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Abstract. In this paper, we study the dynamic behavior of a discrete predator–prey model with
fear effect and Allee effect by theoretical analysis and numerical simulation. Firstly, the existence
and stability of the equilibrium points of the model are proved. Secondly, the existence of codi-
mension-2 bifurcations (1 : 2, 1 : 3, and 1 : 4 strong resonances) in the case of two parameters
is verified by bifurcation theory. In order to illustrate the complexity of the dynamic behavior
of the model in the two-parameter space, we simulate the bifurcation diagrams, phase diagrams,
maximum Lyapunov exponent diagrams, and isoperiodic diagram, and we verify the influence of
model parameters on the population size.
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1 Introduction

Discrete models are considered to be an important tool in the study of mathematical
biology modeling. When the generations of a population do not overlap with each other,
a difference equation is needed to describe it. On the other hand, the numerical simulation
of continuous models is also obtained by discretizing these models. In particular, discrete
models are often more accurate and convenient. In the past few decades, the dynamic
behavior of discrete predator–prey systems has been extensively studied; see [1, 7, 9, 13,
14, 21, 23, 26, 29, 30] and the references therein. In 1976, May took the lead in revealing
that a simple discrete model can achieve chaos through period doubling bifurcations
[17]. The results showed that a simple discrete model can produce extremely complex
behavior.

Studies have shown that prey fear of predators has a serious impact on the birth rate of
prey [27]. In 2016, Wang et al. [24] first mathematically characterized the fear effect, that
is, F (k, y) = 1/(1+ky), where k > 0 reflects the level of fear, which drives antipredator
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behavior of the prey. Since then the study of the fear effect has attracted great attention.
One can see literature [6, 12, 15, 20, 25].

When there are too many biological populations, resource competition might impede
population growth. As a result, each population has a particular optimal growth and
reproduction density, a phenomenon known as the Allee effect [22]. Empirical evidence
of Allee effects has been observed in many natural species, for example, plants [8], birds
and mammals [5], etc. Therefore, many researchers have studied the bifurcation and
stability analysis for discrete-time predator–prey system with the Allee effect [3,4,11,18].

Researchers often study the bifurcation phenomenon of a system when its parameters
change, including flip bifurcation, transcritical bifurcation, and Neimark–Sacker bifur-
cation. However, numerous parameters are involved in real models, and when several
parameters change at once, the system may undergo more complicated bifurcations. For
instance, codimension-2 bifurcation, also known as double crisis, may happen when two
system parameters change simultaneously. This phenomenon has been studied in several
domains [2, 16, 28]. Research has shown that on a biparameter bifurcation diagram, the
system may exhibit Arnold tongue and shrimp-shaped structures, which are not observed
in a single-parameter bifurcation diagram [10, 19]. To our knowledge, there is relatively
little research on codimension-2 bifurcation in discrete systems. Therefore, in this article,
we will study the following discrete predator–prey system with fear effect and Allee
effect:

xt+1 = xt exp

[
r

1 + kyt

(
1− xt

K

)
− byt

]
,

yt+1 = yt exp

[
βxtyt
h+ yt

− µ
]
,

(1)

where x and y represent prey and predator population densities. K > 0 is the carrying
capacity, r > 0 is the intrinsic growth rate of the prey, b > 0 is the capture rate, β > 0 is
the conversion coefficient, and µ > 0 is the death rate of the predator. The term y/(h+y)
denotes the weak Allee effect function, and h > 0.

The structure of this essay is as follows. Preliminaries are covered in Section 2. In
Section 3, we study the necessary conditions of existence for codimension-2 bifurcations
connected to resonances of 1 : 2, 1 : 3, and 1 : 4. The theoretical conclusions are illustrated
using numerical simulations in Section 4. In Section 5, a succinct discussion is provided.

2 Preliminaries

The equilibrium points for system (1) can be obtained by solving the following equations:

x = x exp

[
r

1 + ky

(
1− x

K

)
− by

]
,

y = y exp

[
βxy

h+ y
− µ

]
.

The following conclusions can be drawn from the calculation:
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(I) System (1) always has two equilibrium points E0(0, 0) and EK(K, 0).
(II) System (1) has a unique positive equilibrium point E∗(x∗, y∗), where x∗ =

(1/βy∗)(µh+ µy∗), and y∗ is real positive root of the following cubic equation:

c0y
3 + c1y

2 + c2y + c3 = 0,

where c0 = bβkK, c1 = bβK, c2 = rµ − rKβ, c3 = rhµ, if and only if one
of the following conditions holds:

(II-1) q < 0,
(II-2) q > 0 and q2/4 + p3/27 = 0,

where (27c20c3 − 9c0c1c2 + 2c21)/(27c30) and p = (3c0c2 − c21)/(3c20).

Jacobian matrix can be evaluated at E0(0, 0) as

J(E0) =

(
er −m
0 e−µ

)
.

The eigenvalues of the Jacobian are λ1 = er > 1 and λ2 = e−µ < 1 at trivial
equilibrium point E0(0, 0). So, we can get the following theorem.

Theorem 1. E0(0, 0) is always a saddle point, and it is unstable.

Proof. It is easy to see that the eigenvalues of system (1) at the equilibrium pointE0(0, 0)
are λ1 = er and λ2 = e−µ, and |λ1| > 1, |λ2| < 1. Therefore, E0(0, 0) is a saddle point,
and it is unstable.

Jacobian matrix can be evaluated at EK(K, 0) as

J(EK) =

(
1− r −bK

0 e−µ

)
.

Theorem 2. The characteristic roots at the boundary equilibrium point EK(K, 0) are
λ1 = 1− r and λ2 = e−µ, then

(I) EK is a sink point⇔ 0 < r < 2;
(II) EK is a saddle point⇔ r > 2;

(III) EK is a nonhyperbolic point⇔ r = 2.

Proof. Since the eigenvalues of system (1) at the equilibrium point EK(K, 0) are λ1 =
1− r and λ2 = e−µ, therefore, |λ1| < 1 if and only if 0 < r < 2, |λ2| < 1 if and only if
µ > 0. So EK is a sink point if and only if 0 < r < 2. Similarly, (II) and (III) hold.

J(x, y) evaluated at the positive equilibrium point E∗(x∗, y∗) is

J(E∗) =

(
1− rx∗

K(1+ky∗) − rkx∗

(1+ky∗)2 (1− x∗

K )− bx∗
βy∗2

h+y∗ 1 + βhx∗y∗

(h+y∗)2

)
:=

(
1−A −B
C 1 +D

)
. (2)
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Let

T (k, h) = 2 +
βhx∗y∗

(h+ y∗)2
− rx∗

K(1 + ky∗)
,

R(k, h) =

[
1− rx∗

K(1 + ky∗)

][
1 +

βhx∗y∗

(h+ y∗)2

]
+

βy∗2

h+ y∗

[
rkx∗

(1 + ky∗)2

(
1− x∗

K

)
+ bx∗

]
.

Then the characteristic equation corresponding to matrix (2) is

λ2 − T (k, h)λ+R(k, h) = 0.

Theorem 3. System (1) at the positive equilibrium point E∗(x∗, y∗) is local asymptoti-
cally stable when all of the following conditions are true:

(I)
rhx∗2

K(1 + ky∗)(h+ y∗)
< y∗

[
rkx∗

(1 + ky∗)2

(
1− x∗

K

)
+ bx∗

]
;

(II) 2

(
2 +

βhx∗y∗

(h+ y∗)2
− rx∗

K(1 + ky∗)

)
>

rβhx∗2y

K(1 + ky∗)(h+ y∗)2
− βy∗2

h+ y∗

[
rkx∗

(1 + ky∗)2

(
1− x∗

K

)
+ bx∗

]
;

(III)
[
1− rx∗

K(1 + ky∗)

][
1 +

βhx∗y∗

(h+ y∗)2

]
+

βy∗2

h+ y∗

[
rkx∗

(1 + ky∗)2

(
1− x∗

K

)
+ bx∗

]
< 1.

Proof. According to the Jury condition, the necessary and sufficient condition for the
eigenvalue |λi| < 1 (i = 1, 2) of equation λ2 − Tλ + R = 0 is |T | < R + 1 < 1.
So, we can obtain that unique positive equilibrium point E∗(x∗, y∗) of system (1) is local
asymptotically stable if and only if (I), (II), and (III) hold.

It is easy to get that two eigenvalues of J(E∗) are

λ1,2 =
T ±
√
T 2 − 4R

2
.

When system (1) occurs 1 : 2 resonance at the equilibrium point E∗(x∗, y∗), the eigen-
value corresponding to (2) is λ1,2 = −1, so that T = −2 and R = 1. When system (1)
occurs 1 : 3 resonance at the equilibrium point E∗, the eigenvalue corresponding to (2) is
λ1,2 = −1/2± (

√
3/2)i, so that T = −1 and R = 1. At last, if T = 0, R = 1, we have

λ1,2 = ±i. In this situation, system (1) exhibits 1 : 4 resonance at E∗(x∗, y∗). Therefore,
we have the following theorem.

Theorem 4.
(I) There is a 1 : 2 strong resonance if (r, k,K, b, β, h, µ) ∈ F1, where

F1 =
{

(r, k,K, b, β, h, µ): T (k1, h1) = −2, R(k1, h1) = 1
}
.
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(II) There is a 1 : 3 strong resonance if (r, k,K, b, β, h, µ) ∈ F2, where

F2 =
{

(r, k,K, b, β, h, µ): T (k2, h2) = −1, R(k2, h2) = 1
}
.

(III) There is a 1 : 4 strong resonance if (r, k,K, b, β, h, µ) ∈ F3, where

F3 =
{

(r, k,K, b, β, h, µ): T (k3, h3) = 0, R(k3, h3) = 1
}
.

3 Bifurcation of condimension-two

3.1 Bifurcation with 1 : 2 resonance

Selecting arbitrary parameters (r, k,K, b, β, h, µ) ∈ F1, system (1) has an unique positive
fixed point E∗(x∗, y∗). Let U = x−x∗, V = y−y∗, then system (1) can be transformed
to the following complex form:[

U(n+ 1)
V (n+ 1)

]
=

[
1−A −B
C 1 +D

] [
U(n)
V (n)

]
+

[
f(U, V )
g(U, V )

]
, (3)

where

f(U, V ) = A20U
2 +A11UV +A02V

2 +A30U
3 +A21U

2V +A12UV
2 +A03V

3,

g(U, V ) = B20U
2 +B11UV +B02V

2 +B30U
3 +B21U

2V +B12UV
2 +B03V

3,

and

A20 =
r2kx∗

2K2(1 + ky∗)2
− r(1 + k)

2K(1 + ky∗)
,

A11 =
rk2x∗

K(1 + ky∗)2
+

(1−A)B

x∗
,

A02 =
rk2x∗

(1 + ky∗)3

(
1− x∗

K

)
− B(bx∗ −B)

2x∗
,

A30 =
r2k

6K2(1 + ky∗)2
− rA20

3K(1 + ky∗)
,

A21 =
rk(k + 1)

2K(1 + ky∗)2
− r2k2x∗

K2(1 + ky∗)2
− BA20

x∗
,

A12 = − rk3x∗

K(1 + ky∗)3
+

rk2B

2k(1 + ky∗)2
− (1−A)rk2

(1 + ky∗)3

(
1− x∗

K

)
− rk(1−A)

2(1 + ky∗)2

(
1− x∗

K

)
,

A03 = − rk3x∗

(1 + ky∗)4

(
1− x∗

K

)
− r2k3x∗

3(1 + ky∗)5

(
1− x∗

K

)2

− Brk2

3(1 + ky∗)3

(
1− x∗

K

)
− BA20

3x∗
,
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B20 =
β2y∗2

2(h+ y∗)2
, B11 =

2βhy∗ − βy∗2

(h+ y∗)2
− β2hx∗y∗2

(h+ y∗)3
,

B02 =
βhx∗

2(h+ yr∗)
+
βh2x∗ − βhx∗y∗

2(h+ y∗)3
+
β2h2x∗2y∗

2(h+ y∗)4
,

B30 =
β3y∗3

6(h+ y∗)3
, B21 =

3β2hy∗2 − β2y∗3

2(h+ y∗)3
+

β3hx∗y∗3

2(h+ y∗)4
,

B12 =
2βh2 − 2βhy∗ − βy∗2

2(h+ y∗)3
− 2β2h2x∗y∗ − β2hx∗y∗

2(h+ y∗)4
+
βhx∗y∗B11

2(h+ y∗)2
,

B03 =
βhx∗y∗ − 2βh2x∗

3(h+ y∗)4
− βhx∗

3(h+ y∗)3
+
β2h3x∗3 − 3β2h2x∗2y∗

6(h+ y∗)5
.

Let

T =

(
bKx∗(1+2ky∗)
2K(1+ky∗)−rx∗

bK2x∗(1+ky∗)(1+2ky∗)
[2K(1+ky∗)−rx∗]2

1 0

)
. (4)

Consider the inverse translation(
X̂(n)

Ŷ (n)

)
= T

(
U(n)
V (n)

)
,

then system (3) takes the form[
X̂(n+ 1)

Ŷ (n+ 1)

]
=

[
−1 +A10 1 +A01

B10 −1 +B01

][
X̂(n)

Ŷ (n)

]
+

[
f̂(X̂(n), Ŷ (n))

ĝ(X̂(n), Ŷ (n))

]
,

where

A10 = 2 +
hβx∗y∗

(h+ y∗)2
+

bβKx∗y∗(1 + 2ky∗)

(h+ y∗)[2K(1 + ky∗)− rx∗]
,

A01 = −1 +
bβK2x∗y∗2(1 + ky∗)(1 + 2ky∗)

(h+ y∗)[2K(1 + ky∗)− rx∗]2
,

B10 = −4K(1 + ky∗)− 2rx∗

K(1 + ky∗)
− βbKx∗y∗2(1 + 2ky∗)

K(h+ y∗)(1 + ky∗)

− hβx∗y∗[2K(1 + ky∗)− rx∗]
K(1 + ky∗)(h+ y∗)2

,

B01 = 1 +
K(1 + ky∗)− rx∗

K(1 + ky∗)
− bKβx∗y∗2(1 + 2ky∗)

(h+ y∗)[2K(1 + ky∗)− rx∗]
,

f̂
(
X̂(n), Ŷ (n)

)
=

∑
26i+j63

ÂijX̂
i(n)Ŷ j(n),

ĝ
(
X̂(n), Ŷ (n)

)
=

∑
26i+j63

B̂ijX̂
i(n)Ŷ j(n),

A1 =
bKx∗(1 + 2ky∗)

2K(1 + ky∗)− rx∗
, A2 =

K(1 + ky∗)

2K(1 + ky∗)− rx∗
,
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Â20 = A2
1B20 +A1B11 +B02, Â11 = 2A2

1A2B20 +A1A2B11,

Â02 = A2
1A

2
2B20, Â30 = A3

1B30 +A2
1B21 +A1B12 +B03,

Â21 = 3A3
1A2B30 + 2A2

1A2b21 +A1A2B12, Â12 = 3A3
1A

2
2B30 +A2

1A
2
2B21,

Â03 = A3
1A

3
2B30, B̂20 =

1

A1A2

[
A2

1A20 +A1A11 +A02

]
− 1

A2
Â20,

B̂11 = 2A1A20 +A11 −
1

A2
Â11, B̂02 = A1A2A20 −

1

A2
Â02,

B̂30 =
1

A1A2

[
A3

1A30 +A2
1A21 +A1A12 +A03

]
− 1

A2
Â30,

B̂21 = 3A2
1A30 + 2A1A21 +A12 −

1

A2
Â21,

B̂12 = 3A2
1A2A30 +A1A2A21 −

1

A2
Â12, B̂03 = A2

1A
2
2A30 −

1

A2
Â03.

The following coordinate transformation is performed on system (4):[
X̂(n+ 1)

Ŷ (n+ 1)

]
=

[
1 +A01 0
−A10 1

] [
X̄(n)
Ȳ (n)

]
.

Then system (4) becomes[
X̄(n+ 1)
Ȳ (n+ 1)

]
=

[
−1 1
%1 −1 + %2

] [
X̄(n)
Ȳ (n)

]
+

[
P (X̄(n), Ȳ (n))
Q(X̄(n), Ȳ (n))

]
,

where
%1 = B10 +A01B10 −A10B01, %2 = A10 +B01,

P
(
X̄(n), Ȳ (n)

)
=

∑
26i+j63

pijX̄
i(n)Ȳ j(n),

Q
(
X̄(n), Ȳ (n)

)
=

∑
26i+j63

qijX̄
i(n)Ȳ j(n),

and

p20 =
1

1 +A01

[
(1 +A01)2Â20 −A10(1 +A01)Â11 +A2

10Â02

]
,

p11 =
1

A01

[
(1 +A01)Â11 − 2A10Â02

]
, p02 =

Â02

1 +A01
,

p30 =
1

1 +A01

[
(1 +A01)3Â30 −A10(1 +A01)2Â21

+A2
10(1 +A01)Â12 −A3

10Â03

]
,

p21 =
1

1 +A01

[
(1 +A01)2Â21 − 2A10(1 +A01)Â12 − 3A2

10Â03

]
,

p12 =
1

1 +A01

[
(1 +A01)Â12 − 3A10Â03

]
, p03 =

Â03

1 +A01
,
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q20 = A10p20 + b̂20(1 +A01)2 −A10(1 +A01)B̂11 +A2
10B̂02,

q11 = A10p11 + (1 +A01)B̂11 − 2A10B̂02, q02 = A10p02 + B̂02,

q30 = A10p30 + (1 +A01)3B̂30 −A10(1 +A01)2B̂21

+A2
10(1 +A01)B̂12 −A3

10B̂03,

q21 = A10p21 + (1 +A01)2B̂21 − 2A10(1 +A01)B̂12 − 3A2
10B̂03,

q12 = A10p12 + (1 +A01)B̂12 − 3A10B̂03, q03 = A10p03 + B̂03.

We introduce the following transformation:

X̄ = κ1 +
∑

26i+j63

ϕijκ
i
1κ
j
2, Ȳ = κ2 +

∑
26i+j63

ψijκ
i
1κ
j
2,

where

ϕ20 =
1

4
q20 +

1

2
p20, ϕ11 =

1

2
p20 +

1

2
p11 +

1

2
q20 +

1

4
q11,

ϕ02 =
1

4
p11 +

1

2
p02 +

1

8
q20 +

1

4
q11 +

1

4
q02, ϕ30 =

1

9
q30,

ϕ21 =
1

2
p30 +

1

2
p21 +

5

12
q30 +

1

4
q21,

ϕ12 =
1

6
p30 +

1

2
p21 + p12 +

17

36
q30 +

3

4
q21 + q12,

ψ20 =
1

2
q20, ψ11 =

1

2
q20 +

1

2
q11, ψ02 =

1

4
q11 +

1

2
q02,

ψ30 =
1

3
q30, ψ21 =

1

2
q30 +

1

2
q21, ψ12 =

1

6
q30 +

1

2
q21 + q12.

Therefore, we obtain the following critical normal form:[
κ1(n+ 1)
κ2(n+ 1)

]
=

[
−1 1
%1 −1 + %2

] [
κ1(n)
κ2(n)

]
+

[
0

C1κ31(n) +D1κ
2
1(n)κ2(n)

]
with C1 and D1 satisfying

C1 = q30 + p20q20 +
1

2
q220 +

1

2
q20q11,

D1 = q21 + 3p30 +
1

2
p20q11 +

5

4
q20q11 + q20q02 + 3p220

+
5

2
p20q20 +

5

2
p11q20 + q220 +

1

2
q211.

Based on the above analysis, we have the following theorem.

Theorem 5. The nondegeneracy conditions of this bifurcation are as follows: C1 6= 0 and
D1 + 3C1 6= 0. Moreover, if C1 < 0, the fixed point E∗(x∗, y∗) is a saddle; if C1 > 0,
the fixed point E∗(x∗, y∗) is elliptic. D1 + 3C1 6= 0 determines the bifurcation scenarios
near the 1 : 2 resonance point.
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3.2 Bifurcation with 1 : 3 resonance

Taking parameters (r, k,K, b, β, h, µ) ∈ F2, we can get the Jacobian matrix of system (1)
at E∗(x∗, y∗) as follows:

J(E∗) =

[
1−A −B
C 1 +D

]
,

and it has two eigenvalues λ1,2 = −1/2± (
√

3/2)i. So we can calculate the eigenvector
p ∈ C2 and adjoint eigenvector q ∈ C2:

p(k2, h2) =

[
B

3
2 −

√
3
2 i−A

]
, q(k2, h2) =

[
1
B ( 1

2 −
√
3
2 i +

√
3
3 Ai)√

3
3 i

]
,

where k2 and h2 satisfy T (k2, h2) = −1 and R(k2, h2) = 1.
Any vector W (n) = (x(n), y(n))T ∈ R2 can be represented in the form W =

$p+ $̄p̄. Consequently, system (3) can be transformed into

$ → −1

2
±
√

3

2
i$ +

∑
26i+j63

χij
i!j!

$i$̄j , (5)

where

χ20 = −2
√

3i

3B

(
3

2
−A−

√
3

2
i

)[
A20p

2
1 +A11p1p2 +A02p

2
2

]
+

2
√

3

3
i
[
B20p

2
1 +B11p1p2 +B02p

2
2

]
,

χ11 = −
√

3i

3B

(
3

2
−A−

√
3

2
i

)[
2A20p

2
1 + (p1p̄2 + p1p2)A11 + 2p2p̄2A02

]
+

√
3

3
i
[
2B20p

2
1 + (p1p̄2 + p1p2)B11 + 2p2p̄2B02

]
,

χ02 = −2
√

3i

3B

(
3

2
−A−

√
3

2
i

)[
A20p

2
1 +A11p1p̄2 +A02p̄

2
2

]
+

2
√

3

3
i
[
B20p

2
1 +B11p1p̄2 +B02p̄

2
2

]
,

χ30 = −6
√

3i

3B

(
3

2
−A−

√
3

2
i

)[
A30p

3
1 + p21p2A21 + p1p

2
2A12 + p32A03

]
+ 2
√

3i
[
B30p

3
1 + p22p2B21 + p1p

2
2B12 + p32B03

]
,

χ21 = −2
√

3i

3B

(
3

2
−A−

√
3

2
i

)
×
[
3p31A30 +

(
p21p̄2 + 2p21p2

)
A21 + (2p1p2p̄2 + p1p

2
2)A12 + 3p22p̄2A03

]
+

2
√

3

3
i
[
3p31B30 +

(
p21p̄2 + 2p21p2

)
B21 +

(
2p1p2p̄2 + p1p

2
2

)
B12 + 3p22p̄2B03

]
,
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χ12 = −2
√

3i

3B

(
3

2
−A−

√
3

2
i

)
×
[
3p31A30 + 3p21p2A21 + (p1p̄

2
2 + 2p1p2p̄2)A12 + 3p2p̄

2
2A03

]
+

2
√

3

3
i
[
3p31B30 + 3p21p2B21 + (p1p̄

2
2 + 2p1p2p̄2)B12 + 3p2p̄

2
2B03

]
,

χ03 = −6
√

3i

3B

(
3

2
−A−

√
3

2
i

)[
A30p

3
1 + p21p2A21 + p1p̄

2
2A12 + p̄32A03

]
+ 2
√

3i
[
B30p

3
1 + p21p2B21 + p1p̄

2
2B12 + p̄32B03

]
.

Next, we will introduce the following transformation to eliminate some quadratic
terms in (5). Let

$(n) = w(n) +
1

2
ν20w

2(n) + ν11w(n)w̄(n) +
1

2
w̄2(n). (6)

The inverse transformation of (6) is

w(n) = $(n)− ν20
2
$2(n)− ν11$(n)$̄(n)− ν02

2
$̄2(n) +

1

2

(
ν220 + ν11ν̄02

)
$3(n)

+

(
|ν11|2 +

3

2
ν11ν20 +

1

2
|ν02|2

)
$2(n)$̄(n) +

1

2
(ν11ν02 + ν02ν̄20)$̄3(n)

+

(
ν20ν̄11 + ν211 +

1

2
ν11ν̄20 +

1

2
ν20ν02

)
$(n)$̄2(n) +O

(∣∣$(n)
∣∣4).

Bringing (6) into (5), we can get

w(n+ 1) = λ1$ +
∑

26i+j63

σij
i!j!

wiw̄j +O
(∣∣w(n)

∣∣4), (7)

where

σ20 = λ1ν20 + χ20 − λ21ν20, σ11 = λ1ν11 + χ11 − |λ1|2ν11,

σ02 = λ1ν02 + χ02 − λ
2

1ν02,

σ30 = 3(1− λ1)χ20ν20 + 3χ11ν̄02 + χ30 + 3λ21(λ1 − 1)ν220

+ 3
(
λ31 − |λ1|2

)
ν11ν̄02 − 3λ1χ̄02ν11,

σ21 = 2χ11ν̄11 + χ11ν20 + 2χ20ν11 + χ02ν̄02 + χ21 + 2λ21(λ1 − 1)ν20ν11

− 2λ1χ11ν20 − λ1χ̄02ν02 + 2|λ1|2(λ1 − 1)|ν11|2 + |λ1|2(λ1 − 1)ν11ν20

− 2λ1ν11χ̄11 − λ1χ20ν11 + λ1
(
λ21 − λ1

)
|ν02|2,

σ12 = 2χ11ν11 + χ11ν̄20 + 2χ02ν̄11 + χ20ν02 + χ12 + λ1
(
λ
2

1 − λ1
)
ν20ν02

− λ1χ02ν20 + 2|λ1|2(λ1 − 1)ν211 + |λ1|2(λ1 − 1)ν11ν̄20 − λ1ν11χ̄20

− 2λ1χ11ν11 + 2λ1(λ1 − 1)ν02ν̄11 − 2λ1χ̄11ν02,

σ03 = 3χ11ν02 + 3χ02ν̄20 + χ03 + 3
(
λ
3

1 − |λ1|2
)
ν11ν02 − 3λ1χ02ν11

+ 3λ1(λ1 − 1)ν02ν̄20 − 2λ1χ̄20ν02.
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Obviously, we have

λ21(k2, h2)− λ1(k2, h2) 6= 0,
∣∣λ1(k2, h2)

∣∣2 − λ1(k2, h2) 6= 0,

λ
2

1(k2, h2)− λ1(k2, h2) = 0.

Therefore, we can take

ν20 =
χ20

λ21 − λ1
, ν11 =

χ11

|λ1|2 − λ1
, ν02 = 0.

The next step is to annihilate cubic terms, we take

w(n) = κ(n) +
1

6
ν30κ

3(n) +
1

2
ν21κ

2(n)κ(n) +
1

2
ν12κ(n)κ2(n) +

1

6
ν03κ

3(n). (8)

Using (8) and its inverse transformation, (7) becomes

κ(n+ 1) = λ1κ(n) +
1

2
χ02κ

2(n) +
∑
i+j=3

ϑij
i!j!

κi(n)κj(n) +O
(∣∣κ(n)

∣∣4),
where

ϑ30 =
(
λ1 − λ31

)
ν30 + σ30, ϑ21 =

(
λ1 − λ21λ1

)
ν21 + σ21,

ϑ12 =
(
λ1 − λ1λ

2

1

)
ν12 + σ12, ϑ03 =

(
λ1 − λ

3

1

)
ν03 + σ03.

Thus, we can take

ν30 =
σ30

λ31 − λ1
, ν12 =

σ12

λ1|λ1|2 − λ1
, ν03 =

σ03

λ
3

1λ1
, ν21 = 0.

Then the normal form at 1 : 3 resonance point is derived as

κ(n+ 1) = λ1κ(n) +
1

2
χ02κ

2(n) +
1

2
σ21κ(n)2κ(n) +O

(∣∣κ(n)
∣∣4).

Let

C2 = −3

4
(1 +

√
3i)χ02, D2 = −3

4
|χ02|2 −

3

4
(1 +

√
3i)σ21.

Based on the above analysis, we have the following theorem.

Theorem 6. Let k = k2 and h = h2. If C2 6= 0 and ReD2 6= 0, then system (1)
undergoes a 1 : 3 resonance bifurcation at equilibrium E∗(x∗, y∗). Moreover, ReD2 6= 0
determines the stability of the bifurcation invariant closed curve.

3.3 Bifurcation with 1 : 4 resonance

The Jacobian matrix of system (1) at E∗(x∗, y∗) is

J(E∗) =

(
1−A −B
C 1 +D

)
, (9)

and when the parameters (r, k,K, b, β, h, µ) ∈ F3, (9) has two eigenvalues λ1,2 = ±i.
It is easy to derive the corresponding eigenvalues p ∈ C2 and the adjoint eigenvector
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q ∈ C2 as follows:

p(k3, h3) =

[
1 +D − i
−C

]
, q(k3, h3) =

[ i
2

(i+1−D)i
2C

]
,

where k3 and h3 satisfy T (k3, h3) = 0 and R(k3, h3) = 1.
Any vector W (n) = (x(n), y(n))T ∈ R2 can be represented in the form W =

$p+ $̄p̄. Consequently, system (3) can be transformed into

$ → i$ +
∑

26i+j63

χij
i!j!

$iz̄j , (10)

where

χ20 = i
[
A20p

2
1 +A11p1p2 +A02p

2
2

]
+

(i + 1−D)i

C

[
B20p

2
1 +B11p1p2 +B02p

2
2

]
,

χ11 =
i

2

[
2A20p1p̄1 + (p1p2 + p̄1p2)A11 + 2p22A02

]
+

(i + 1−D)i

2C

[
2B20p1p̄1 + (p1p2 + p̄1p2)B11 + 2p22B02

]
,

χ02 = i
[
A20p̄

2
1 +A11p̄1p2 +A02p

2
2

]
+

(i + 1−D)i

C

[
B20p̄

2
1 +B11p̄1p2 +B02p

2
2

]
,

χ30 = 3i
[
A30p

3
1 + p21p2A21 + p1p

2
2A12 + p32A03

]
+

3(i + 1−D)i

C

[
B30p

3
1 + p22p2B21 + p1p

2
2B12 + p32B03

]
,

χ21 = i
[
3p1p̄

2
1A30 +

(
p21p2 + 2p1p̄1p2

)
A21 +

(
2p1p

2
2 + p̄1p

2
2

)
A12 + 3p32A03

]
+

(i + 1−D)i

C

[
3p1p̄

2
1B30 +

(
p21p2 + 2p1p̄1p2

)
B21

+
(
2p1p

2
2 + p̄1p

2
2

)
B12 + 3p32B03

]
,

χ12 = i
[
3p1p̄

2
1A30 +

(
p̄21p2 + 2p1p̄1p2

)
A21 +

(
2p̄1p

2
2 + p1p

2
2

)
A12 + 3p32A03

]
+

(i + 1−D)i

C

[
3p1p̄

2
1B30 +

(
p̄21p2 + 2p1p̄1p2

)
B21

+
(
2p̄1p

2
2 + p1p

2
2

)
B12 + 3p32B03

]
,

χ03 = 3i
[
A30p̄

3
1 + p̄21p2A21 + p̄1p

2
2A12 + p32A03

]
+

3(i + 1−D)i

2C

[
B30p̄

3
1 + p̄21p2B21 + p̄1p

2
2B12 + p32B03

]
.

Similar as in Section 3.3, by (6) we can transform (10) into the following form:

w(n+ 1) = λ1$ +
∑

26i+j63

σij
i!j!

wiw̄j +O
(∣∣w(n)

∣∣4). (11)

Obviously, we have

λ21(k2, h2)− λ1(k2, h2) 6= 0,
∣∣λ1(k2, h2)

∣∣2 − λ1(k2, h2) 6= 0,

λ
2

1(k2, h2)− λ1(k2, h2) = 0.
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Therefore, we can take

ν20 =
i− 1

2
χ20, ν11 =

i + 1

2
χ11, ν02 =

1 + i

2
χ02.

Using (11) and its inverse transformation, (10) becomes

κ(n+ 1) = λ1κ(n) +
∑

26i+j63

ϑij
i!j!

κi(n)κj(n) +O
(∣∣κ(n)

∣∣4),
where

ϑ30 = 2iν30 + σ30, ϑ21 = σ21,

ϑ12 = 2iν12 + σ12, ϑ03 = σ03.

Thus, we can take

ν30 =
i

2
σ30, ν12 =

i

2
σ12, ν03 = 0.

Then the normal form at 1 : 4 resonance point is derived as

κ(n+ 1) = λ1κ(n) + Cκ(n)
∣∣κ(n)

∣∣2 +Dκ3(n) +O
(∣∣κ(n)

∣∣4),
where

C =
1 + 3i

4
χ11χ20 +

1− i

2
|χ11|2 −

1 + i

4
|χ02|2 +

1

2
χ21,

D =
i− 1

4
χ02χ11 −

1 + i

4
χ11χ20 +

1

6
χ03.

Let
C3 = −4iC, D3 = −4iD.

If D3 6= 0, we denote M = C3/|D3|.
Based on the above analysis, we have the following theorem.

Theorem 7. Let k = k3 and h = h3. The bifurcation scenario near the 1 : 4 resonance
point is determined by M = C3/|D3|. If ReM 6= 0 and ImM 6= 0, then system (1)
undergoes a 1 : 4 resonance bifurcation.

4 Numerical simulations

In this section, we will analyze the effects of fear effect and Allee effect on population
dynamics through numerical simulation. Throughout the numerical simulation, we have
kept fixed the values of seven parameters involved in the system, and those parameters’
values are

r = 2.9, K = 8, b = 0.8, β = 0.4, µ = 0.2.

Also, we choose (1, 1) as our initial condition unless stated otherwise.
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(a) Isoperiodic diagram (b) Maximum Lyapunov exponent diagram

(c) A (d) B (e) C (f) D

(g) A (h) B (i) C (j) D

Figure 1. (a) The isoperiodic diagram. (b) The maximum Lyapunov exponent diagram. (c), (d) The phase-
portraits (xn, yn) and time series (xn, n) represent chaos attractor for (k, h) = (0.414, 0.718). (d), (h)
Periodic-18 attractor for (k, h) = (0.47, 2.4). (e), (i) Periodic-13 attractor for (k, h) = (0.11, 3.53). (f), (j)
Quasiperiodic attractor for (k, h) = (0.75, 3.9).

Figures 1(a), 1(b) show the isoperiodic graph and the maximum Lyapunov exponent
(MLE) graph of system (1) in a biparameter space, where different periods in Fig. 1(a)
correspond to different colors, and periods greater than 30 are uniformly represented in
black. In Fig. 1(b), yellow to red regions are used to describe chaotic regions, and green
to blue regions are used to describe periodic attractors (i.e., the maximum Lyapunov
exponent is less than 0). From Fig. 1 it is observed that the parameter plane contains
a number of V -shaped periodic islands (Arnold tongues). From Fig. 1(b) it is known that
the color at point A is red, i.e., MLE > 0. Therefore, the system is in a chaotic state,
and the phase diagram and time series diagram of the system at point A are shown in
Fig. 1(c). The color of Arnold’s tongue at points B and C is blue, and thus MLE < 0.
Corresponding to Fig. 1(a), it is known that the system will produce the solution of pe-
riod-18 at point B and the solution of period-13 at point C. The corresponding phase
diagrams and time series diagrams are shown in Figs. 1(d), 1(h) and Figs. 1(e), 1(i).
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(a) k = 0.414, h = 0.718 (b) k = 0.47, h = 2.4

(c) k = 0.11, h = 3.53 (d) k = 0.75, h = 3.9

Figure 2. The bifurcation diagram of system (1) when k and h take different values.

At point D, where the MLE value of the system is near 0, the system generates limit
loops and thus periodic solutions; see Figs. 1(f), 1(j).

From Fig. 2 it can be observed that when the parameters of the fear effect and the
Allee effect change simultaneously, the model transitions between flip bifurcations and
Neimark–Sacker bifurcations. This transition implies that the relationship between preda-
tors and prey becomes more complex. For instance, the originally stable predator–prey
cycles may be disrupted, leading to more variable interaction patterns. This could affect
the survival strategies of both species such as the predator’s foraging efficiency or the
prey’s defensive mechanisms.

Figure 3 is a partially enlarged view of Fig. 1. This gives a closer look at the Arnold
tongues and their formation. From Fig. 3(a) we see that the ordering of the appeared
tongues is based on the periods of the attractors, and the periods of the larger noticeable
tongues are increasing (by one) in order from left to right. From this figure it is also
observed that there are many smaller tongues in between each pair of larger tongues, and
the tongues appearing in the middle of two adjacent larger tongues show other period-
adding phenomena, where the period of the largest tongue in the middle of two tongues is
equal to the sum of the periods of its adjacent larger tongues. By observing Fig. 3(a) then
one can see that the period of the largest tongue between period-13 and period-14 tongues
is 27. Similarly, 27 is the period of the largest tongue located between the period-13 and
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(a) (b)

Figure 3. (a) The isoperiodic diagram. (b) The maximum Lyapunov exponent diagram.

Figure 4. Variation of the densities of prey and predator populations in h,r-biparameter space. Other parameter
values are K = 2, b = 0.8, β = 0.2, µ = 0.1, and k = 0.

period-14 tongues. The period of the largest tongue between period-14 and period-15
tongues is 29, and so on.

The Arnold tongue is a geometric structure that appears in bifurcation diagrams, indi-
cating the region where specific periodic behaviors exist. The Arnold tongue can delineate
the parameter range conducive to the coexistence of predators and prey. An appropriate
fear effect and Allee effect intensity can enable the two species to interact within a stable
period, preventing one from overgrowing or going extinct. This periodic interaction may
provide a space for survival for both parties, promoting the maintenance of biodiversity.

In Fig. 4, we explore the effects of prey growth rate r and Allee effect h on prey and
predator population density. Here we find that when h is small and the prey growth rate r
increases, the population density of predator and prey will increase. When the Allee effect
parameter h is large, the predator density approaches 0, and the prey population density
approachesK (environmental capacity). When the prey growth rate r remains unchanged,
the increase of the Allee effect h will lead to a gradual decrease in the predator population
density and region 0, while the prey population density gradually increases and region K.
Similarly, we consider the effect of the fear effect k and the predator natural mortality µ
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Figure 5. Variation of the densities of prey and predator populations in k,µ-biparameter space. Other parameter
values are K = 2, b = 0.8, β = 0.2, r = 2.5, and h = 0.

on the prey and predator population density in Fig. 5. Through observation, it is found
that when the fear effect k remains unchanged, the increase of µ will lead to the decrease
of predator population density and the increase of prey population density. When the
predator’s natural mortality µ remains unchanged, the increase of the fear effect k will
lead to a decrease in the predator population density, but has no significant effect on the
prey population density.

5 Conclusion

In this paper, we give a detailed analysis for the codimension-2 bifurcation of a dis-
crete predator–prey model with fear effect and Allee effect. The theoretical analyses
demonstrate that system (1) undergoes 1 : 2, 1 : 3, and 1 : 4 strong resonances by the
bifurcation theory. The numerical results show that system (1) will produce Arnold tongue
structures in the two-parameter space, which marks the generation of periodic structure.
This is a phenomenon not found in codimension-1 bifurcation, and when the parameters
of the fear effect and Allee effect take different values, system (1) will produce different
bifurcation phenomena. The conclusion obtained in this paper will be useful in the study
of applications with predator–prey systems undergoing the codimension-2 bifurcations
unfolded by system (1). It is still a challenging problem to explore a multiple parameters
bifurcation in the system. We expect to get more analysis results on this issue in the
future.
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