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Abstract. In recent decades, the widespread reliance on fossil fuels has grown substantially, leading
to a rise in atmospheric carbon dioxide (CO2), which poses a major global concern. In this study, we
develop and analyze a novel mathematical model to examine the interactions between atmospheric
CO2, human population, and energy demand. The model assumes that human activities and energy
production from traditional sources (oil, coal, and gas) contribute to increasing CO2 level, while
a shift in energy dependence from traditional to renewable sources (hydro, solar, etc.) occurs as
a result of environmental awareness. We derive sufficient conditions for both local and global
stability of the system’s interior equilibrium. Numerical simulations demonstrate that when reliance
on renewable energy sources is low, the system can exhibit oscillatory dynamics and various
bifurcations. However, beyond a critical threshold of renewable energy dependency, the system
stabilizes around the interior equilibrium, leading to a reduction in atmospheric CO2. Additionally,
an optimal control problem is formulated to reduce atmospheric CO2 level while minimizing the
associated implementation costs.

Keywords: carbon dioxide, energy, Lyapunov’s stability, optimal control.

1 Introduction

Energy serves as the driving force behind human life and stands as a cornerstone of con-
tinuous progress. As civilization advances, the global demand for energy surges, driven
by factors such as population growth, urbanization, and modernization [25]. Currently,
fossil fuels satisfy approximately 80% of the world’s energy requirements [17,32]. These
hydrocarbons, formed by buried organisms, release CO2 when burned, imposing detri-
mental effects on the planet. Human-induced CO2 emissions directly imperil the en-
vironment, contributing to approximately 160,000 annual deaths resulting from floods,
droughts, and diseases like malaria, malnutrition, and diarrhea [30]. The IPCC warns that
if current CO2 accumulation trends persist, the global average surface temperature could
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increase by 2 ◦C by 2100, directly impacting human population, species, and intensifying
wildfires [15].

Recognizing the environmental impacts of fossil fuel burning, governments and pol-
icymakers worldwide champion renewable energy sources as viable alternatives [26].
Renewable energy, harnessed from natural sources such as sunlight and gravity and trans-
formed into usable energy through various technologies, offers a sustainable solution with
minimal environmental impact compared to traditional sources [2, 6, 23]. Research in the
United States by Bull [3] demonstrates that adopting renewable energy for electricity
generation annually averts approximately 70 million metric tons of CO2 emissions. Stud-
ies also suggest that combining different renewable energy resources would significantly
contribute to ensuring pollution free energy [1]. According to a report from IRENA [31],
meeting the Paris Climate goal of keeping global warming well below 2 ◦C requires
completely eliminating CO2 emissions from energy production by 2050. The report em-
phasizes the importance of renewable energy growth, stating that in 2015, 19% of the
world’s final energy demand was met by renewable sources, with an annual increase of
0.17% since 2010.

In past few years, numerous studies have been conducted to examine the effects of
various factors such as human population, environmental taxes, among other measures, on
atmospheric CO2 level [8, 20–22, 24, 27, 29]. Misra and Verma have investigated the role
of environmental education in reducing anthropogenic CO2 emissions [22], concluding
that if the educated population achieves only minimal reductions in their carbon footprint,
increasing the implementation rate of educational programs has a limited impact on con-
trolling atmospheric CO2 level. Fan et al. [8] studied the impact of environmental taxes
on greenhouse gas level and suggested that implementing such taxes, alongside strict
government measures to combat corruption, could effectively improve environmental
quality. Verma et al. [29] have studied a model to suggest a strategy for optimal reduction
of energy-related emissions of CO2. They have concluded that increasing highly efficient
technologies and low carbon energy sources might cut down CO2 emission and also
reduce mitigation cost. Tiwari et al. [27] have developed a nonautonomous mathematical
model designed to reduce atmospheric CO2 using algae biomass. The model suggests
that continuously introducing algae into the ocean can help lower atmospheric CO2 level.
Further, Nadeem et al. [24] have formulated and analyzed a fractional mathematical
model using Caputo fractional derivative for climate change and developed a numerical
scheme to obtain an optimal solution. By formulating a mathematical model, Misra and
Jha [21] calculated the amount of cleared land needed for planting leafy trees to restore
atmospheric CO2 level to their preclearance state.

The widespread adoption of renewable energy holds the potential to reduce CO2

emissions stemming from energy production. Policymakers in various nations such as
China, the USA, India, Germany are actively discussing strategies to curb CO2 emissions
by shifting to clean energy. In this study, we develop an ODE mathematical model to
analyze the impact of deploying clean energy on future atmospheric CO2 concentration.
Our model considers that the human population currently utilizes both traditional and
renewable energy sources to meet their energy needs. But as the atmospheric CO2 level
rises, it affects the human population negatively, which motivate them to shift towards
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renewable energy sources to meet their energy demands. This study uniquely develops
a nonlinear mathematical model to evaluate the impact of transitioning from traditional
to renewable energy sources on future atmospheric CO2 level. Unlike earlier models,
we incorporate the feedback mechanism where rising CO2 level negatively affect the
population, which, in turn, motivates the human population to shift towards renewable
energy. This dynamic interaction has not been comprehensively analyzed in prior re-
searches. Furthermore, our study highlights the challenges of adopting renewable energy
and provides insights into its potential effectiveness, offering a novel perspective for
policymakers.

2 Mathematical model

For the model formulation, we take into account four dynamical variables, namely at-
mospheric concentration of CO2 (C(t)), human population (N(t)), demand of traditional
energy (Ets(t)), and renewable energy (Eos(t)).

In the preindustrial era, the atmospheric CO2 level remained relatively stable at a con-
stant value, C0. However, human activities, including fossil fuel combustion and land-use
changes, have caused an increase in CO2 concentrations [11]. Anthropogenic CO2 emis-
sions, apart from those releasing from fossil fuel burning, are directly related to the human
population N represented by the term λ1N . Additionally, CO2 emissions resulting from
fossil fuel combustion are linked to the demand for traditional energy sources denoted
by the term λ2Ets. The human population experiences logistic growth characterized as
sN(1 − N/L). The rising atmospheric CO2 concentration adversely affects the human
population. These negative effects, stemming from the increase in CO2 level from the
preindustrial era, result in heightened frequency and intensity of natural disasters, reduced
rainfall in subtropical regions, scarcity of drinking water sources, higher occurrences of
vector-borne diseases, malnutrition, and fatalities due to heat waves [10]. The adverse
effects cause the human population to decrease at a rate θ(C −C0)N . Energy is essential
for human survival, highlighting the critical need for a secure and accessible energy
supply in modern societies’ sustainability. However, our heavy reliance on fossil fuels
faces significant challenges like dwindling reserves and growing environmental concerns.
In response to this complex scenario, renewable energy emerges as a promising and defini-
tive solution to these challenges. Regarding the growth of energy demand, it is mentioned
in a study [12] that the sources of energy follow logistic growth. The increasing population
drives higher energy requirements, which can be fulfilled either by the renewable sources
or the traditional energy sources. Therefore, we propose a strategic approach: a fraction
of the energy demand (γ) is met by renewable sources with the remaining portion (1− γ)
fulfilled by conventional energy sources. As the energy demand of human population has
a upper ceiling, for the model formulation, we incorporate the Holling type-II functional
response for the growth of energy demand, providing depth to our understanding of the
delicate balance between human needs and available energy resources. Therefore, the
system of differential equations governing the interaction between the atmospheric CO2

level, human population, demand of traditional and renewable energy sources according
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to above considerations is given as follows:

dC

dt
= −α(C − C0) + λ1N + λ2Ets,

dN

dt
= sN

(
1− N

L

)
− θ(C − C0)N + βN

(
(1− γ)Ets + γEos

)
,

dEts

dt
=
k1(1− γ)NEts

m+N
− γtsE2

ts,
dEos

dt
=
k2γNEos

m+N
− γosE2

os

(1)

with C(0) > C0, N(0) > 0, Ets(0) > 0, and Eos(0) > 0. Here β, γ, γts, and γos
are the growth rate coefficient of human population due to energy, fraction of energy
produced through renewable energy sources, depletion rate coefficients of demand for
traditional and renewable energies due to their limited amount, respectively. Traditional
energy sources are finite, so energy production from these sources peaks and then de-
clines. Further, the production of renewable energy tends to grow for a long term, then
decline. Therefore, we have represented this depletion as density-dependent to show that
energy demand diminishes over time because of the limited availability of resources.
Moreover, m, k1, and k2 are half-saturation constant of the demand for energy, growth
rate coefficients of demand for energy from traditional and renewable energy sources,
respectively.

Region of attraction for the formulated model system (1) is contained in Ω, [9, 18]

Ω =

{
(C,N,Ets, Eos) ∈ R4

+: C0 6 C 6
λ1Nm + λ2Etsm

α
,

0 6 N 6 Nm, 0 6 Ets 6 Etsm , 0 6 Eos 6
k2γ

γos

}
,

where

Nm =
L

s

[
s+ β

{
k1(1− γ)2

γts
+
k2γ

2

γos

}]
and Etsm =

k1(1− γ)
γts

.

3 Model analysis

The proposed model is nonlinear, making it challenging to derive an analytical solution.
Consequently, a qualitative analysis is conducted. Initially, the feasible equilibrium points
of the model system (1) are determined, followed by an examination of their stability
properties.

3.1 Equilibrium analysis

Equilibrium points representing the steady-state solutions of system (1) are determined
by equating the right-hand side of Eq. (1) to zero. For the proposed model system (1), the
following feasible equilibrium points have been identified:

(i) E0(C0, 0, 0, 0). In this equilibrium the dynamic variable N is zero, and hence
Ets and Eos are zero.
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(ii) E1(C0 + λ1sL/(αs + λ1θL), αsL/(αs + λ1θL), 0, 0). In this equilibrium the
demand for energy by the human population is zero.

(iii) E2(C2, N2, Ets2 , 0). In this equilibrium, Eos is zero.
(iv) E3(C3, N3, 0, Eos3). In this equilibrium, Ets is zero.
(v) E∗(C∗, N∗, E∗

ts, E
∗
os). In this equilibrium all the considered dynamical variables

coexist.

Equilibria E0 and E1 can be easily obtained. Equilibrium E2 can be given as the positive
solution of the following algebraic equations:

−α(C − C0) + λ1N + λ2Ets = 0, (2)

s

(
1− N

L

)
− θ(C − C0) + β(1− γ)Ets = 0, (3)

k1(1− γ)N
m+N

− γtsEts = 0. (4)

From Eqs. (4) and (2) we get

Ets =
k1(1− γ)N
γts(m+N)

and C = C0 +
1

α

(
λ1N +

λ2k1(1− γ)N
γts(m+N)

)
.

Putting these values of C and Ets in Eq. (3), we get a quadratic equation in N as

γts(sα+ λ1θL)N
2 +

[
sγtsαm− sγtsαL− β(1− γ)2k1Lα

+ θLλ1γtsm+ θLλ2k1(1− γ)
]
N − sγtsαLm = 0,

which has a unique positive root. Obtaining a positive root forN (denoted asN2), we can
determine the corresponding positive values of C and Ets (say C2 and Ets2 ), and thus
equilibrium E2(C2, N2, Ets2 , 0) is obtained.

Equilibrium E3 can be given as the positive solution of the following algebraic equa-
tions:

−α(C − C0) + λ1N = 0, (5)

s

(
1− N

L

)
− θ(C − C0) + βγEos = 0, (6)

k2γN

m+N
− γosEos = 0. (7)

From Eq. (7) Eos = k2γN/(γos(m+N)), and Eq. (5) gives C = C0 + λ1N/α. Putting
these values of C and Eos in Eq. (6), we get a quadratic equation in N as

γos(sα+ λ1θL)N
2 +

[
γosm(sα+ λ1θL)− sαγosL− βγ2k2Lα

]
N

− sαγosLm = 0,

which has a unique positive root. Obtaining a positive root forN (denoted asN3), we can
determine the corresponding positive values of C and Ets (say C3 and Eos3 ), and thus
equilibrium E3(C3, N3, 0, Eos3) is obtained.
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Equilibrium E∗ is given as the positive solution of the following algebraic equations:

−α(C − C0) + λ1N + λ2Ets = 0, (8)

s

(
1− N

L

)
− θ(C − C0) + β

[
(1− γ)Ets + γEos

]
= 0, (9)

k1(1− γ)N
m+N

− γtsEts = 0,
k2γN

m+N
− γosEos = 0. (10)

From Eqs. (10) Ets = k1(1− γ)N/(γts(m+N)) and Eos = k2γN/(γos(m+N)).
Further, Eq. (8) gives C = C0 + (λ1N + λ2k1(1− γ)N/(γts(m+N)))/α. Putting
these values of C, Ets, and Eos in Eq. (9), we get a quadratic equation in N as

p̃1N
2 + p̃2N − p̃3 = 0, (11)

here
p̃1 = γtsγos(sα+ λ1θL),

p̃2 =
[
(sα+ λ1θL)γtsγosm− sγtsαγosL+ βLαk1γos(1− γ)2

− βLαγ2k2γts + θLγosλ2k1(1− γ)
]
,

p̃3 = sγtsαγosLm.

Equation (11) has a unique positive root. Obtaining a positive root for N , we get the
positive values ofC,Ets, andEos, and thus the interior equilibriumE∗(C∗, N∗, E∗

ts, E
∗
os)

is obtained.

3.2 Stability analysis

Stability analysis of an equilibrium is performed to determine whether the solution tra-
jectories of formulated system settle to the equilibrium or repel from its neighborhood.
The local stability of equilibrium depicts the behavior of equilibrium around its small
neighborhood, and in global stability, the whole region of attraction is considered.

We perform a local stability analysis of the feasible equilibrium points by examin-
ing the eigenvalues of the Jacobian matrix for boundary equilibria [19] and applying
Lyapunov stability theory for the interior equilibrium [13]. The Jacobian matrix for the
formulated system (1) is given as follows:

P =


−α λ1 λ2 0
−θN a22 β(1− γ)N βγN

0 k1(1−γ)mEts

(m+N)2
k1(1−γ)N
m+N − 2γtsEts 0

0 k2γmEos

(m+N)2 0 k2γN
m+N − 2γosEos

 ,

where a22 = s(1− 2N/L)− θ(C −C0) + β((1− γ)Ets + γEos). The Jacobian matrix
at E0 has one eigenvalue s, which is always positive, hence the equilibrium E0 is always
unstable. The Jacobian matrix at E1 has two eigenvalues k1(1− γ)N1/(m+N1) and
k2γN1/(m+N1), where N1 = αsL/(αs+ λ1θL), and these eigenvalues are always
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positive, hence the equilibrium E1 is always unstable. The Jacobian matrix at E2 and
E3 have eigenvalues k2γN2/(m+N2) and k1(1− γ)N3/(m+N3), respectively, which
are always positive, hence the equilibria E2 and E3 are always unstable. The following
Theorem 1 presents the sufficient conditions under which the interior equilibrium E∗ is
locally stable.

Theorem 1. Under the following conditions, equilibrium E∗ is locally stable:

max

{
3λ22
4αγts

,
3λ1Lβ

2(1−γ)2

θs

}
<
λ1sγ

2
ts(m+N∗)4

m2k21(1−γ)2θL
and βγ2 <

sγos(m+N∗)2

mk2L
.

Proof. We begin by linearizing system (1) around the interior equilibrium E∗ using the
following transformations:

C = C∗ + ũ1, Ets = E∗
ts + ũ3,

N = N∗ + ũ2, Eos = E∗
os + ũ4,

where ũ1, ũ2, ũ3, and ũ4 represent small perturbations. Next, we consider a Lyapunov
function as follows:

V =
1

2

(
ũ21 +

n1
N∗ ũ

2
2 +

n2
E∗

ts

ũ23 +
n3
E∗

os

ũ24

)
.

Differentiating V concerning time t in relation to the solutions of the linearized system
of (1) gives

dV

dt
= −αũ21 −

n1s

L
ũ22 − n2γtsũ23 − n3γosũ24

+ (λ1 − n1θ)ũ1ũ2 + λ2ũ1ũ3 + n1β(1− γ)ũ2ũ3 + n1βγũ2ũ4

+
n2k1(1− γ)m
(m+N∗)2

ũ2ũ3 +
n3k2γm

(m+N∗)2
ũ2ũ4.

Choosing n1 = λ1/θ, dV/dt becomes negative definite provided:

λ22 <
4

3
αn2γts,

{
n1β(1− γ)

}2
<

1

3

n1s

L
n2γts, {n1βγ}2 < 2

n1s

L
n3γos,{

n2k1(1− γ)m
(m+N∗)2

}2

<
1

3

n1s

L
n2γts,

{
n3k2γm

(m+N∗)2

}2

<
1

2

n1s

L
n3γos.

Using the chosen value of constant n1, the above inequalities reduce to the inequalities
mentioned in Theorem 1, where the constants n2 and n3 can be chosen from the first and
second inequality of the mentioned inequalities, respectively. The inequalities mentioned
in Theorem 1 are sufficient conditions for the local stability of E∗.

Furthermore, we discuss about the nonlinear stability of E∗ in the attracting region
contained in the set Ω. For this, we apply the Lyapunov second method [5, 7].
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Theorem 2. Under the following conditions, equilibrium E∗ is globally stable inside Ω:

max

{
3λ22
4αγts

,
3λ1Lβ

2(1−γ)2

θs

}
<
λ1sγ

2
ts(m+N∗)2

k21(1−γ)2θL
and βγ2 <

sγos(m+N∗)

k2L
.

Proof. Consider a positive definite function W as

W =
1

2
(C − C∗)2 +m1

(
N −N∗ −N∗ ln

N

N∗

)
+m2

(
Ets − E∗

ts − E∗
ts ln

Ets

E∗
ts

)
+m3

(
Eos − E∗

os − E∗
os ln

Eos

E∗
os

)
.

Differentiating W concerning time t along the solution trajectories of model system (1),
we have

dW

dt
= −α(C − C∗)2− m1s

L
(N −N∗)2

−m2γts(Ets − E∗
ts)

2−m3γos(Eos − E∗
os)

2

+ (λ1 −m1θ)(C − C∗)(N −N∗) + λ2(C − C∗)(Ets − E∗
ts)

+m1βγ(N −N∗)(Eos − E∗
os) +m1β(1− γ)(N −N∗)(Ets − E∗

ts)

+
m2k1m(1− γ)

(m+N)(m+N∗)
(N −N∗)(Ets − E∗

ts)

+
m3k2γm

(m+N)(m+N∗)
(N −N∗)(Eos − E∗

os).

Choosing m1 = λ1/θ, dW/dt becomes negative definite provided:

λ22 <
4

3
αm2γts,

{
m1β(1− γ)

}2
<

1

3

m1s

L
m2γts, {m1βγ}2 < 2

m1s

L
m3γos,{

m2k1(1−γ)m
(m+N)(m+N∗)

}2

<
1

3

m1s

L
m2γts,

{
m3k2γm

(m+N)(m+N∗)

}2

<
1

2

m1s

L
m3γos.

Using the chosen value of constant m1, the above inequalities reduce to the inequalities
mentioned in Theorem 2, where the constants m2 and m3 can be chosen from the first
and second inequality of the mentioned inequalities, respectively. These are sufficient
conditions for the global stability of E∗ inside Ω.

3.3 Optimal control

Through optimal control technique, a strategy can be determined for a dynamical system
that optimizes the objective function with respect to some considered set of control param-
eters. In the past, some mathematical models have been analyzed using optimal control
strategies for the mitigation of CO2 [4, 28]. Using optimal control technique, we want to
explore a strategy, which minimizes the atmospheric level of CO2 along with minimizing
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the cost involved in doing so. One of the most efficient way of minimizing the atmospheric
level of CO2 is increasing the dependency of human population on renewable sources of
energy. Therefore, we have considered the fraction of dependency of human population
on renewable energy sources as a control parameter and formulated objective functional
to minimize the cost of implementation of this considered strategy. The parameter γ
of system (1) is taken as a function of time, which is Lebesgue measurable, and hence
system (1) takes the form

dC

dt
= −α(C − C0) + λ1N + λ2Ets,

dN

dt
= sN

(
1− N

L

)
− θ(C − C0)N + βN

((
1− γ(t)

)
Ets + γ(t)Eos

)
,

dEts

dt
=
k1(1− γ(t))NEts

m+N
− γtsE2

ts,
dEos

dt
=
k2γ(t)NEos

m+N
− γosE2

os,

(12)

where C(0) > C0, N(0) > 0, Ets(0) > 0, and Eos(0) > 0. Our aim here is to minimize
the atmospheric level of CO2 and the cost of implementation of this strategy. Therefore,
the objective functional which we want to minimize is

J =

tf∫
0

[
AC(t) +Bγ2(t)

]
dt,

where A and B are positive weight constants.

3.4 Characterization of optimal control

Using the Pontryagin’s maximum principle, we determine the necessary conditions for
the control problem. The Hamiltonian for the control problem (12) is formulated as

H(C,N,Ets, Eos, γ, µ1, µ2, µ3, µ4)

= AC(t) +Bγ2(t) + µ1

(
−α(C − C0) + λ1N + λ2Ets

)
+ µ2

(
sN

(
1− N

L

)
− θ(C − C0)N + βN

((
1− γ(t)

)
Ets + γ(t)Eos

))
+ µ3

(
k1(1− γ(t))NEts

m+N
− γtsE2

ts

)
+ µ4

(
k2γ(t)NEos

m+N
− γosE2

os

)
.

Here µi (i = 1, 2, 3, 4) are adjoint variables.
The optimality system is

Ċ = −α(C − C0) + λ1N + λ2Ets,

Ṅ = sN

(
1− N

L

)
− θ(C − C0)N + βN

((
1− γ(t)

)
Ets + γ(t)Eos

)
,

Ėts =
k1(1− γ(t))NEts

m+N
− γtsE2

ts, Ėos =
k2γ(t)NEos

m+N
− γosE2

os,
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µ̇1 = −A+ µ1α+ µ2θN,

µ̇2 = −µ1λ1 − µ2

(
s

(
1− 2N

L

)
− θ(C − C0) + β

{
(1− γ)Ets + γEos

})
− µ3

k1(1− γ)mEts

(m+N)2
− µ4

k2γmEos

(m+N)2
,

µ̇3 = −µ1λ2 − µ2β(1− γ)N − µ3

{
k1(1− γ)N
m+N

− 2γtsEts

}
,

µ̇4 = −µ2βγN − µ4

{
k2γN

m+N
− 2γosEos

}
,

here C(0) > C0, N(0) > 0, Ets(0) > 0, Eos(0) > 0, µi(tf ) = 0, and the optimal
control γ∗, which minimizes the functional J subjected to system (12), is given as

γ∗ =
µ2βN(Ets − Eos) +

µ3k1NEts

m+N − µ4k2NEos

m+N

2B
.

4 Numerical simulation

To validate the analytical results and understand the dynamics of model (1), we conduct
numerical simulations using the parameter values listed in Table 1. Values of some of the
parameters are taken from the study done by Verma et al. [29], other are considered to
capture the whole dynamics of the proposed model and are biologically meaningful. For
the considered set of parameter values, the components of interior equilibrium E∗ and
corresponding eigenvalues are calculated as

C∗ = 372.12, N∗ = 665.23, E∗
ts = 30.38, E∗

os = 37.13,
−0.0037, −0.0070, −0.0163 + 0.0074i, −0.0163− 0.0074i.

The eigenvalues confirm that the equilibrium E∗ is locally asymptotically stable as
all eigenvalues have negative real parts. Furthermore, the parameter values in Table 1
satisfy the conditions for the global stability of equilibrium E∗ as outlined in Theorem 2.
Moreover, Fig. 1 shows that solution trajectories from any initial point within the region
of attraction converge to E∗ in the NC -plane, depicting the global stability of E∗.

Table 1. Values assigned to the parameters for numerical simulations.

Parameter Value Source Parameter Value Source
α 0.01612 Ref. [29] λ1 0.001 assumed
β 0.00001 assumed s 0.0265 Ref. [29]
θ 0.0001 assumed C0 280 Ref. [29]
γts 0.0002 assumed γos 0.0001 assumed
k1 0.02 assumed k2 0.01 assumed
λ2 0.02698 Ref. [29] L 1000 Ref. [29]
γ 0.55 assumed m 320 Ref. [29]
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Figure 1. Global stability of E∗ in NC -plane
(trajectories with distinct initial starts are shown by
different colors).
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Figure 2. Effect of uncertainty of parameters λ1, λ2,
β, γ, k1, and k2 on C(t).

4.1 Sensitivity of parameters

In accordance with Marino et al. [16], we address the uncertainties associated with select-
ing parameter values in the system represented by Eq. (1). To account for the variability
in our parameters of interest, λ1, λ2, β, γ, k1, and k2, we conduct 10,000 simulations
of the model system (1) using LHS approach. In this approach, we assume a uniform
distribution for these parameters and allow them to vary within ±50% of their nominal
values, which are provided in Table 1. This methodology helps us to mitigate the uncer-
tainties inherent in parameter selection. The PRCC values using the atmospheric CO2 as
a response function are shown in Fig. 2. The figure shows that the parameter γ is inversely
related to the concentration of atmospheric CO2, and the parameters λ1, λ2, β, k1, and
k2 have positive correlations. This analysis demonstrates that among all these considered
parameters, the parameters γ, k1, and λ2 are the most influential parameters subjected to
the atmospheric CO2 for the parameter values chosen in Table 1.

To examine the combined impact of the parameters k1 and γ on the equilibrium
level of atmospheric CO2, a plot is presented in Fig. 3(a). The figure demonstrates that
when the fraction of human dependency on renewable energy sources (parameter γ)
is held constant, an increase in parameter k1 leads to higher atmospheric CO2 level.
This occurs because greater reliance on traditional energy sources results in increased
fossil fuel combustion, which elevates CO2 emissions. Conversely, if k1 is kept constant
while increasing the reliance on renewable energy sources, the atmospheric CO2 level
decreases. Further, Fig. 3(b) shows the values of C∗ and N∗ for several values of λ2.
This figure demonstrates that as the value of λ2 increases, the atmospheric level of CO2

increases and the human population decreases in the considered region. Furthermore, this
decrease in human population leads to a decrease in energy demand. Figure 3(a) illustrates
how increasing reliance on traditional energy sources leads to higher CO2 level, while
a shift towards renewable energy mitigates these emissions. This finding emphasizes
the potential of renewable energy in controlling atmospheric CO2. Similarly, Fig. 3(b)
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(a) (b)

Figure 3. (a) Combined effect of parameters k1 and γ on C∗. (b) Bar diagram showcasing the values of C∗

and N∗ for different values of λ2.

Figure 4. Hopf bifurcation concerning parameter γ with all the parameter values as considered in Table 1 and
α = 0.0016.

demonstrates the relationship between increased energy production through conventional
sources, higher CO2 level, and their adverse effects on human population.

Varying the parameter γ causes the model system (1) to undergo Hopf bifurcation.
Equilibrium E∗ is unstable for low values of γ, and as γ exceeds a critical value, the
system becomes stable through Hopf bifurcation. Figure 4 illustrates the equilibrium level
of CO2 for different values of γ. This figure demonstrates that system (1) undergoes Hopf
bifurcation at γ = 0.1924 (say γc, shown by HP in mentioned figure). The phase portrait
(shown in Fig. 5(a)) illustrates that for lower values of γ = 0.08 (< γc), both the solution
trajectories approach to the limit cycle. This indicates that the solution trajectories will
oscillate periodically over time. On the other hand, for γ = 0.3 > γc, the solution tra-
jectory is approaching its equilibrium level, i.e., instead of showing oscillatory dynamics,
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Figure 5. Phase portrait for γ = 0.08, 0.3. Here all parameters are same as in Table 1 except α = 0.0016.
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Figure 6. Bubbling phenomenon concerning parameter β with all the parameter values as considered in Fig. 4
except γ = 0.5.

the solution trajectory will stabilize at a fixed level shown in Fig. 5(b). The physical
significance of this phenomenon is that when the proportion of energy generated from
renewable sources is small, energy production from traditional sources increases along
with a rise in CO2 emissions. This results in higher level of atmospheric CO2. Further,
due to its adverse impacts, the human population will decline. This decline in population
results to lower energy demand, hence the atmospheric CO2 will reduce, and this results
in higher density of human population. Thus, an oscillatory dynamics will be observed
for lower values of γ. However, when the value of γ crosses a threshold level, i.e., human
population depends more on renewable energy sources, then the atmospheric CO2 and all
the dynamical variables reach to stable equilibrium levels. Thus, Fig. 4 demonstrates how
the system experiences Hopf bifurcation at a critical threshold (γ = 0.1924), transitioning
from oscillatory to stable dynamics as γ increases. This bifurcation signifies a shift from
periodic fluctuations in CO2 level and population density to stable equilibrium due to
increased reliance on renewable energy. Furthermore, the phase portraits in Figs. 5(a) and
5(b)provide a visual representation of this behavior. For γ < γc, oscillatory trajectories
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Figure 7. Phase portrait for (a) β = 0.0008, 0.0014, 0.002. Here all parameters are same as in Table 1 except
α = 0.0016.

(limit cycles) dominate, reflecting the interplay between population and energy demand.
For γ > γc, the trajectories stabilize at equilibrium, indicating a balance achieved through
higher renewable energy use.

Furthermore, we observed that the model system described by Eq. (1) experiences
a Hopf bifurcation concerning the parameter β. Notably, this parameter β triggers a bub-
bling phenomenon in the system; see Fig. 6. From this figure, we may note that the critical
level of β at first Hopf-point is obtained as βc1 = 0.001257. At this point, i.e., βc1 =
0.001257, periodic oscillations generate. Moreover, the oscillatory dynamics die out and
the formulated system gains its stability at βc2 = 0.001841. Further, Fig. 7(a) depicts that
the solution trajectory approaching the interior equilibrium E∗ for β = 0.0008 < βc. In
Fig. 7(b), for β = 0.0014 (where βc1 < β = 0.0014 < βc2 ), the trajectory repels from
the interior equilibrium, with all solutions, whether starting inside or outside the limit
cycle, moving towards it. Figure 7(c) for β = 0.002 demonstrates stable atmospheric CO2

behavior as β = 0.002 > βc2. These figures demonstrate the significance of the param-
eter β in driving the system’s transition through bifurcation points, leading to oscillatory
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dynamics at βc1 and stability at βc2 . This highlights how β influences CO2 stabilization
and periodic behavior, provides insights into critical thresholds for system stability.

4.2 Simulation results regarding optimal control

Forward-backward sweep method is used to solve the optimality system (12) [14]. The
optimal system is solved for the set of parameter values mentioned in Table 1. We have
considered the maximum value of γ as γmax = 0.7 and the values of weight constants as
A = 1 and B = 3. The values of weight constants are chosen only for the illustration of
theoretically obtained results. In Fig. 8(a), we have plotted the atmospheric concentration
of CO2 for 30 years with and without implementation of control strategies for mentioned
values of γmax and weight constants. Figure 8(a) illustrates that in the absence of con-
sidered control strategy, the atmospheric level of CO2 attains a level of 375.9 ppm, and
by the implementation of considered control strategy, it reduces to 362.9 ppm. Moreover,
we have plotted the optimal control profile in Fig. 8(b) for considered values of weight
constants and γmax. From this figure it can be illustrated that the dependency of human
population on renewable energy sources increases to its maximum attainable growth rate
till 10.7 years than it can be reduced.

In Fig. 9(a), we have plotted the optimal profiles for two different values of maximum
attainable rate of dependency of human population on renewable energy sources. Here
we have considered weight constants same as above and varied the value of γmax as
γmax = 0.7 and γmax = 0.9. In case of γmax = 0.9, the dependency of human population
on renewable energy sources must be maximum for 5 years, which was 10.7 years for
γmax = 0.7. Further, we have generated the optimal profiles for two different values of
weight constants in Fig. 9(b). We have considered weight constants as A = 1, B = 3 and
A = 1, B = 4, here we have increased the value of B, i.e., in this case, more emphasis
is given on increasing the dependency of human population on renewable sources of
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Figure 8. (a) Projection of atmospheric level of CO2 with and without optimal control. (b) Optimal profile of
control variable γ. Here A = 1, B = 3, γ = 0.5, and γmax = 0.7.
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Figure 9. Optimal profiles of control variable γ∗ for different values of (a) γmax and (b) weight constants with
all parameters same as in Table 1 except γ = 0.5.

energy. This figure depicts that for A = 1, B = 4, the implementation of considered
strategy must be done with maximum attainable rate till 3.5 years, and after that, it can be
reduced. This obtained scenario illustrates that for higher values of weight constantB, the
year of implementation of considered strategy with maximum rate decreases significantly.
These figures illustrate the effectiveness of the proposed control strategies in reducing
atmospheric CO2 level and optimizing dependency on renewable energy. Without control,
CO2 reaches 375.9 ppm, but with control, it decreases to 362.9 ppm. The optimal control
profiles show that higher maximum dependency rates (γmax) and increased emphasis on
renewable energy (higher B) reduce the duration for which maximum implementation is
required, highlights the importance of tailored strategies for CO2 mitigation.

5 Conclusion

This research presents a nonlinear mathematical model to examine the effects of tran-
sitioning energy production from conventional energy sources to clean energy sources
on atmospheric CO2 dynamics. The model explicitly incorporates variables representing
energy demand from coal, oil, gas, and renewable sources. The stability theory for dif-
ferential equations was applied to analyze the system, and numerical simulations were
conducted with specific parameter values to support the analytical results and explore
additional dynamics.

The analysis identified conditions holding which the system’s coexisting equilibrium
is locally and globally stable. It was observed that human population growth, driven by
energy consumption, destabilizes the system by increasing anthropogenic CO2 emissions.
Furthermore, the system experiences a Hopf bifurcation around the coexisting equilib-
rium when the population’s reliance on renewable energy sources drops below a critical
threshold, leading to instability and periodic oscillations. These findings highlight the risk
of uncontrolled increases in traditional energy use, whereas greater reliance on renew-
able sources stabilizes the system and reduces oscillations. The results demonstrate that
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a higher dependency on renewable energy enables the atmospheric CO2 level to stabilize
and even decrease over time. A sensitivity analysis using the PRCC method revealed
that dependence on renewable energy is the key factor influencing CO2 dynamics. Other
important factors include the growth in energy demand from traditional sources and the
CO2 emission rate resulting from fossil fuel combustion. Additionally, an optimal con-
trol approach following Pontryagin’s maximum principle was implemented to minimize
both atmospheric CO2 level and the associated costs. The results showed that increasing
renewable energy production growth reduces the duration for which mitigation strategies
need to be applied, effectively lowering CO2 level compared to scenarios without such
strategies.

This research also examines the impact of per capita energy demand from renewable
and nonrenewable sources on atmospheric CO2. While the study is preliminary and relies
on simplified assumptions, the findings can be validated using real-world data by cali-
brating the model parameters with observed values. Policymakers can use these insights
to develop strategies addressing rising energy demands and reducing CO2 emissions. The
study emphasizes that promoting a transition to renewable energy is a viable solution for
controlling atmospheric CO2 concentrations, avoiding oscillatory behavior and achieving
climate change targets. By encouraging this shift, the research aims to inform policy
development and support efforts to mitigate carbon emissions and combat climate change.
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