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Abstract. One of the most significant hypotheses in fixed point theory is the nonexpansivity
condition of contractive mappings. This property is crucial as operators that do not satisfy this
criterion may lack fixed points. In this paper, we propose a novel condition that, within the
appropriate framework, can obviate the necessity of imposing the nonexpansivity requirement in
the initial hypotheses. By employing this new condition, we illustrate how innovative results can be
derived in this area. Finally, we examine the existence and uniqueness of a solution for an elastic
beam equation with nonlinear boundary conditions grounded in the introduced fixed point results.
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1 Introduction

The field of fixed point theory is a branch of nonlinear analysis that has experienced
significant growth in recent years due to the enormous interest on its results, especially
when applied to areas such as the determination of solutions to various types of equations
(differential, integral, matricial, etc.) or the development of iterative processes that bring
the solution of a problem ever closer. Since the appearance of the first results in this line
of research (due to Brouwer and Banach), more and more general versions have appeared
in more abstract settings, demonstrating the vigor of this scientific field.
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From an abstract point of view, the results in this line of research mainly face the fol-
lowing challenges: first, to prove that an operator has at least one fixed point, and then to
study the possible uniqueness of such fixed point. Although it may seem a simple task, the
complexity of the current algebraic tools makes each new result in this field a real success.

The fundamental tool to prove the existence of a fixed point is the so-called con-
tractivity condition. In general, this is an inequality that, in one way or another, allows
us to establish that the distance between the images of two points by the considered
operator cannot excessively grow; otherwise, there could be no fixed points. In the last
fifty years, more and more general contractivity conditions have been presented, making
use of auxiliary functions applied to the contractive condition’s main terms. Along these
lines, one of the notions that have achieved tremendous success in the last ten years has
been the simulation functions, originally introduced by Khojasteh, Shukla, and Radenović
in 2015 in [10]. Almost immediately after that, many versions of this brilliant concept
emerged and have been improved over the last five years; see [2, 3, 5, 7, 9].

One such extension, very recently introduced by Mongkolkeha and Sintunavarat [11]
in the setting of b-metric spaces, is the concept of large Zs-contraction mapping (Defi-
nition 6), which reduces to a single condition the assumptions imposed on the auxiliary
function called large s-simulation function (the original simulation functions consisted of
three conditions) but, in return, imposes two conditions on the associated contractions,
called large Zs-contractions (Definition 7). The curious key about this class of contrac-
tions is that there is no single auxiliary function involved in the contractivity condition, but
rather that this condition locally depends on a parameter that makes it impossible to con-
trol all points in the underlying space. However, returning to what has already been com-
mented, this class of contractions needs to assume the nonexpansivity condition, which is
natural in the results of fixed point theory but, in a certain way, it is very restrictive.

This fact has made us reflect on the need to look for more general conditions than
the nonexpansivity of the contractivity mapping, which, in turn, are compatible with the
considered simulation function. Therefore, in this paper, we present a new condition that,
in the appropriate framework, can avoid the need to impose the nonexpansivity condition
in the initial hypotheses. Using this new condition, we show how new results can be
obtained in the field of fixed point theory. Furthermore, we show the exact point at which
the nonexpansivity helps to simplify the proofs, thus laying the groundwork for other
researchers to pose even more general conditions. With this, we are confident that many
other previous theorems can be revised to study if they are still fulfilled by removing
such a hypothesis or replacing it with another one that is easier to verify. At the end of
this paper, based on the introduced fixed point result, we investigate the existence and
uniqueness of a unique solution for an elastic beam equation with nonlinear boundary
conditions.

2 Preliminaries

In this section, we introduce the necessary background to understand the main contents
of this paper; see also [1]. To start with, we present the definitions and first properties of
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some classes of auxiliary functions that will be of great help in what follows. Hereafter,
let N = {1, 2, 3, . . . } be the set of positive integer numbers, let N0 = N ∪ {0}, and let R
denote the set of all real numbers.

Let X be a nonempty set, and let T : X → X be a self-operator. Given m ∈ N0, let
us denote by Tm : X → X the self-mapping on X , which is defined by

Tm =


identity mapping on X if m = 0,

T if m = 1,

T ◦ Tm−1 if m > 2.

We refer to Tm as them-iteration of T . Given x0 ∈ X , the Picard sequence of T starting
from x0 is the sequence {xn}n∈N0

⊆ X defined by xn = Tnx0 for each n ∈ N0.

Definition 1. Given a real number s ∈ [1,∞), a b-metric space with a coefficient s is
a pair (X, d) such that X is a nonempty set, and d : X × X → [0,∞) is a mapping
satisfying the following properties for each x, y, z ∈ X:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(y, x) = d(x, y);

(iii) d(x, z) 6 s[d(x, y) + d(y, z)].

In such a case, we will also say that (X, d, s) is a b-metric space. A sequence {xn} ⊆ X
on a b-metric space is convergent to z ∈ X if limn→∞ d(xn, z) = 0, and it is Cauchy
if limn,m→∞ d(xn, xm) = 0. The b-metric space (X, d, s) is complete if every Cauchy
sequence in X is convergent to a point of X . Moreover, a sequence {xn} in a b-metric
space (X, d, s) is asymptotically regular if limn→∞ d(xn, xn+1) = 0.

Definition 2. (See [8].) A sequence {xn}n∈N ⊆ X , where X is a nonempty set, is:

(i) infinite if xn 6= xm for each n,m ∈ N such that n 6= m;
(ii) almost periodic if there are n0, p0 ∈ N such that xn0+r+kp0 = xn0+r for each

k ∈ N and all r ∈ {0, 1, . . . , p0 − 1} (this means that {xn}n>n0
is a periodic

sequence because the terms {xn0
, xn0+1, xn0+2, . . . , xn0+p0−1} are infinitely

repeated in the same order);
(iii) almost constant if there is n0 ∈ N such that xn = xn0

for each n > n0 (this
means that {xn}n>n0

is a constant sequence).

Proposition 1. (See [8].) Every Picard sequence is either infinite or almost periodic.

Proposition 2. (See [6, 8, 15].) If {xn}n∈N is a Picard and asymptotically regular se-
quence in a b-metric space (X, d, s), then {xn} is either infinite or almost constant.

2.1 Simulation functions

A first approach to the notion of a simulation function was given by Khojasteh et al. [10]
in 2015 as follows.
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Definition 3. (See [10].) A function ζ : [0,∞) × [0,∞) → R is said to be a simulation
function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) If {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0,

then lim supn→∞ ζ(tn, sn) < 0.

Taking into account that the arguments of the function ζ played a symmetric role
in (ζ3), which is not usual in the setting of fixed point theory, some authors slightly
modified the previous notion in the following way.

Definition 4. (See [7].) A simulation function is a function ζ : [0,∞) × [0,∞) → R
satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ ′3) If {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0

and tn < sn for all n ∈ N, then lim supn→∞ ζ(tn, sn) < 0.

The family of all simulation functions ζ : [0,∞)× [0,∞)→ R in the Roldán López
de Hierro et al.’s sense will be denoted by Z . It can be easily deduced from (ζ2) that

ζ(t, t) < 0 for all t > 0

whatever the simulation function ζ ∈ Z .
In 2017, Yamaod and Sintunavarat [13] introduced the new type of simulation func-

tions depending on a constant s > 1 as follows.

Definition 5. (See [13].) Given s ∈ [1,∞), a function ζ : [0,∞)× [0,∞)→ R is called
an s-simulation function if it satisfies the following two conditions:

(S2) ζ(t, s) < s− t for all t, s > 0;
(S4) If {αn}, {βn} are sequences in (0,∞) such that

0 < lim inf
n→∞

αn 6 s lim sup
n→∞

βn 6 s2 lim inf
n→∞

αn (1)

and

0 < lim inf
n→∞

βn 6 s lim sup
n→∞

αn 6 s2 lim inf
n→∞

βn, (2)

then lim supn→∞ ζ(αn, βn) < 0.

Recenty, Mongkolkeha and Sintunavarat [11] attempted to extend the class of s-sim-
ulation functions by deleting one condition from the above definition as follows.

Definition 6. (See [11].) Given s ∈ [1,∞), a function ζ : [0,∞) × [0,∞) → R is said
to be a large s-simulation function if it satisfies condition (S4).
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The family of all large s-simulation function ζ : [0,∞) × [0,∞) → R in the above
sense will be denoted by Cs. With the assistance of this class, Mongkolkeha and Sin-
tunavarat [11] introduced a new class of self-mappings on a b-metric space, where each
mapping in this class has a unique fixed point, provided that the space is complete. Below
are the definitions of mappings in this class and the corresponding fixed point results.

Definition 7. (See [11].) Let (X, d) be a b-metric space with the coefficient s > 1 and
ζ ∈ Cs. A mapping T : X → X is called a largeZs-contraction mapping if the following
conditions hold:

(L1) d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y;
(L2) For all ε > 0, there is ζ ∈ Cs such that

ζ(d
(
Tx, Ty), d(x, y)

)
> 0 (3)

for each x, y ∈ X satisfying d(x, y) > ε.

Theorem 1. (See [11].) Let (X, d) be a complete b-metric space with the coefficient
s > 1, and let T : X → X be an large Zs-simulation contraction mapping. Then T is
a Picard mapping, that is, T has a unique fixed point x∗ ∈ X , and the Picard sequence
{xn} defined by xn = Txn−1 for all n ∈ N, where x0 ∈ X , converges to the fixed
point x∗.

3 Some reflections on the successive extensions of the notion
of simulation functions

In the field of fixed point theory, two main aims are recurrently studied. Firstly, to prove
that a self-mapping has at least one fixed point. Secondly, to deduce that such a fixed
point is unique. To do this, it is usual to assume that the self-mapping is nonexpansive,
that is, the distance between the images of two points of the underlying space from the
self-mapping is less than or equal to the distance between such points. The reason is clear:
if the mapping is not nonexpansive, then it can be free of fixed points. Let us explain this
fact in an algebraic way.

A self-mapping T on a b-metric space (X, d, s) into itself is nonexpansive if
d(Tx, Ty) < d(x, y) for each x, y ∈ X with x 6= y (recall condition (L1) in Definition 7).
If T is not nonexpansive, then it could be free of fixed points. For instance, if X = N
and Tn = n + 1 for each n ∈ N, then T is fixed points free. As a consequence, the
nonexpansivity condition is often implicitly assumed in many results in fixed point theory.
Nevertheless, two ways are possible: either it is directly assumed under the main hypothe-
ses (as in Theorem 1) or it can also be indirectly deduced from the main hypotheses. The
first option is of great help in the proofs of the results in this line of research as we will
show later.

With respect to the notion of simulation function, the first and the most important
example of such kind of functions is ζλ : [0,∞)× [0,∞)→ R defined by

ζλ(t, s) = λs− t for each t, s ∈ [0,∞),

Nonlinear Anal. Model. Control, 30(3):405–424, 2025
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where λ ∈ [0, 1) is a constant. This is due to the fact that the notion of simulation function
originally always had in mind to generalize the Banach contractivity condition, that is, for
all x, y ∈ X ,

d(Tx, Ty) 6 λd(x, y) ⇐⇒ ζλ
(
d(Tx, Ty), d(x, y)

)
> 0.

However, as Roldán López de Hierro et al. pointed out in [7], the original notion of
simulation function (see Definition 3) entailed a problem: condition (ζ3) was symmetric
in both arguments of ζ, that is, the sequences {tn} and {sn} could swap their roles. As
a consequence, for the kind of sequences in axiom (ζ3), we could deduce both

lim sup
n→∞

ζ(tn, sn) < 0 and lim sup
n→∞

ζ(sn, tn) < 0.

The first of the previous inequalities greatly helps to prove that a Picard sequence is
Cauchy. However, the second one has no significance, but it is covered by axiom (ζ3)
in Definition 3, which is a little bit odd. As a consequence, the above-mentioned authors
proposed to include the condition “tn < sn for all n ∈ N” on the statement of such
property (see Definition 4). This assumption leads to a generalization in which the roles
of the arguments of the simulation function are not symmetric. After that, the field of
fixed point theory involving simulation functions has experienced tremendous and full
of success growth; for instance, see [2, 3, 5, 9, 12, 14]. However, in many cases, the
assumptions on extended notions of simulation functions continued being symmetric as
in condition (S4) of Definitions 5.

Notice that the two requirements on the sequences {αn} and {βn} in property (S4),
that is,

0 < lim inf
n→∞

αn 6 s lim sup
n→∞

βn 6 s2 lim inf
n→∞

αn (4)

and

0 < lim inf
n→∞

βn 6 s lim sup
n→∞

αn 6 s2 lim inf
n→∞

βn (5)

are jointly equivalent to assume, in a simpler way, that

0 < lim sup
n→∞

βn 6 s lim inf
n→∞

αn and 0 < lim sup
n→∞

αn 6 s lim inf
n→∞

βn. (6)

In the proof of Theorem 1, they were decisive two facts in order to control the key
sequences {αn} and {βn}: on the one hand, the assumption that T is nonexpansive, and,
on the other hand, the joint conditions (4) and (5).

In the following section, we will introduce a new fixed point result in which the
nonexpansiveness condition is replaced by a more general hypothesis. Furthermore, in
order to give a distinct significance to the arguments of the simulation function, we will
modify an exponent in one inequality of (6), which will produce a completely different
notion.

https://www.journals.vu.lt/nonlinear-analysis
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4 Wide s-simulation functions obtaining new results in fixed point
theory

The main aims of this section are to present the new type of generalized simulation
functions and to define a novel family of contractions using the idea of the new gener-
alized simulation functions. This family of contractions is to determined by avoiding the
condition that mappings in this family are nonexpansive. Furthermore, this family also
highlights that the arguments of simulation functions have not to play a symmetric role.

4.1 Wide s-simulation functions

The following one is the kind of auxiliary functions we will use in the main results.

Definition 8. Given s ∈ [1,∞), a function ζ : [0,∞)× [0,∞)→ R is said to be a wide
s-simulation function if it satisfies the following property:

(S5) If {tk} and {sk} are bounded sequences in (0,∞) such that

0 < lim sup
k→∞

sk 6 s lim inf
k→∞

tk (7)

and
0 < lim sup

k→∞
tk 6 s3 lim inf

k→∞
sk, (8)

then lim supk→∞ ζ(tk, sk) < 0.

We denote by Ws the family of all wide s-simulation functions.

We advise the reader that the usage of distinct exponents on the right-hand sides of
the previous inequalities is not an erratum. This is, in fact, the reason why the arguments
of ζ do not play the same role.

Remark 1. We highlight that the sequences {tk} and {sk} in Definition 8 must be
bounded to avoid the case in which all the involved limits (inferior and superior) are∞.

Remark 2. If ζ is a function satisfying property (S5), then it also satisfies property (S4)
(because all the pairs of sequences satisfying the hypotheses of (S4) also satisfy the
hypotheses of (S5)). In this sense, condition (S4) is more general than condition (S5),
which implies that

Ws ⊆ Cs. (9)

However, from our point of view, (S5) better explains that the function ζ has not to satisfy
symmetric conclusions such that

lim sup
n→∞

ζ(tn, sn) < 0 and lim sup
n→∞

ζ(sn, tn) < 0

under the hypotheses of axiom (ζ3). In Example 2, we will prove that the inclusion
W2 ⊆ C2 is strict.

Nonlinear Anal. Model. Control, 30(3):405–424, 2025
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The following one is a four-parametric family of wide 2-simulation functions.

Example 1. Given ε > 0, M > 0, and δ ∈ (0, 1), let ζε,M,δ,f : [0,∞)× [0,∞) → R be
defined as follows:

ζε,M,δ,f (t, s) =


Ms−M(2 + δ)t− ε

if 0 < t < 4(2 + δ)s and 0 < s < (2 + δ)t,

f(t, s) otherwise,

(10)

where f : [0,∞)× [0,∞)→ R is an arbitrary function. We claim that ζε,M,δ,f ∈W2 for
any ε > 0, M > 0, and δ ∈ (0, 1). To prove it, let {αn} and {βn} be bounded sequences
in (0,∞) satisfying (7) and (8) for s = 2. For simplicity, we denote `α = lim infk→∞ αk,
Lα = lim supk→∞ αk, `β = lim infk→∞ βk, and Lβ = lim supk→∞ βk (all of them
are finite and positive). Conditions (7) and (8) mean that

0 < `α 6 2Lβ 6 4`α <∞
and

0 < `β 6 2Lα 6 8`β <∞.

Associated to δ ∈ (0, 1), there is δ′ ∈ (0, δ) satisfying 2(1 + δ′)/(1 − δ′) < 2 + δ.
Furthermore, having in mind the properties of the limits inferior and superior, associated
to δ′ > 0, there is n0 ∈ N such that, for all n > n0,

(1− δ′)`α 6 αn 6 (1 + δ′)Lα

and
(1− δ′)`β 6 βn 6 (1 + δ′)Lβ .

As a result, for each n > n0, we obtain

αn 6 (1 + δ′ )Lα 6 (1 + δ′)8`β = 4
2(1 + δ′)

1− δ′
(1− δ′)`β

= 4
2(1 + δ′)

1− δ′
βn < 4(2 + δ)βn,

and similarly, we have

βn 6 (1 + δ′)Lβ 6 (1 + δ′)2`α =
2(1 + δ′)

1− δ′
(1− δ′)`α

=
2(1 + δ′)

1− δ′
αn < (2 + δ)αn.

Since 0 < αn < 4(2 + δ)βn and 0 < βn < (2 + δ)αn, then, for all n > n0,

ζε,M,δ,f (αn, βn) =Mβn −M(2 + δ)αn − ε
=M

[
βn − (2 + δ)αn

]
− ε 6 −ε.

Therefore,
lim sup
n→∞

ζε,M,δ,f (αn, βn) 6 −ε < 0,

https://www.journals.vu.lt/nonlinear-analysis
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so condition (S5) holds. Hence, ζε,M,δ,f ∈ W2, and taking into account (9), then
ζε,M,δ,f ∈ C2.

Next, we show that the family C2 is strictly greater than W2.

Example 2. Given ε > 0, M > 0, and δ ∈ (0, 1), let ζ̃ε,M,δ,f : [0,∞)× [0,∞) → R be
defined as follows:

ζ̃ε,M,δ,f (t, s) =


Ms−M(2 + δ)t− ε

if 0 < t < (2 + δ)s and 0 < s < (2 + δ)t,

f(t, s) otherwise,

where f : [0,∞) × [0,∞) → R is an arbitrary function. Reasoning as in Example 1, it
can be checked that ζ̃ε,M,δ,f ∈ C2. Next, we suppose that f(48, 6) = 0, and we prove
that ζ̃ε,M,δ,f /∈W2. Let us consider the sequences {tn} and {sn} defined as

tn =

{
48 if n is even,
3 if n is odd;

sn = 6 for all n ∈ N.

Then {tn}, {sn} ⊂ (0,∞) are bounded sequences such that

0 < lim sup
k→∞

sk = 6 = 2 · 3 = s lim inf
k→∞

tk

and
0 < lim sup

k→∞
tk = 48 = 8 · 6 = s3 lim inf

k→∞
sk.

Notice that the point (t0, s0) = (48, 6) does not satisfy t < (2 + δ)s, so ζ̃ε,M,δ(48, 6) =
f(48, 6) = 0. Hence

lim sup
k→∞

ζ(tk, sk) = max
{
ζ̃ε,M,δ(3, 6), ζ̃ε,M,δ(48, 6)

}
> ζ̃ε,M,δ(48, 6) = f(48, 6) = 0.

This inequality demonstrates that ζ̃ε,M,δ,f /∈W2.

4.2 Fixed point theory for wide Ws-contractions

We introduce in this subsection the family of contractions in which we are interested.

Definition 9. Let (X, d, s) be a b-metric space with s > 1. A mapping T : X → X is
called a wide Ws-contraction if the following conditions hold:

(L′1) For each x ∈ X , the limit limn→∞ d(Tnx, Tn+1x) exists (that is, it is a real
finite number);

(L′2) For all ε > 0, there is ζ ∈ Ws such that inequality (3) is satistied for each
x, y ∈ X , where d(x, y) > ε.

Nonlinear Anal. Model. Control, 30(3):405–424, 2025
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In the above definition, condition (L′1) is more general than (L1). Clearly (L1) implies
(L′1) because if d(Tx, Ty) < d(x, y) for all x, y ∈ X , then for each x ∈ X , we obtain

0 6 d
(
Tn+1x, Tn+2x

)
6 d
(
Tnx, Tn+1x

)
6 · · · 6 d

(
Tx, T 2x

)
6 d(x, Tx).

Therefore, the sequence {d(Tnx, Tn+1x)}n∈N is decreasing and bounded below, so it is
convergent. In the following example, we show that the converse is false.

Example 3. Let X = [2,∞) be endowed with the Euclidean metric d0, and let T : X →
X be defined by

Tx = x+ 2− 1

x
for each x ∈ X.

If x0 = 2 and y0 = 3, then

d0(Tx0, T y0) = d0

(
2 + 2− 1

2
, 3 + 2− 1

3

)
=

∣∣∣∣72 − 14

3

∣∣∣∣
=

7

6
> 1 = d(x0, y0).

Therefore, T is not nonexpansive. However, given x ∈ X , we observe that

d0(x, Tx) =

∣∣∣∣x− (x+ 2− 1

x

)∣∣∣∣ = 2− 1

x
.

Taking into account that T is strictly increasing and Tx > x + 1 for each x ∈ X , we
deduce that, given any x0 ∈ X , we have that Tnx0 →∞ as n→∞, and so

lim
n→∞

d0
(
Tnx0, T

n+1x0
)
= lim
n→∞

d0
(
Tnx0, T

(
Tnx0

))
= lim
n→∞

(
2− 1

Tnx0

)
= 2.

Hence, T satisfies condition (L′1).

Proposition 3. If a wide Ws-contraction has a fixed point, then it is unique.

Proof. Let (X, d, s) be a b-metric space, and let T : X → X be a wide Ws-contraction
with two distinct fixed points x1, x2 ∈ X . Let ε = d(x1, x2) > 0. By condition (L′2),
there is ζ ∈ Ws such that, for each x, y ∈ X satisfying d(x, y) > ε = d(x1, x2),
inequality (3) holds. In particular, applying (3) to x = x1 and y = x2 and taking into
account that x1 and x2 are fixed points of T , we obtain that

ζ
(
d(x1, x2), d(x1, x2)

)
= ζ
(
d(Tx1, Tx2), d(x1, x2)

)
> 0. (11)

Let us define tn = sn = d(x1, x2) > 0 for each n ∈ N. Then tn → d(x1, x2) and
sn → d(x1, x2) as n→∞, and so

lim inf
n→∞

tn = lim sup
n→∞

tn = lim inf
n→∞

sn = lim sup
n→∞

sn = d(x1, x2) > 0.
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Since s > 1, inequalities (7) and (8) are trivial. Having in mind that ζ ∈ Ws is a wide
s-simulation function, then

ζ
(
d(x1, x2), d(x1, x2)

)
= lim sup

k→∞
ζ(tk, sk) < 0,

which contradicts (11). Therefore, T cannot have two distinct fixed points.

Next, we prove the main result involving the existence of a unique fixed point for
continuous wide Ws-contractions.

Theorem 2. Every continuous wide Ws-contraction from a complete b-metric space into
itself is a Picard operator.

Proof. Let (X, d, s) be a complete b-metric space, and let T : X → X be a wide Ws-
contraction. Given a point x0 ∈ X , let {xn = Tnx0}n∈N0 be the Picard sequence of T
starting from x0. If there is some n0 ∈ N0 such that xn0

= xn0+1, then xn0
is a fixed

point of T , and the uniqueness of such fixed point follows from Proposition 3. On the
contrary case, suppose that

d(xn, xn+1) > 0 for each n ∈ N0. (12)

By hypothesis (L′1), there is L = limn→∞ d(xn, xn+1) > 0. To prove that L = 0, sup-
pose, by contradiction, thatL > 0. Let tn = d(xn+1, xn+2) > 0 and sn = d(xn, xn+1) >
0 for each n ∈ N. Then tn → L and sn → L as n→∞, and so

lim inf
n→∞

tn = lim sup
n→∞

tn = lim inf
n→∞

sn = lim sup
n→∞

sn = L > 0.

Since s > 1, we have

0 < L = lim sup
n→∞

sn 6 sL = s lim inf
n→∞

tn

and
0 < L = lim sup

n→∞
tn 6 s3L = s3 lim inf

n→∞
sn.

As a consequence, property (S5) guarantees that

lim sup
n→∞

ζ(tn, sn) < 0. (13)

On the other hand, taking into account that d(xn, xn+1)→ L as n→∞, there is n0 ∈ N
such that

L

2
6 d(xn, xn+1) for each n > n0. (14)

Using (L′2) with ε = L/2 > 0, there is ζ ∈ Ws such that, for each x, y ∈ X , where
d(x, y) > ε = L/2, inequality (3) is satisfied. By (14) and (3), it holds that

ζ
(
d(Txn, Txn+1), d(xn, xn+1)

)
> 0 for each n > n0,
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that is,

ζ(tn, sn) = ζ
(
d(xn+1, xn+2), d(xn, xn+1)

)
> 0 for each n > n0.

This condition implies that

0 6 lim inf
n→∞

ζ(tn, sn) 6 lim sup
n→∞

ζ(tn, sn) ∈ [0,∞],

which contradicts (13). This contradiction demonstrates that L = 0, that is,

lim
n→∞

d(xn, xn+1) = 0.

In particular, the sequence {d(xn, xn+1)}n∈N0
is bounded, that is, there is M > 0 such

that
d(xn, xn+1) 6M for each n ∈ N0.

Using Proposition 2, the Picard sequence {xn} is either infinite or almost constant. By (12),
the second case is impossible (it cannot be constant from a term onward). Then it is
infinite, that is, xn 6= xm for each n,m ∈ N such that n 6= m.

Next, we prove, by contradiction, that {xn} is a Cauchy sequence in (X, d, s). If this
is false, there are ε0 > 0 and two subsequences {xn(k)}k∈N and {xm(k)}k∈N of {xn}
such that k < n(k) < m(k) and

d(xn(k), xm(k)−1) < ε0 6 d(xn(k), xm(k)) for each k ∈ N

(the first inequality follows by assuming that for each n(k), the numberm(k) is the lowest
natural number greater than n(k) satisfying the second inequality). Define

tk = d(xn(k), xm(k)) and sk = d(xn(k)−1, xm(k)−1) for each k ∈ N.

Clearly, {tk}k∈N and {sk}k∈N are sequences in (0,∞). For the sequence {tk}k∈N, the
following holds:

ε0 6 tk = d(xn(k), xm(k))

6 s
[
d(xn(k), xm(k)−1) + d(xm(k)−1, xm(k))

]
6 s
[
ε0 + d(xm(k)−1, xm(k))

]
6 s[ε0 +M ]. (15)

Since the sequence {tk} is bounded, then it has limit superior and limit superior, and
letting k →∞ in (15), we deduce that

0 < ε0 6 lim inf
k→∞

tk 6 lim sup
k→∞

tk 6 sε0. (16)

On the other hand, for each k ∈ N, we have

0 < sk = d(xn(k)−1, xm(k)−1)

6 s
[
d(xn(k)−1, xn(k)) + d(xn(k), xm(k)−1)

]
6 s
[
d(xn(k)−1, xn(k)) + ε0

]
6 s[M + ε0]. (17)
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Hence, the sequence {sk} is also bounded, and letting k →∞ in (17), we deduce that

0 6 lim inf
k→∞

sk 6 lim sup
k→∞

sk 6 sε0. (18)

Furthermore, for all k ∈ N, we obtain

ε0 6 tk = d(xn(k), xm(k))

6 s
[
d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k))

]
6 sd(xn(k), xn(k)−1) + s2d(xn(k)−1, xm(k)−1) + s2d(xm(k)−1, xm(k))

= sd(xn(k), xn(k)−1) + s2sk + s2d(xm(k)−1, xm(k)),

and letting k →∞ in the previous inequality, we deduce that

ε0 6 s2 lim inf
k→∞

sk.

In particular,
lim inf
k→∞

sk >
ε0
s2

> 0,

which, together with (18), implies that

0 <
ε0
s2

6 lim inf
k→∞

sk 6 lim sup
k→∞

sk 6 sε0. (19)

Joining (16) and (19), we can prove (7) because

0 < lim sup
k→∞

sk 6 sε0 6 s lim inf
k→∞

tk. (20)

In addition to this,

0 < lim sup
k→∞

tk 6 sε0 = s3
ε0
s2

6 s3 lim inf
k→∞

sk, (21)

which proves (8). Taking into account that

0 <
ε0
s2

6 lim inf
k→∞

sk,

there is k0 ∈ N such that

0 <
ε0
2s2

6 sk for each k > k0.

Using ε = ε0/(2s
2) > 0 in (L′2), there is ζ ∈ Ws such that, for each x, y ∈ X , where

d(x, y) > ε = ε0/(2s
2), inequality (3) holds. Since

d(xn(k)−1, xm(k)−1) = sk >
ε0
2s2

for each k > k0,
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then

ζ(tk, sk) = ζ
(
d(xn(k), xm(k)), d(xn(k)−1, xm(k)−1)

)
= ζ
(
d(Txn(k)−1, Txm(k)−1), d(xn(k)−1, xm(k)−1)

)
> 0 for each k > k0.

In particular,
0 6 lim sup

k→∞
ζ(tk, sk) ∈ [0,∞]. (22)

On the other hand, using property (S5) with ζ ∈ Ws and taking into account that the
sequences {tk} and {sk} satisfy (20) and (21), we deduce that

lim sup
k→∞

ζ(tk, sk) < 0,

which contradicts (22). This contradiction demonstrates that {xn} is a Cauchy sequence
in (X, d, s). As this space is complete, then there is z ∈ X such that xn → z as n→∞.
In this case, as T is continuous, then xn+1 = Txn → Tz as n→∞, and the uniqueness
of the limit of a convergent sequence in a b-metric space finally guarantees that Tz = z,
that is, z is a fixed point of T . The uniqueness of the fixed point follows from Proposi-
tion 3.

Example 4. Let X = [0, 1] ∪ {10, 10.1} be endowed with d(x, y) = (x − y)2 for all
x, y ∈ X . Clearly, d is a b-metric with s = 2 (use x = 0, y = 0.5, and z = 1 to check
that s = 2 cannot be improved with a lesser constant, so d is not a metric). Let us define
T : X → X as follows:

Tx =


x
2 if x ∈ [0, 1],

0 if x = 10,

1 if x = 10.1.

If x0 = 10 and y0 = 10.1, then d(x0, y0) = 0.12 = 0.01 and d(Tx0, T y0) = d(0, 1) =
12 = 1. Since d(Tx0, T y0) > d(x0, y0), then T is not a large Z2-contraction mapping
(condition (L1) fails), so Theorem 1 is not applicable to T . Nevertheless, let us show that
Theorem 2 is applicable. Clearly, T satisfies condition (L′1). To prove the property (L′2),
given ε > 0, let ζ : [0,∞)× [0,∞)→ R be defined as

ζ(t, s) =


Ms−M(2 + δ)t− ε

if 0 < t < 4(2 + δ)s and 0 < s < (2 + δ)t,

0 otherwise,

where M > 0 and δ ∈ (0, 1) are arbitrary. Notice that ζ is ζε,M,δ,f defined as in (10)
when f(t, s) = 0 for all t, s ∈ [0,∞). It was proved in Example 1 that ζ ∈ W2. In fact,
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we claim that ζ(d(Tx, Ty), d(x, y)) = 0 for all x, y ∈ X such that d(x, y) > ε. Suppose
that x, y ∈ X satisfies d(x, y) > ε. We are going to show that it is impossible that

0 < d(Tx, Ty) < 4(2 + δ)d(x, y) (23)
and

0 < d(x, y) < (2 + δ)d(Tx, Ty). (24)

We consider the following cases.

(i) If x, y ∈ [0, 1], then d(x, y)=(x−y)2 and d(Tx, Ty)=d(x/2, y/2)=(x−y)2/4.
Therefore,

0 < (2 + δ)d(Tx, Ty) = (2 + δ)
(x− y)2

4
=

2 + δ

4
(x− y)2

<
3

4
(x− y)2 < (x− y)2 = d(x, y),

so condition (24) is false.
(ii) If x ∈ [0, 1] and y ∈ {10, 10.1}, then d(x, y) = (x− y)2 > (10− 1)2 = 81 and

d(Tx, Ty) = d(0, z), where z ∈ {0, 1}. Hence

(2 + δ)d(Tx, Ty) 6 (2 + δ)12 = 2 + δ < 3 < 81 6 d(x, y),

so condition (24) does not hold.
(iii) If x ∈ {10, 10.1} and y ∈ [0, 1], the same conclusion holds because d is sym-

metric.
(iv) If x, y ∈ {10, 10.1}, then either x = 10 and y = 10.1 or vice versa (notice

that x 6= y because d(x, y) > ε). Hence d(x, y) = d(10, 10.1) = 0.01 and
d(Tx, Ty) = d(0, 1) = 1, so

4(2 + δ)d(x, y) = 4(2 + δ)0.01 =
2 + δ

25
<

3

25
< 1 = d(Tx, Ty),

which means that condition (23) does not hold.

We have checked that if x, y ∈ X satisfies d(x, y) > ε, then inequalities (23), (24)
cannot hold at the same time. Therefore, ζ(d(Tx, Ty), d(x, y)) = 0. In particular, T
satisfies (L′2). As it also satisfies (L′1), then T is a wide W2-contraction mapping, and as
it is continuous, then Theorem 2 is applicable to T to guarantee that is has a unique fixed
point.

The continuity of the operator T in Theorem 2 is a strong condition that did not appear
in Theorem 1. The reason is that largeZs-simulation contractions are nonexpansive (recall
Definition 7), so it can be proved that, for each k ∈ N,

tk = d(xn(k), xm(k)) = d(Txn(k)−1, Txm(k)−1)

< d(xn(k)−1, xm(k)−1) = sk.

This inequality greatly simplifies the proof of Theorem 1, and it allowed the authors to
use the same exponent in conditions (1) and (2).
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In the following result, we replace the continuity condition in Theorem 2 by other
general assumptions, involving auxiliary functions. For instance, the following extended
version of the nonexpansivity: let Φ be the family of all functions ϕ : (0,∞) → (0,∞)
such that

• if {tn} ⊂ (0,∞) is a sequence, where tn → 0 as n → ∞, then ϕ(tn) → 0 as
n→∞.

Theorem 3. Let (X, d, s) be a complete b-metric space, and let T : X → X be a wide
Ws-contraction. Suppose that there is a function ϕ ∈ Φ such that, for each x, y ∈ X such
that x 6= y,

d(Tx, Ty) 6 ϕ
(
d(x, y)

)
.

Then T is a Picard operator.

Proof. Following the arguments of the proof of Theorem 2, we can reduce the proof to
the case in which the Picard sequence {xn = Tnx0}n∈N0 is infinite and convergent to
z ∈ X . As it is infinite, there is n0 ∈ N such that xn 6= z and xn 6= Tz for each n > n0.
By hypothesis, since d(xn, z)→ 0 as n→∞, then ϕ(d(xn, z))→ 0 as n→∞, and as

d(xn+1, T z) = d(Txn, T z) 6 ϕ
(
d(xn, z)

)
for each n > n0,

then d(xn+1, T z) → 0 as n → ∞, that is, xn+1 → z as n → ∞. The uniqueness of the
limit of a convergent sequence in a b-metric space finally guarantees that Tz = z, that is,
z is a fixed point of T . The rest is similar to the proof of Theorem 2.

A simple way to apply the previous result is the following version.

Corollary 1. Let (X, d, s) be a complete b-metric space, and let T : X → X be a wide
Ws-contraction. Suppose that there are a1, a2, . . . , am ∈ (0,∞) such that, for each x, y ∈
X with x 6= y,

d(Tx, Ty) 6 a1d(x, y) + a2d(x, y)
2 + · · ·+ amd(x, y)

m.

Then T is a Picard operator.

Proof. It follows from Theorem 3 by employing the function ϕa1,a2,...,am ∈ Φ defined
by ϕa1,a2,...,am(t) = a1t+ a2t

2 + · · ·+ amt
m for each t > 0.

In the following consequence, we employ a general version of the nonexpansiveness.

Corollary 2. Let (X, d, s) be a complete b-metric space, and let T : X → X be a wide
Ws-contraction. Suppose that there is λ ∈ (0,∞) such that, for each x, y ∈ X with
x 6= y,

d(Tx, Ty) 6 λd(x, y).

Then T is a Picard operator.

Proof. It follows from Theorem 3 by employing the function ϕλ ∈ Φ defined by ϕλ(t) =
λt for each t > 0.
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Corollary 3. Let (X, d, s) be a complete b-metric space, and let T : X → X be a wide
Ws-contraction. Suppose that for each x, y ∈ X with x 6= y,

d(Tx, Ty) 6 d(x, y).

Then T is a Picard operator.

Proof. Use λ = 1 in Corollary 2.

One of the main characteristics of the wide Ws-contractions is that we can never
ensure that it exists a unique ζ ∈ Ws such that, for each x, y ∈ X , where x 6= y,
inequality (3) is satisfied. The function ζ ∈ Ws in condition (L′2) directly depends on
ε > 0, and (3) does not hold in the whole space X , but it must only occur when
d(x, y) > ε. Nevertheless, inspired by condition (ζ2) that a simulation function must
satisfy, we introduce the following kind of wide s-simulation functions.

Definition 10. Given s ∈ [1,∞) and λ, µ ∈ (0,∞), a function ζ : [0,∞)× [0,∞)→ R
is said to be a wide (s, λ, µ)-simulation function if it satisfies property (S5) of Definition 8
and

ζ(t, s) 6 λs− µt for each t, s ∈ (0,∞). (25)

We denote by Ws,λ,µ the family of all wide (s, λ, µ)-simulation functions.

Clearly, Ws,λ,µ ⊆Ws.

Theorem 4. Let (X, d, s) be a complete b-metric space, and let T : X → X be a map-
ping. Suppose that the following properties are fulfilled:

(L′1) For each x ∈ X , the limit limn→∞ d(Tnx, Tn+1x) exists (that is, it is a real
finite number);

(L′2) Let λ, µ ∈ (0,∞), and for all ε > 0, there is ζ ∈Ws,λ,µ satisfying inequality (3)
for each x, y ∈ X , where d(x, y) > ε.

Then T is a Picard operator.

Proof. Since Ws,λ,µ ⊆ Ws, we can follow the arguments of the proof of Theorem 2 to
reduce the proof to the case in which for each x0 ∈ X , the Picard sequence {xn =
Tnx0}n∈N0

is infinite and convergent to z ∈ X . As it is infinite, there is n0 ∈ N such
that xn 6= z and xn 6= Tz for each n > n0. For each n ∈ N0 with n > n0, using (L′2)
with ε = d(xn, z) > 0, there is ζn ∈ Ws,λ,µ such that, for each x, y ∈ X satisfying
d(x, y) > ε = d(xn, z),

ζn
(
d(Tx, Ty), d(x, y)

)
> 0.

In particular,

ζn
(
d(Txn, T z), d(xn, z)

)
> 0 for each n ∈ N with n > n0.

Using (25), for each n ∈ N with n > n0,

0 6 ζn
(
d(Txn, T z), d(xn, z)

)
6 λd(xn, z)− µd(Txn, T z),
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and as λ, µ > 0, then

d(Txn, T z) 6
λ

µ
d(xn, z) for each n ∈ N with n > n0.

This implies that d(xn+1, T z) → 0 as n → ∞, and we can reason as in the proof of
Theorem 3 to conclude that z is a fixed point of T .

5 Application to nonlinear elastic beam equations

Our goal in this section is to investigate the existence and uniqueness of a solution for the
following fourth-order two-point boundary value problem for elastic beam equations:

u′′′′(t) = f
(
t, u(t), u′(t)

)
for 0 < t < 1,

u(0) = u′(0) = 0, u′′(1) = 0, u′′′(1) = g
(
u(1)

)
,

(26)

where u ∈ C([0, 1]) is an unknown function, f : [0, 1]× R× R→ R and g : R→ R are
given continuous functions. The physical meaning of boundary conditions of (26) are as
follows:

(i) The first boundary condition u(0) = u′(0) = 0 means that the left end of the
beam is fixed;

(ii) The second boundary condition u′′(1) = 0, u′′′(1) = g(u(1)) means that the
right end of the beam is attached to a bearing device given by the function g.

The proof of the main result in this section is based upon a new fixed point theorem
of wide Ws-contractions in the previous section.

Theorem 5. In addition to problem (26), suppose that T : (X, d) → (X, d) is a wide
Ws-contraction defined for each x ∈ X by

(Tx)(t) =

1∫
0

G(t, s)f
(
s, x(s), x′(s)

)
ds− g

(
x(1)

)
φ(t)

for all t ∈ [0, 1], where X = C([0, 1]) is the set of all real-valued function defined on
[0, 1], d : X → X is defined by

d(x, y) = max
t∈[0,1]

∣∣x(t)− y(t)∣∣p
for all x, y ∈ X such that p is a fixed real-valued constant with p > 1,

G(t, s) =
1

6

{
s2(3t− s) if 0 6 s 6 t 6 1,

t2(3s− t) if 0 6 t 6 s 6 1,
(27)

and φ(t) = t2/2− t3/6 for all t ∈ [0, 1]. Then problem (26) has a unique solution.
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Proof. It is well known that (X, d) is a complete b-metric space. From [4] the Green
function G(t, s) of the linear problem u′′′′(t) = 0 with the boundary conditions in (26)
is G(t, s) defined by (27). Then problem (26) is equivalent to the following integral
equation:

u(t) =

1∫
0

G(t, s)f
(
s, u(s), u′(s)

)
ds− g

(
u(1)

)
φ(t). (28)

This implies that the integral problem (28) is equivalent to the fixed point problem with T .
Since T is a continuous wide Ws-contraction, Theorem 2 implies the existence of the
unique fixed point of T . Therefore, problem (26) has a unique solution.
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