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Abstract. In this paper, we use the topological degree method, based on the abstract Hammerstein
equation, to investigate the existence of weak solutions for a certain class of elliptic Dirichlet
boundary value problems. These problems involve the fractional %-Laplacian operator and involve
discontinuous nonlinearities in the framework of fractional Sobolev spaces.
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1 Introduction and main result

In recent years, significant attention has been directed toward the examination of problems
involving discontinuous nonlinearities. In particular, there has been remarkable develop-
ment in the field of fractional and nonlocal elliptic differential equations. These equations
have gained prominence due to their relevance in various domains, including population
dynamics, continuum mechanics, game theory, minimal surfaces, phase transition phe-
nomena, image processing, flame propagation, and stratified materials. Comprehensive
references on this topic can be found in works such as [9,10,16,19,21,24] and the sources
cited therein. Notably, the fractional Laplacian can be conceptualized as the infinitesimal
generator of a stable Levy process as elaborated in [6,20,22,25]. Consider a real number
% with 1 < % < ∞ and O as a bounded open set with a smooth boundary in RN , where
N > 1. This study aims to demonstrate the existence of weak nontrivial solutions for the
equation defined by

(−∆)r%w + λ|w|q−2w +
|w|%−2w
|z|r%

∈ −
[
σ(z, w), σ(z, w)

]
in O,

w = 0 on RN \ O,
(1)
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where %r < qr < N with 0 < r < 1, λ > 0, and (−∆)r% is the fractional %-Laplacian
operator defined by

(−∆)r%w(z) = 2 lim
ε→0

∫
Bc

ε(z)

|w(z)− w(y)|%−2(w(z)− w(y))

|z − y|N+%r
dy

for z ∈ RN , where Bε(z) := {y ∈ RN : |z − y| < ε}.
In addition, considerable research effort has gone into solving the quasilinear problem

described by the following system:

(−∆)r%w = f(z, w) in O,
w = 0 on RN \ O.

(2)

It is worth noting that, in the particular case where % = 2, Problem (2) reduces to
the fractional Laplacian problem. In the context of discontinuous nonlinearities, Bensid
investigated problem (2) and established results concerning the existence and multiplicity
of solutions for the following system [8]:

(−∆)rw = f(w)J(w −$) in O,
w = 0 on RN \ O.

Here J represents the Heaviside function, f is a given function, and $ > 0. For cases
where % 6= 2 and when f is a regular nonlinearity, a substantial body of literature exists
on problem (2) with various techniques being employed. Interested readers can refer
to the papers [3–5] and the references therein for a comprehensive overview of these
approaches.

In the case where the nonlinearity f exhibits discontinuity concerning the variable w,
the authors of [1] conducted an investigation into problem (2). To be more specific, the
form of f they considered was

f(z, w) = m(z)

n∑
i=1

J(w −$i),

where µi > 0 were subject to the condition

$1 < $2 < · · · < $n for n > 1,

and m ∈ L∞(O) exhibited sign-changing behaviour. The authors established both the
existence and multiplicity of solutions using the nonsmooth critical point theory.

In [2], Achoura investigates a problem similar to (1) with parameters satisfying
% > 1, r ∈ (0, 1) (N > %r), λ > 0, and f being a Carathéodory function subject to
an appropriate growth condition. Notably, when r = 1, problems resembling (1) have
been extensively investigated in the literature. For further insights, interested readers can
explore [7, 14, 17], where diverse methodologies have been employed by the authors to
establish the existence of solutions for (1).

In our aim to prove the existence of nontrivial weak solutions, we encounter a sig-
nificant obstacle arising from the inherent nature of the problem. More specifically, the
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direct application of topological degree methods becomes impractical due to the discon-
tinuous nature of the nonlinear term σ. To address this discontinuity, we will transform
the Dirichlet boundary value problem associated with the fractional %-Laplacian operator
and its discontinuous nonlinearities, thereby converting it into a new problem governed
by a Hammerstein equation.

In pursuit of this goal, we consistently make an assumption regarding σ : O×R→ R,
which may exhibit discontinuities. To address these discontinuities, we “fill the disconti-
nuity gaps” in ψ by substituting it with an interval [σ(z, w), σ(z, w)], where

σ(z, s) = lim inf
η→s

σ(z, η) = lim
δ→0+

inf
|η−s|<δ

σ(z, η),

σ(z, s) = lim sup
η→s

σ(z, η) = lim
δ→0+

sup
|η−s|<δ

σ(z, η),

such that

(σ1) The functions σ and σ are measurable in superposition, i.e., for any measurable
function w : O → R, the functions σ(·, w(·)) and σ(·, w(·)) are measurable
on O.

(σ2) σ satisfying the growth condition |σ(z, s)| 6 b(z) + c|s|%/%′ , for a.e. z ∈ O and
every s ∈ R, where b ∈ L%′(O), c is a positive constant.

First, we define the operator N fromW0 into 2W
∗
0 as follows:

Nw =

{
ϕ ∈ W∗0

∣∣∣ ∃ g ∈ L%′(O); σ
(
z, w(z)

)
6 g(z) 6 σ

(
z, w(z)

)
a.e. z ∈ O

and 〈ϕ, ϑ〉 =

∫
O

gv dx for all ϑ ∈ W0

}
.

In the sequel, we consider K : W0 →W∗0 defined by

〈Kw, ϑ〉 =

∫
R2N

|w(z)− w(y)|%−2(w(z)− w(y))(ϑ(z)− ϑ(y))

|z − y|N+s%
dz dy

+

∫
O

|w(z)|%−2

|z|r%
w(z)ϑ(z) dz (3)

for any ϑ ∈ W0 with the introduction of the space W0 in the forthcoming section.
Following that, we proceed to define weak solutions for problem (1).

Definition 1. A function w ∈ W0 is called a weak solution to problem (1) if there exists
an element ϕ ∈ Nw satisfying

〈Kw, ϑ〉+ λ

∫
O

|w|q−2wϑdz + 〈ϕ, ϑ〉 = 0 for all ϑ ∈ W0.

The main result of this paper is summarized in the following theorem.

Theorem 1. Under assumptions (σ1) and (σ2), problem (1) has a weak solution w inW0.
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2 Preliminaries

Let O ⊂ RN (N > 1) be a bounded open set with a Lipschitz boundary, and let % ∈ R
such that 1 < % < ∞. We begin by selecting the fractional exponent r ∈ (0, 1), and we
define the fractional Sobolev space W r,%(O) as follows:

W r,%(O) =

{
w ∈ L%(RN ):

|w(z)− w(y)|
|z − y|N/%+r

∈ L%
(
R2N

)}
equipped with the norm

‖w‖r,% =
(
‖w‖%% + [w]%r,%

)1/%
,

where ‖·‖% is the norm in L%(RN ), and [·]r,% is the Gagliardo seminorm defined as

[w]r,% =

( ∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy

)1/%

.

It is worth noting that W r,%(RN ) is a separable and reflexive Banach space if 1 6 % <∞
and 1 < % <∞, respectively; see [12].

Now, let us consider problem (1) within the closed linear subspace defined as

W0 =
{
w ∈W r,%

(
RN
)
: w = 0 a.e. on RN \ O

}
.

This subspace employs an equivalent norm given by ‖·‖ := [·]r,%; see [13]. It is important
to mention thatW0 is a uniformly convex Banach space; see [26, Lemma 2.4].

Let 1 < %r < N , there exists a positive constant cH , and we can state the fractional
Hardy inequality as follows:∫

RN

|w(z)|%

|z|r%
dz 6 cH

∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy for each w ∈ W0.

For a more comprehensive understanding, we refer to [15].
Moreover, it is well known that the Banach space (W0, ‖·‖) is uniformly convex, and

thus, reflexive. This space is continuously embedded in Lq(O) for all q ∈ [1, %∗] and
compactly embedded in Lq(O) for every q ∈ [1, %∗), there is a constant cq , the optimal
embedding constant, such that

‖w‖Lq(O) 6 cq‖w‖ for any w ∈ W0.

Here %∗ denotes the fractional critical Sobolev exponent defined as

%∗ :=

{
N%
N−r% if r% < N,

+∞ if r% > N.

In what follows, we will present the theory of topological degree, an essential tool for
establishing our results. To begin, we will introduce several classes of mappings.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A discontinuous nonlinear singular elliptic problem 429

Let Γ be a real separable reflexive Banach space with its dual denoted by Γ ∗. The
symbol 〈·, ·〉 denotes the dual pairing between Γ ∗ and Γ in this order, and ⇀ denotes
weak convergence.

Now, let A be another real Banach space.

Definition 2. We define a set-valued operator B : O ⊂ Γ → 2A as bounded if B maps
bounded sets to bounded sets.

Definition 3. Consider a nonempty subset O of Γ , a sequence (wn) contained in O, and
a mapping B : O ⊂ Γ → 2Γ

∗ \ ∅. Then
(i) B is said to have the property of type (S+) if the following conditions are met:

• If wn weakly converges to w in Γ and for every sequence (Zn) in Γ ∗ such
that Zn belongs to Bϕn and satisfies lim supn→∞〈Zn, wn−w〉 6 0, then we
conclude that wn converges to w in Γ .

(ii) B is called quasimonotone if the following conditions are satisfied:

• If wn weakly converges to w in Γ and for every sequence (ϕn) in Γ ∗ such that
ϕn belongs to Bwn, lim infn→∞〈ϕn, wn − w〉 > 0.

Definition 4. LetO be a nonempty subset of Γ such thatO is a subset of a larger setO1,
and let (wn) be a sequence contained within O. Consider a bounded operator D : O1 ⊂
Γ → Γ ∗. Then we define the set-valued operator B : O ⊂ Γ → 2Γ \ ∅ to be of type
(S+)D if the following conditions hold:

(i) wn weakly converges to w in Γ , and Dwn weakly converges to A in Γ ∗, i.e.,
wn ⇀ w in Γ , Dwn ⇀ A in Γ ∗.

(ii) For any sequence (Zn) in Γ with sn ∈ Bwn such that the limit lim supn→∞〈Zn,
Dwn −A〉 6 0, we conclude that wn converges to w in Γ .

We now consider for each O ⊂ DB and any bounded operator D : O → Γ ∗, the
following sets:

B1(O) :=
{
B : O → Γ ∗

∣∣B is demicontinuous, bounded

and satifies condition (S+)
}
,

BD(O) :=
{
B : O → 2Γ

∣∣B is w.u.s.c., locally bounded

and satifies condition (S+)D
}
.

Lemma 1. (See [18, Lemma 1.4].) Let Θ be a bounded open set in the real reflexive
Banach space Γ . Suppose that D and that S : DS ⊂ Γ ∗ → 2Γ is locally bounded
and weakly upper semicontinuous with D(Θ) included in DS. Then the following results
hold:

(i) If S is quasimonotone, then I+S◦D ∈ BD(Θ), where I represents the identity
operator.

(ii) If S is of type (S+), then S ◦D ∈ BD(Θ).

Remark 1. The operator D is an “essential inner map” of B if and only if D belongs to
the set B1(Θ).
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Definition 5. (See [18].) Suppose D : Θ ⊂ Γ → Γ ∗ is a bounded operator. A homotopy
H : [0, 1] × Θ → 2Γ is considered to be of type (S+)D if, for every sequence (sε, wε)
in [0, 1] × Θ and each sequence (aε) in Γ with aε belonging to H(sε, wε) such that
wε ⇀ w ∈ Γ , sε → s ∈ [0, 1], Dwε ⇀ A in Γ ∗, and lim supε→∞〈aε, Dwε −A〉 6 0,
we have wε → w in Γ .

Lemma 2. (See [18].) Let Γ be a real reflexive Banach space, and Θ ⊂ Γ is a bounded
open set, D : Θ → Γ ∗ is bounded and continuous. If B,S are bounded and of class
(S+)D, then an affine homotopyH : [0, 1]×Θ → 2Γ , giving by

H(s, w) := (1− s)Bw + sSw for (s, w) ∈ [0, 1]×Θ,

is of type (S+)D.

We introduce the topological degree for the class BD(Θ). For further information,
see [18].

Theorem 2. Let us consider the set L defined as follows:

L =
{

(B, Θ, g): Θ ∈ O, D ∈ B1(Θ), B ∈ BD(Θ), g /∈ B(∂Θ)
}
.

Then there exists a degree function δ : L → Z, which satisfies the following properties:

(i) Normalization. For all g ∈ Θ, we have δ(I,Θ, g) = 1.
(ii) Homotopy invariance. If H : [0, 1] × Θ → Γ is a bounded admissible affine

homotopy with a common continuous essential inner map and g: [0, 1] → Γ is
a continuous path in Γ such that g(s) /∈ H(s, ∂Θ) for every s ∈ [0, 1], then the
value of δ(H(s, ·), Θ, g(s)) is constant for all s ∈ [0, 1].

(iii) Solution property. If δ(B, Θ, g) 6= 0, then the equation g ∈ Bw has a solution
in Θ.

3 Technical lemmas

In this section, we first present several lemmas.

Lemma 3. Let w, ϑ ∈ W0, and there exists a constant ζ > 1. Then the nonlinear
operator K is well defined and satisfies the following inequations:

〈Kw, ϑ〉 6 ζ‖w‖%−1‖v‖ and ‖Kw‖W∗0 6 ζ‖w‖
%−1.

Proof. For all w, ϑ ∈ W0, we have

〈Kw, ϑ〉 =

∫
R2N

|w(z)− w(y)|%−2(w(z)− w(y))(ϑ(z)− ϑ(y))

|z − y|N+r%
dz dy

+

∫
O

|w(z)|%−2

|z|r%
w(z)ϑ(z) dz

https://www.journals.vu.lt/nonlinear-analysis
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6
∫

R2N

|w(z)− w(y)|%−2|w(z)− w(y)||ϑ(z)− ϑ(y)|
|z − y|(N+r%) (%−1+1)/%

dz dy

+

∫
O

|w(z)|%−2

|z|r% (%−1+1)/%

∣∣w(z)
∣∣∣∣ϑ(z)

∣∣dz
6
∫

R2N

|w(z)− w(y)|%−1

|z − y|(N+r%) (%−1)/%
|ϑ(z)− ϑ(y)|
|z − y|N+r%

%

dz dy

+

∫
O

|w(z)|%−1

|z|r% (%−1)/%
|ϑ(z)|
|z|pr/%

dz.

Subsequently, applying the Hölder inequality yields the following result:

〈Kw, ϑ〉 6
( ∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy

)(%−1)/%( ∫
R2N

|ϑ(z)− ϑ(y)|
|z − y|N+r%

dz dy

)1/%

+

(∫
O

|w(z)|%

|z|r%
dz

)(%−1)/%(∫
O

|ϑ(z)|%

|z|r%
dz

)1/%

.

For any β belonging to the open interval (0, 1) and positive values of a, b, c, and d, the
following inequality is employed:

aβc1−β + bβd1−β 6 (a+ b)β(c+ d)1−β .

Let us set β as (%− 1)/% and define the following values:

a =

∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy, b =

∫
O

|w(z)|%

|z|r%
dz

c =

∫
R2N

|ϑ(z)− ϑ(y)|
|z − y|N+r%

dz dy, d =

∫
O

|ϑ(z)|%

|z|r%
dz.

From this we can deduce the following inequality:

〈Kw, ϑ〉 6
( ∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy +

∫
O

|w(z)|%

|z|r%
dz

)(%−1)/%

×
( ∫
R2N

|ϑ(z)− ϑ(y)|
|z − y|N+r%

dz dy +

∫
O

|v(z)|%

|z|r%
dz

)1/%

. (4)

Nonlinear Anal. Model. Control, 30(3):425–438, 2025
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Then, based on the fractional Hardy inequality (4), we obtain

〈Kw, ϑ〉 6
( ∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy + cH

∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy

)(%−1)/%

×
( ∫
R2N

|ϑ(z)− ϑ(y)|
|z − y|N+r%

dz dy + cH

∫
R2N

|ϑ(z)− ϑ(y)|
|z − y|N+r%

dz dy

)1/%

6 (cH + 1)‖w‖%−1‖ϑ‖ 6 ζ‖w‖%−1‖ϑ‖ < +∞.

Furthermore, we have
‖Kw‖W∗0 6 ζ‖w‖

%−1. �

Lemma 4. For allw, ϑ ∈ W0 and a constant ζ > 1, the operatorK satisfies the following
inequalities:

〈Kw −Kϑ, w − ϑ〉 > ζ
(
‖w‖%−1 − ‖ϑ‖%−1

)(
‖w‖ − ‖ϑ‖

)
.

Proof. By direct computation, we obtain

〈Kw −Kϑ, w − ϑ〉
= 〈Kw, w − ϑ〉 − 〈Kϑ, w − ϑ〉

=

∫
R2N

|w(z)− w(y)|%−2(w(z)− w(y))((w − ϑ)(z)− (w − ϑ)(y))

|z − y|N+r%
dz dy

+

∫
O

|w(z)|%−2

|z|r%
w(z)(w − ϑ)(z) dz +

∫
O

|ϑ(z)|%−2

|z|r%
ϑ(z)(w − ϑ)(z) dz

−
∫

R2N

|ϑ(z)− ϑ(y)|%−2(ϑ(z)− ϑ(y))((w − ϑ)(z)− (w − ϑ)(y))

|z − y|N+r%
dz dy

=

∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy +

∫
O

|w|%

|z|r%
dz +

∫
R2N

|ϑ(z)− ϑ(y)|%

|z − y|N+r%
dz dy

+

∫
O

|ϑ|%

|z|r%
dz −

∫
R2N

|w(z)− w(y)|%−2(w(z)− w(y))(ϑ(z)− ϑ(y))

|z − y|N+r%
dz dy

+

∫
O

|w(z)|%−2

|z|r%
w(z)ϑ(z) dz

−
∫

R2N

|ϑ(z)− ϑ(y)|%−2(ϑ(z)− ϑ(y))(w(z)− w(y))

|z − y|N+r%
dz dy

+

∫
O

|ϑ(z)|%−2

|z|r%
ϑ(z)w(z) dz

https://www.journals.vu.lt/nonlinear-analysis
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=

∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy +

∫
O

|w|%

|z|r%
dz +

∫
R2N

|ϑ(z)− ϑ(y)|%

|z − y|N+r%
dz dy

+

∫
O

|ϑ|%

|z|r%
dz − 〈Kw, ϑ〉 − 〈Kϑ,w〉.

Furthermore, using Lemma 3, we find a constant ζ > 1 such that

〈Kw −Kϑ, w − ϑ〉
> ‖w‖% + ‖ϑ‖% − 〈Kw, ϑ〉 − 〈Kϑ,w〉
> ‖w‖% + ‖ϑ‖% − ζ‖w‖%−1‖ϑ‖ − ζ‖ϑ‖%−1‖w‖

= −ζ
(
−1

ζ
‖w‖% − 1

ζ
‖ϑ‖% + ‖w‖%−1‖ϑ‖+ ‖ϑ‖%−1‖w‖

)
> −ζ

(
−‖w‖% − ‖ϑ‖% + ‖w‖%−1‖ϑ‖+ ‖ϑ‖%−1‖w‖

)
> ζ
(
‖w‖%−1 − ‖ϑ‖%−1

)(
‖w‖ − ‖ϑ‖

)
. �

Proposition 1. The nonlinear operator K have the following properties:

(i) K :W0 →W∗0 is a bounded, strictly monotone, and continuous operator.
(ii) K is a mapping of type (S+).

Proof. (i) According to Lemma 3, there exists a constant ζ > 1 such that∣∣〈Kw, ϑ〉∣∣ 6 ζ‖w‖%−1‖ϑ‖ for all w, ϑ ∈ W0.

This inequality clearly demonstrates that the operator K is both continuous and bounded.
In the sequel, by the well-established Simon inequality (refer to [23] for formula (2.2)),

which states that for each ξ, η ∈ RN and % > 1, there exists a positive constant C%, where

C%
〈
|ξ|%−2ξ − |η|%−2η, ξ − η

〉
>

{
|ξ − η|% if % > 2,

|ξ − η|2(|ξ|% + |η|%)(%−2)/% if 1 < % < 2.
(5)

Next, applying Lemma 4 and utilizing inequality (5) for any w, ϑ ∈ W0, where w 6= ϑ,
we can observe that if % > 2, then

C%〈Kw −Kϑ, w − ϑ〉 > ζ
(
‖w‖%−1 − ‖ϑ‖%−1

)(
‖w‖ − ‖ϑ‖

)
> 0.

In the case where 1 < % < 2, we have

C%/2%

[
〈Kw −Kϑ, w − ϑ〉

]%/2(‖w‖% − ‖ϑ‖%)(2−%)/2
> ζ
(
‖w‖%−1 − ‖ϑ‖%−1

)(
‖w‖ − ‖ϑ‖

)
,

Nonlinear Anal. Model. Control, 30(3):425–438, 2025
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which implies

C
[
Kw −Kϑ, w − ϑ〉

]%/2
> ζ
(
‖w‖%−1 − ‖ϑ‖%−1

)(
‖w‖ − ‖ϑ‖

)
> 0,

where C > 0 is a constant. Consequently, this leads to the conclusion that the operator K
is strict monotonicity.

(ii) As W0 constitutes a reflexive Banach space, it is isometrically isomorphic to
a locally uniformly convex space. Thus, given that we have already demonstrated that
weak convergence and norm convergence imply strong convergence, it suffices to estab-
lish ‖wn‖ → ‖w‖.

Moreover, when wn → w weakly inW0,

lim sup
n→∞

〈
Kwn −Kw, wn − w

〉
6 0.

We can infer that

lim
n→+∞

〈Kwn −Kw, wn − w〉 = lim
n→+∞

〈Kwn, wn − w〉 − 〈Kw, wn − w〉 = 0.

By means Lemma 4 and the result from (i), we get

〈Kwn −Kw, wn − w〉 > ζ
(
‖wn‖%−1 − ‖w‖%−1

)(
‖wn‖ − ‖w‖

)
> 0.

This implies that ‖wn‖ → ‖w‖ as n → ∞, leading us to the conclusion that wn → w
strongly inW0 as n→∞.

Proposition 2. (See [11].) For any fixed z ∈ O, the functions σ(z, u) and σ(z, u) exhibit
upper semicontinuity (u.s.c.) on RN .

Lemma 5. The operator J :W0 →W∗0 defined by

〈Jw, v〉 = −λ
∫
O

|w|q−2wv dz for w, v ∈ W0

is compact.

Proof. Let Ψ :W0 → Lq
′
(O) be the operator defined as

Ψw(z) := −
∣∣w(z)

∣∣q−2w(z) for w ∈ W0 and z ∈ O.

It is evident that Ψ is a continuous operator. Now, we aim to show that Ψ is bounded. For
any w ∈ W0, we can observe

‖Ψw‖q′ 6 λ
∫
O

∣∣|w|q−2w∣∣q′ dz = λ

∫
O

|w|(q−1)q
′
dz 6 λ

∫
O

|w|q dz.

Applying the compact embeddingW0 ↪→ Lq(O), we deduce % ‖Ψw‖q′ 6 C‖w‖q . This
demonstrates that Ψ is bounded onW0. Furthermore, considering that the embedding I :
W0 → Lq(O) is compact, it is a known fact that the adjoint operator I∗ : Lq

′
(O)→W∗0

is also compact. Therefore, J = I∗ ◦ Ψ :W0 →W∗0 is compact.

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 6. (See [28].) Let O ⊂ RN (N > 1) be a bounded open set with a smooth
boundary. Under assumptions (σ1) and (σ2), the set-valued operator N defined above is
both upper semicontinuous (u.s.c.), bounded, and compact.

4 Proof of Theorem 1

We study here the nonlinear problem (1) based on the degree theory introduced in the
previous section under assumptions (σ1) and (σ2).

We consider the set-valued operator S defined as S := J +N , where J and N are
defined above. Thus, w ∈ W0 is a weak solution of (1) if and only if

Kw ∈ −Sw, (6)

where K is given by (3).
By Proposition 1 and the Minty–Browder theorem on monotone operators (see [27,

Thm. 26A]), the inverse operator D := K−1, defined fromW∗0 toW0, exists, is bounded,
continuous, and of type (S+). Moreover, by Lemma 5, the operator S is bounded, upper
semicontinuous, and quasimonotone.

Consequently, (6) can be rewritten equivalently as

w = Dϑ and ϑ ∈ −S ◦Dϑ. (7)

In order to solve Eqs. (7), we first establish the following lemma.

Lemma 7. The set

E :=
{
ϑ ∈ W∗0 : ϑ ∈ −sS ◦Dϑ for some s ∈ [0, 1]

}
is bounded.

Proof. Let ϑ ∈ E . Therefore, ϑ+ ta = 0 for all s ∈ [0, 1] such that a ∈ S ◦Dϑ. Setting
w := Dϑ, we put a = Jw + ϕ, where ϕ ∈ Nw, specifically, 〈ϕ,w〉 =

∫
O g(z)w(z) dz

for each g ∈ L%′(O) satisfying σ(z, w(z)) 6 g(z) 6 σ(z, w(z)) for almost all z ∈ O.
By applying (σ2), the Young inequality, and the compact embeddingW0 ↪→ Lq(O),

we obtain

‖Dϑ‖% =

∫
R2N

|w(z)− w(y)|%

|z − y|N+r%
dz dy +

∫
O

|w(z)|%

|z|r%
dz

= 〈ϑ,Dϑ〉 6 s
∣∣〈a,Dϑ〉∣∣ = s

∣∣∣∣ ∫
O

(
λ|w|q−2w + s

)
w dz

∣∣∣∣
6 sλ

∫
O

|w|q dz + s

∫
O

|gw|dz

6 sλ
∫
O

|w|q dz + C%s

(∫
O

|w|% dz

)1/%

+ C%′
s

α

(∫
O

|g|%
′
dz

)1/%′
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6 sλ
∫
O

|w|q dz + Cps

(∫
O

|w|% dz

)1/%

+ 2C ′%s

(∫
O

|b|%
′
dz

)1/%′

+ 2CC%′s

(∫
O

|w|% dz

)1/%′

6 Const
(
‖Dϑ‖q + ‖Dϑ‖+ ‖Dϑ‖%−1 + 1

)
.

Therefore, it is clear that the set {Dϑ: ϑ ∈ E} is bounded.
In view of the boundedness of the operator S and based on (7), we conclude that the

set E is bounded inW∗0 .
Thanks to Lemma 7, we can determine a positive constant R such that for any ϑ ∈ E ,

it holds that ‖ϑ‖W∗0 < R. This implies that ϑ lies on the boundary of the ball BR(0) and
satisfies ϑ ∈ −sS ◦Dϑ for every ϑ ∈ ∂BR(0) and each s ∈ [0, 1].

By applying Lemma 1, we have

I + S ◦D ∈ BD

(
BR(0)

)
and I = K ◦D ∈ BD

(
BR(0)

)
.

Now, we can introduce the affine homotopyH : [0, 1]×BR(0)→ 2W
∗
0 setting by

H(s, ϑ) := (1− s)Iϑ+ s(I + S ◦D)ϑ for (s, ϑ) ∈ [0, 1]×BR(0).

Using the properties of the degree, as established in Theorem 2, we infer that

δ
(
I + S ◦D, BR(0), 0

)
= δ
(
I, BR(0), 0

)
= 1.

Hence, we can find a function ϑ ∈ BR(0) such that ϑ ∈ −S ◦ Dϑ, which means that
w = Dϑ is a weak solution of (1). This concludes the proof.

Author contributions. The authors contributed equally to this paper.
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