90
(Fig. 6(c)). At lower ν values (Fig. 6(b)), instead of a quasi-stable state, a stable state
is reached. Two plumes form at the top of the modelling domain. The plumes merge at
around one-third of the height from the top of the modelling domain.

At lower values of ν (ν = 0.1, Fig. 6(b)), the two plumes merge and continue as
one mushroom-shaped plume that reaches 4/5 of the way from the top of the modelling
domain. At higher values of ν (ν = 40, Fig. 6(c)), a horizontal aggregate forms at the
merging height, connecting the two plumes. Two new plumes then extend downward to
4/5 of the way from the top of the modelling domain. At this height, another horizontal
aggregate forms between the plumes. In this case, the lower plumes appear as a continu-
ation of the plumes in the top half of the modelling domain.

When the oxygen cut-off value omax < 1, one can observe that no bacteria are present
between the plumes at the contact line (y = h). This happens because the bacteria
at high concentration of oxygen at the top of the modelling domain does not produce
chemoattractant and moves downward due to chemotaxis. However, in other regions
of the domain, vortexes formed by gravity push the bacteria towards the top. This
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explains the difference in the vertical profiles in the case of ν = 0 (Fig. 6(a)) and ν > 0
(Figs. 6(b) and 6(c)).

5 Conclusions

We have demonstrated that the reaction–diffusion–chemotaxis model, coupled with the
incompressible Navier–Stokes equations and a cut-off mechanism, can simulate mush-
room-shaped plume-like patterns resembling bioluminescence patterns (Figs. 3–6) that
represent the self-organization of luminous E. coli bacteria.

Viscosity and gravitational forces, represented in the mathematical model (6)–(7),
(2)–(5) by the Schmidt number ν and Rayleigh number κ, respectively, play a crucial role
in plume formation.

Plumes form in simulated bacterial patterns only when the Rayleigh number κ exceeds
a critical value, which depends on the Schmidt number. The critical value of Rayleigh
number decreases as the Schmidt number increases. The simulated plumes are predom-
inantly concentrated horizontally in the lower half of the two-dimensional modelling
domain. However, in physical experiments, more plumes were distributed on the upper
side of the container.

When the Rayleigh number κ exceeds the critical value, the Schmidt number ν signif-
icantly affects the time required to reach the quasi-stable state. As the Schmidt number in-
creases, plumes form earlier. Once the simulation reaches a quasi-stable state, the Schmidt
number has only a small effect on the plume form, even for large differences in parame-
ter ν values (Figs. 3 and 5). Numerical simulation can be used to determine the parameters
that provide a balance between chemotaxis and gravity to achieve plume patterns.

The application of the cut-off mechanism contributes to shifting the peak of bacterial
concentration from the top surface to just below that surface (Fig. 6), as observed in
physical experiments [48–50]. In the case of the Schmidt number of ν = 0, when the
oxygen cut-off parameter omax is lower than a critical value, the upper peak in the vertical
profile view disappears, and only the lower peak remains. This observation agrees well
with the physical experiments. However, if ν > 0, the peak shifts to the top of the
simulated area. This occurs due to gravity induced vortices in the simulated fluid.

Although the two-dimensional mathematical model (6)–(7), (2)–(5), which couples
bacterial chemotaxis with gravitational forces, is useful for simulating patterns similar
to the experimentally observed and for studying the effects of gravity on pattern forma-
tion, a more precise and sophisticated three-dimensional computational model should be
developed to study the bacterial pattern formation in detail in a luminous E. coli colony.
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364 B. Dapkūnas et al.

32. H.G. Lee, J. Kim, Numerical investigation of falling bacterial plumes caused by bioconvection
in a three-dimensional chamber, Eur. J. Mech., B, Fluids, 52:120–130, 2015, https://doi.
org/10.1016/j.euromechflu.2015.03.002.

33. A. Loisy, J. Eggers, T.B. Liverpool, Active suspensions have nonmonotonic flow curves and
multiple mechanical equilibria, Phys. Rev. Lett., 121:018001, Jul 2018, https://doi.
org/10.1103/PhysRevLett.121.018001.

34. C.R. Marshall, R.M. Dorrell, S. Dutta, G.M. Keevil, J. Peakall, S.M. Tobias, The effect of
Schmidt number on gravity current flows: The formation of large-scale three-dimensional
structures, Phys. Fluids, 33(10):106601, 2021, https://doi.org/10.1063/5.
0064386.

35. B.C. Mazzag, I.B. Zhulin, A. Mogilner, Model of bacterial band formation in aerotaxis,
Biophys. J., 85(6):3558–3574, 2003, https://doi.org/10.1016/s0006-3495(03)
74775-4.

36. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd ed.,
Springer, New York, 2003, https://doi.org/10.1007/b98869.

37. N. Murugan, A. Roy, Instability of a thin film of chemotactic active suspension, J. Fluid Mech.,
995:A11, 2023, https://doi.org/10.1017/jfm.2022.1063.

38. M.R. Myerscough, P.K. Maini, K.J. Painter, Pattern formation in a generalized chemotactic
model, Bull. Math. Biol., 60(1):1–26, 1998, https://doi.org/10.1006/bulm.
1997.0010.

39. Y. Nagata, A. Minakawa, T. Kawamura, Classification of two-dimensional convection patterns
in density instability model of bioconvection, Theor. Appl. Mech. Jpn., 64:73–77, 2018,
https://doi.org/10.11345/nctam.64.73.

40. K.J. Painter, Mathematical models for chemotaxis and their applications in self-organisation
phenomena, J. Theor. Biol., 481:162–182, 2019, https://doi.org/10.1016/j.
jtbi.2018.06.019.

41. T.J. Pedley, J.O. Kessler, Hydrodynamic phenomena in suspensions of swimming microor-
ganisms, Annu. Rev. Fluid Mech., 24:313–358, 1992, https://doi.org/10.1146/
annurev.fl.24.010192.001525.

42. N. Perry, Experimental validation of a critical domain size in reaction-diffusion systems with
Escherichia coli populations, J. R. Soc. Interface, 2(4):379–387, 2005, https://doi.
org/10.1098/rsif.2005.0054.

43. A.A. Polezhaev, R.A. Pashkov, A.I. Lobanov, I.B. Petrov, Spatial patterns formed by
chemotactic bacteria Escherichia coli, Int. J. Dev. Biol., 50:309–314, 2006, https:
//doi.org/10.1387/ijdb.052048ap.

44. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of
Scientific Computing, 3rd ed., Cambridge Univ. Press, Cambridge, 2007.

45. Y. Qiao, S. Evje, A general cell–fluid Navier–Stokes model with inclusion of chemotaxis,
Math. Models Methods Appl. Sci., 30(06):1167–1215, 2020, https://doi.org/10.
1142/S0218202520400096.

46. A.A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, Basel, 2001,
https://doi.org/10.1201/9780203908518.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1016/j.euromechflu.2015.03.002
https://doi.org/10.1016/j.euromechflu.2015.03.002
https://doi.org/10.1103/PhysRevLett.121.018001
https://doi.org/10.1103/PhysRevLett.121.018001
https://doi.org/10.1063/5.0064386
https://doi.org/10.1063/5.0064386
https://doi.org/10.1016/s0006-3495(03)74775-4
https://doi.org/10.1016/s0006-3495(03)74775-4
https://doi.org/10.1007/b98869
https://doi.org/10.1017/jfm.2022.1063
https://doi.org/10.1006/bulm.1997.0010
https://doi.org/10.1006/bulm.1997.0010
https://doi.org/10.11345/nctam.64.73
https://doi.org/10.1016/j.jtbi.2018.06.019
https://doi.org/10.1016/j.jtbi.2018.06.019
https://doi.org/10.1146/annurev.fl.24.010192.001525
https://doi.org/10.1146/annurev.fl.24.010192.001525
https://doi.org/10.1098/rsif.2005.0054
https://doi.org/10.1098/rsif.2005.0054
https://doi.org/10.1387/ijdb.052048ap
https://doi.org/10.1387/ijdb.052048ap
https://doi.org/10.1142/S0218202520400096
https://doi.org/10.1142/S0218202520400096
https://doi.org/10.1201/9780203908518
https://www.journals.vu.lt/nonlinear-analysis


Effect of gravity on the Escherichia coli pattern formation 365

47. J. Shioi, C.V. Dang, B.L. Taylor, Oxygen as attractant and repellent in bacterial chemotax-
is, J. Bacteriol., 169(7):3118–3123, 1987, https://doi.org/10.1128/jb.169.7.
3118-3123.1987.

48. R. Šimkus, R. Baronas, Metabolic self-organization of bioluminescent Escherichia coli,
Luminescence, 26(6):716–721, 2011, https://doi.org/10.1002/bio.1303.

49. R. Šimkus, R. Baronas, Ž. Ledas, A multi-cellular network of metabolically active E. coli as
a weak gel of living janus particles, Soft Matter, 9(17):4489–4500, 2013, https://doi.
org/10.1039/c3sm27786k.
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