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Abstract. This paper investigates the effect of fear effect and constant-type harvesting on the
dynamic of a Leslie–Gower predator–prey model. Initially, an analysis is carried out to identify all
potential equilibria and evaluate their stability. Furthermore, the dynamic behavior at these points
is examined, revealing various bifurcations such as saddle-node bifurcation, Hopf bifurcation, and
Bogdanov-Takens bifurcation. In particular, the model undergoes a degenerate Hopf bifurcation,
which leads to the existence of two limit cycles. Additionally, we demonstrate that the Bogdanov–
Takens bifurcation of codimension 2 occurs in this model. Ultimately, these findings are validated
through numerical simulations, demonstrating that continuous harvesting or the significant fear
effect is not conducive to either predator or prey surviving.
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1 Introduction

The classical Lotka–Volterra predator–prey model was considered by incorporating a lo-
gistic growth factor for prey and various population-dependent response functions, and
was realised by the mathematical simulation of the interaction between prey and predator.
However, the Leslie–Gower predator–prey system [10] is a different model, where the
prey population determines the carrying capacity of predator, emphasising that there is
an upper limit to the growth rate for both predator and prey. The dynamic behaviour of
Leslie–Gower predator–prey system has been extensively researched by many scholars
[7, 18–20].

Since the majority of natural resources are renewable, harvesting is a very common
practice. In order to study the interaction between two species in a developed ecosys-
tem, several harvesting types have been proposed such as fixed harvesting, fixed effort
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harvesting, continuous threshold harvesting, and nonlinear harvesting. Zhu and Lan [22]
considered the following Leslie–Gower predator–prey model incorporating constant-type
harvesting in prey:

ẋ = rx

(
1− x

K

)
− axy − h,

ẏ = sy

(
1− y

nx

)
,

(1)

where x and y represent the population densities of the prey and predator, respectively,
and explored several bifurcations such as the saddle-node bifurcation, the supercriti-
cal Hopf bifurcation, and subcritical Hopf bifurcation occurring in system (1). Besides,
Gong et al. [6] discussed the Bogdanov–Takens bifurcation of codimension 2 of sys-
tem (1). On the basis of system (1), Huang et al. [9] introduced the Holling and Leslie-
type functional response, and various kinds of bifurcation, including saddle-node, Hopf,
Bogdanov–Takens bifurcation, were shown in the model. Biswas et al. [2] considered
a modified Leslie–Gower prey–predator reaction–diffusion model introducing harvesting
of both species. They found the stability regions and drawn bifurcation diagrams, and
reveal that the harvesting has a stabilizing effect. Also, they showed that the temporal
system appeared transcritical and Hopf bifurcations. Additionally, they determined Turing
instability conditions for the spatiotemporal model and the amplitude equation for the
critical modes. Bhutia et al. [1] proposed a modified form of the Rosenzweig–MacArthur
model by incorporating prey harvesting and variable carrying capacity. They identified
the sufficient criteria for the stability and occurrence of Hopf bifurcation. Also, they
established the conditions for Turing instability and demonstrated that the system cannot
produce heterogeneous spatial patterns without cross-diffusion. [5, 8] considered system
(1) with different functional response or harvesting types, which exhibit more complex
dynamic behaviors.

Aside from being directly captured, prey groups can also be indirectly consumed
through factors like fear of predators. Furthermore, the collective anxiety within prey
groups about survival can have a similar impact as being actively hunted. Essentially,
the physiological condition of prey populations influenced by fear can play a role in
system dynamics. Wang et al. [16] have taken fear factor into account in their study on the
reproduction of prey species and have introduced a following predator–prey model based
on this concept:

ẋ = rxf(k, y)− dx− ax2 − cxy,
ẏ = −my + cpxy,

(2)

where f(k, y) = 1/(1 + ky) represents the fear function, which indicates the cost of
antipredator defense of prey caused by fear from predator. Here k stands for the level of
fear. Hence, in a biological context, the function f(k, y) must meet the following criteria:
f(0, y) = 1, f(k, 0) = 1, limk→∞ f(k, y) = 0, limy→∞ f(k, y) = 0, ∂f(k, y)/∂k < 0,
and ∂f(k, y)/∂y < 0. They studied two models with varying functional responses
and discovered that the fear effect does not alter the dynamics of the model with linear
functional response (i.e., system (2)), but does affect the dynamics of the model with
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Holling type II functional response. They observed that a strong fear effect leads to system
stability, while a weak fear effect causes multiple limit cycles, resulting in a bistable phe-
nomenon. Chen et al. [3] incorporated fear effect into Leslie–Gower predator–prey model
and drew a conclusion that transcritical bifurcation, Hopf bifurcation, and Bogdanov–
Takens bifurcation have taken place. Wang et al. [15] examined the concepts of refuge,
fear effect, and harvesting within a Beddington–DeAngelis predator–prey model. They
investigated the local stability of equilibria and looked into various bifurcations including
saddle-node, transcritical, Hopf, and Bogdanov–Takens bifurcation. Additionally, the
predator–prey systems with fear effect have been widely researched by numerous scholars
[11, 14, 17].

In this paper, incorporating the fear effect into system (1) leads to the model below:

ẋ =
rx

1 + ky
− ax2 − dx− cxy − h,

ẏ = sy

(
1− y

nx

)
,

(3)

where r is prey birthrate, d is prey natural mortality rate. Clearly, biologically speaking,
r > d. a is intraspecific competition between prey, c is the predator’s maximum predation
rate, s is the predators’ intrinsic growth rates, n is used to measure the quality of food
provided by prey to predator, k is a parameter of fear, h is the constant-type prey harvest-
ing. From a biological point of view, in the initial stage, if prey population is abundant,
constant-type harvesting may not pose a great threat to prey population. However, as time
passes, if the amount of harvesting exceeds the growth of the population, the population
number will gradually decline, leading to changes in the population structure. The ex-
istence of fear effect will cause prey to exhibit behavioral changes to reduce the risk of
being preyed upon such as reducing the range of activities and foraging time. Moreover,
the fear effect forces prey to remain in a state of high alert for a long time, resulting in
a shortening of the reproduction cycle and a reduction in the number of offspring, thus
causing a decline in its population density.

In this article, we focus on the types of equilibria of system (3) as well as bifurcations
that may occur in system (3). When system (3) has only one degenerate boundary equi-
librium, it is an unstable saddle-node. When system (3) has two positive equilibria, one
of them is a saddle and the other may be a weak focus of order 2, which indicates that
system (3) undergoes degenerate Hopf bifurcation under appropriate parameters. When
system (3) has only one degenerate positive equilibrium, we will prove that it may be
a cusp of codimension 2, which indicates that system (3) undergoes Bogdanov–Takens
bifurcation of codimension 2 under appropriate parameters.

For simplicity, letting

x̄ =
a

d
x, ȳ =

a

dn
y, t̄ = dt, s̄ =

s

d
,

c̄ =
cn

a
, h̄ =

ah

d2
, r̄ =

r

d
, k̄ =

kdn

a
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and dropping the bars, system (3) becomes

ẋ = x

(
r

1 + ky
− x− 1− cy

)
− h,

ẏ = sy

(
1− y

x

)
,

(4)

where r > 1, and r, k, c, s, h are positive constants.
The rest of this article will be structured in the following way. In Section 2, we give

some conditions for boundary and positive equilibria to exist and examine the stability of
these equilibria. In Section 3, we prove that system (4) undergoes a saddle-node bifurca-
tion, Hopf bifurcation, and Bogdanov–Takens bifurcation of codimension 2. In Sections 4
and 5, some numerical simulations and conclusion are given.

2 Existence and stability of equilibria

2.1 Existence of equilibria

Conditions for boundary and positive equilibria of system (4) to exist are going to be
investigated in this section.

The first step is to analyse whether a boundary equilibrium of system (4) exists. If
y = 0, we can transform the first equation of system (4) into

ẋ = x(r − 1− x)− h.
Let

f(x) = x2 − (r − 1)x+ h,

whose discriminant is ∆1 = (r − 1)2 − 4h.
If h > (r − 1)2/4, then f(x) has no positive roots. If h = (r − 1)2/4, then f(x) has

only one positive root x̄ = (r − 1)/2. If 0 < h < (r − 1)2/4, then f(x) has two positive
roots x1 and x2, where x1,2 = (r − 1∓

√
∆1)/2.

Hence, we get the following lemma regarding the presence of boundary equilibria in
system (4).

Lemma 1. The boundary equilibria of system (4) are present as outlined below:

(i) When h > (r − 1)2/4, system (4) has no boundary equilibrium;
(ii) When h = (r − 1)2/4, system (4) has a unique equilibrium Ē(x̄, 0);

(iii) When 0 < h < (r − 1)2/4, system (4) has two boundary equilibria E1(x1, 0)
and E2(x2, 0).

Next, is a discussion of whether positive equilibria exist in system (4). Notice that the
positive equilibria satisfies

rx

1 + ky
− x− x2 − cxy − h = 0, y = x.
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(a) (b) (c)

Figure 1. Roots of F (x) = 0 when 0 < h < (r − 1)/k: (a) F (x∗) > 0, no positive root; (b) F (x∗) = 0,
one positive root; (c) F (x∗) < 0, two positive roots.

We denote

F (x) = k(c+ 1)x3 + (1 + c+ k)x2 + (hk + 1− r)x+ h

and
F ′(x) = 3k(c+ 1)x2 + 2(1 + c+ k)x+ hk + 1− r

with the discriminant of F ′(x) being ∆2 = 4(c+ k + 1)2 − 12k(1 + c)(hk + 1− r).
Noting that F (0) = h > 0, F (x) does not have any positive roots if h > (r−1)/k. In

the following discussion, we will focus solely on the scenario where 0 < h < (r − 1)/k.
As F ′(0) = hk − r + 1 < 0, F ′(x) has a positive real root

x∗ =
−2(1 + c+ k) +

√
∆2

6k(1 + c)
.

Notice that F (r − 1) > 0 and F ′(r − 1) > 0. Thus, F (x) = 0 has no positive root
if F (x∗) > 0 (see Fig. 1(a)), only one positive root x∗ if F (x∗) = 0 (see Fig. 1(b)), and
two positive roots x3 and x4 (0 < x3 < x∗ < x4) if F (x∗) < 0 (see Fig. 1(c)).

In summary, we have the following lemma.

Lemma 2. If 0 < h < (r−1)/k, the positive equilibria of system (4) are as listed below:

(i) If F (x∗) > 0, system (4) has no positive equilibrium;
(ii) If F (x∗) = 0, system (4) has a unique positive equilibrium E∗(x∗, x∗);

(iii) If F (x∗) < 0, system (4) has two positive equilibria E3(x3, x3) and E4(x4, x4).

2.2 Stability of equilibria

First of all, we introduce the fact that all positive solutions of system (4) are bounded in
the end.

Lemma 3. All positive solutions of system (4) with initial values located in R2
+ are

bounded for all t > 0.

Proof. From the first equation in system (4) we have ẋ 6 x(r − 1 − x) for all t > 0.
That means lim supt→∞ x(t) 6 r − 1. Then from the second equation in system (4) we
get ẏ 6 sy(1 − y/(r − 1)) for all t > 0. That means lim supt→∞ y(t) 6 r − 1. This
completes the proof of Lemma 3.
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Now, the stability of equilibria of system (4) is under investigation. The Jacobian
matrix of system (4) at E(x, y) is

JE =


r

1+ky − 1− 2x− cy x

(
− rk

(ky+1)2 − c
)

s y2

x2 s

(
1− y

x

)
− sy

x

 ,

and

Det JE =
s(2k2(1 + c)x3 + k(4c+ k + 4)x2 + 2(c+ k + 1)x− r + 1)

(1 + kx)2
,

TrJE = −k(c+ 2)x2 + ((s+ 1)k + c+ 2)x− r + s+ 1

1 + kx
.

Letting F (x) = 0, we have

k = −cx
2 + x2 − rx+ x+ h

x(cx2 + x2 + x+ h)
. (5)

Substituting (5) into F ′(x) and Det JE , we get

Det JE =
s(cx2 + x2 + x+ h)

rx
F ′(x). (6)

Theorem 1. If 0 < h < (r − 1)2/4, system (4) has two boundary equilibria E1 and E2.
Furthermore, E1 is a hyperbolic unstable node, and E2 is a hyperbolic saddle.

Proof. The Jacobian matrices of system (4) at these two boundary equilibria are, respec-
tively,

JE1 =

(√
∆1 −x1(rk + c)
0 s

)
and JE2 =

(
−
√
∆1 −x2(rk + c)

0 s

)
.

Obviously, E1 is a hyperbolic unstable node, and E2 is a hyperbolic saddle. This com-
pletes the proof of Theorem 1.

Theorem 2. If h = (r − 1)2/4, system (4) has a unique boundary equilibrium Ē, which
is a repelling saddle-node.

Proof. The Jacobian matrix of system (4) at Ē is

JĒ =

(
0 − (r−1)(rk+c)

2
0 s

)
,

where the eigenvalues of JĒ are ε1 = 0 and ε2 = s > 0. To get the type of Ē, we shift Ē
to (0, 0) with the transformation x = X + x̄, y = Y . Then system (4) is transformed into
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the following form:

Ẋ = á01Y + á20X
2 + á11XY + á02Y

2 + o
(
|X,Y |2

)
,

Ẏ = b́01Y + b́02Y
2 + o

(
|X,Y |2

)
,

(7)

where á01 = −(r − 1)(rk + c)/2, á20 = −1, á11 = −rk − c, á02 = rk2(r − 1)/2,
b́01 = s, and b́02 = −2s/(r − 1).

Next, make the following transformation:

X = − (rk + c)(r − 1)

2
u− (rk + c)(r − 1)

2
v,

Y = sv, t = sτ.

Then system (7) can be written as

u̇ = ć20u
2 + ć11uv + ć01v

2 + o
(
|u, v|2

)
,

v̇ = v + d́02v
2 + o

(
|u, v|2

)
,

(8)

where the coefficients of system (8) are omitted for brevity. From Theorem 7.1 in [21] we
know that the equilibrium Ē is a repelling saddle-node for c20 = (r−1)(kr+c)/(2s) > 0.
This completes the proof of Theorem 2.

Theorem 3. If condition (iii) of Lemma 2 holds, system (4) will possess two positive
equilibria E3(x3, x3) and E4(x4, x4), where E3 is a hyperbolic saddle. Moreover,

(i) E4 is a stable node or focus if 0 < h < x4(s+ x4);
(ii) E4 is an unstable node or focus if h > x4(s+ x4);

(iii) E4 is a center or weak focus if h = x4(s+ x4).

Proof. From (6) we know that Det JE3
< 0 and Det JE4

> 0. Therefore, E3 is always
a hyperbolic saddle.

By computation we have TrJE4
= (h − x4(s + x4))/x4. If h > x4(s + x4), then

Tr JE4 > 0, that is, E4 is an unstable node or focus; if 0 < h < x4(s + x4), then
Tr JE4 < 0, that is, E4 is a stable node or focus; if h = x4(s + x4), then TrJE4 = 0,
that is, E4 is a center or a weak focus. This completes the proof of Theorem 3.

By setting F (x∗) = 0 and F ′(x∗) = 0 we can express k and r in terms of x∗, s, h,
and c as shown below:

k =
h− (c+ 1)x2

∗
x2
∗(2cx∗ + 2x∗ + 1)

, r =
(cx2
∗ + 2x2

∗ + h+ x∗)
2

x2
∗(2cx∗ + 2x∗ + 1)

, (9)

where h > (c+ 1)x2
∗ for the positivity of k and r.

The next theorem shows the dynamic behaviour of E∗.

Theorem 4. Under the assumption that (9) holds, there is a unique positive equilibrium
E∗(x∗, y∗) in system (4). Moreover,
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(i) E∗ is a saddle-node with a stable parabolic sector if s > cx∗ and (c + 1)x2
∗ <

h < x∗(s+ x∗);
(ii) E∗ is a saddle-node with an unstable parabolic sector if s 6 cx∗ and h >

(c+ 1)x2
∗, or s > cx∗ and h > x∗(s+ x∗).

Proof. Based on (6) and F ′(x∗) = 0, we can know Det JE∗ = 0. Therefore, the stability
of E∗ relies on the sign of TrJE∗ , that is,

TrJE∗ =
h− (x∗ + s)x∗

x∗
.

Firstly, make (x, y) = (u+ x∗, v + y∗), then system (4) can be written as

u̇ = â10u+ â01v + â20u
2 + â11uv + â02v

2 + o
(
|u, v|2

)
,

v̇ = b̂10u+ b̂01v + b̂20u
2 + b̂11uv + b̂02v

2 + o
(
|u, v|2

)
,

(10)

where the coefficients of system (10) are omitted for brevity. It is obvious that the
eigenvalues of the Jacobian matrix at E∗ are ε3 = 0 and ε4 = (h − (x∗ + s)x∗)/x∗.
If h 6= (x∗ + s)x∗, then ε4 6= 0.

Next, by implementing the subsequent transformation

(u, v) =

(
X + Y, X +

sx∗
h− x2

∗
Y

)
, dτ = Tr JE∗ dt

system (10) can be expressed as

Ẋ = ĉ20X
2 + ĉ11XY + ĉ02Y

2 + o
(
|X,Y |2

)
,

Ẏ = Y + d̂20X
2 + d̂11XY + d̂02Y

2 + o
(
|X,Y |2

)
,

(11)

where the coefficients of system (11) are omitted for brevity.
Through conducting calculations, we get

ĉ20 =
sx∗M

(h− sx∗ − x2
∗)

2(cx2
∗ + x2

∗ + x∗ + h)
,

where M = (1 + 3x∗ + 3cx∗)h− (c+ 1)2x3
∗. Note that h 6= (x∗ + s)x∗ as TrJE∗ 6= 0.

Thus, the sign of ĉ20 depends on M . Through computation, we get

M |h=(c+1)x2
∗

= (c+ 1)(2cx∗ + 2x∗ + 1)x2
∗,

which means M > 0 for h > (c+ 1)x2
∗. Thus, ĉ20 > 0 for h > (c+ 1)x2

∗.
Notice that x∗(s+x∗)− (c+1)x2

∗ = x∗(s−cx∗). Considering a time transformation
and applying Theorem 7.1 in [21], if s > cx∗ and (c + 1)x2

∗ < h < x∗(s + x∗), we
have Tr JE∗ < 0, then E∗ is a saddle-node with a stable parabolic sector; see Fig. 2(a). If
s 6 cx∗ and h > (c + 1)x2

∗ or s > cx∗ and h > x∗(s + x∗), we have TrJE∗ > 0, then
E∗ is a saddle-node with an unstable parabolic sector; see Fig. 2(b). This completes the
proof of Theorem 4.
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Figure 2. Phase portraits of system (4): (a) E∗ is a saddle-node with attracting parabolic with c = 1, s = 2,
h = 2.2, k = 0.04, and r = 5.408; (b) E∗ is a saddle-node with repelling parabolic with c = 1, s = 2,
h = 5, k = 0.6, and r = 12.8; (c) E∗ is a cusp of codimension 2 with c = 1, s = 1.5, h = 2.5, k = 0.1, and
r = 6.05.

If h = (x∗ + s)x∗, then Tr JE∗ = 0. By setting F (x∗) = F ′(x∗) = Tr JE∗ = 0 we
can represent h, k, and r in terms of x∗, s, and c as shown below:

h = x∗(s+ x∗), k =
s− cx∗

x∗(1 + 2x∗ + 2cx∗)
, r =

(1 + s+ 2x∗ + cx∗)
2

1 + 2x∗ + 2cx∗
, (12)

where s > cx∗.
Using the following lemma, we show that E∗ is a cusp of codimension 2.

Theorem 5. Assume that (12) and s > cx∗ hold, then E∗ is a cusp of codimension 2.

Proof. Letting u = x− x∗ and v = y − y∗, system (10) can be rewritten as

u̇ = su− sv − u2 − s

x∗
uv +

(s− cx∗)2

x∗(1 + s+ cx∗ + 2x∗)
v2 + o

(
|u, v|2

)
,

v̇ = su− su− s

x∗
u2 +

2s

x∗
uv − s

x∗
v2 + o

(
|u, v|2

)
.

(13)

By the transformation (X,Y ) = (−u/s, −u+ v) system (13) becomes

Ẋ = Y + ẽ20X
2 + ẽ11XY + ẽ02Y

2 + o
(
|X,Y |2

)
,

Ẏ = f̃20X
2 + f̃11XY + f̃02Y

2 + o
(
|X,Y |2

)
,

(14)

where the coefficients of system (14) are omitted for brevity. By Lemma 1 in [9] sys-
tem (14) is equivalent to

ẋ = y, ẏ = f̃20x
2 + (f̃11 + 2ẽ20)xy + o

(
|x, y|2

)
.

Obviously, f̃11 + 2ẽ20 = s(s+ 2x∗)/x∗ 6= 0. Substituting s = cx∗ into T1, we have

T1|s=cx∗ = −x∗
(
2c2x∗ + 4cx∗ + 2x∗ + c+ 1

)
.

Thus, T1 < 0 for s > cx∗, that is, f̃20 6= 0 for s > cx∗. Hence, according to [13],
E∗ is a cusp of codimension 2 as illustrated in Fig. 2(c). This completes the proof of
Theorem 5.
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3 Bifurcation

In this section, we will prove that system (4) is capable of undergoing three types of bi-
furcations: saddle-node bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation.

3.1 Saddle-node bifurcation

According to Lemma 1 and Theorem 2, when h = (r − 1)2/4, system (4) has a single
boundary equilibrium Ē((r−1)/2, 0), which is a saddle-node. By changing the parameter
h from 0 < h < (r − 1)2/4 to h > (r − 1)2/4 (or vice versa) the quantity of boundary
equilibria of system (4) transitions from two to zero (or from zero to two). Hence, based
on Sotomayor’s theorem [13], it can be concluded that system (4) undergoes a saddle-
node bifurcation at Ē.

Theorem 6. When h crosses the critical value hSN = (r − 1)2/4, system (4) undergoes
a saddle-node bifurcation at Ē.

Proof. The Jacobian matrix of system (4) at Ē is

J(Ē;hSN) =

(
0 − (r−1)(rk+c)

2
0 s

)
.

Then J(Ē;hSN) has a zero eigenvalue. Let V and W be the eigenvectors corresponding
to the zero eigenvalue of J(Ē;hSN) and J(Ē;hSN)T , respectively. Choose

V =

(
V1

V2

)
=

(
1
0

)
and W =

(
W1

W2

)
=

(
1

(r−1)(rk+c)
2s

)
.

Define

F (x, y) =

(
F1(x, y)
F2(x, y)

)
=

(
x( r

1+ky − 1− x− cy)− h
sy(1− y

x )

)
.

Hence,

Fh(Ē, hSN) =

(
−1
0

)
,

D2F (Ē;hSN)(V, V ) =

(
∂2F1

∂x2 V
2
1 + 2 ∂

2F1

∂x∂yV1V2 + ∂2F1

∂y2 V
2
2

∂2F2

∂x2 V
2
1 + 2 ∂

2F2

∂x∂yV1V2 + ∂2F2

∂y2 V
2
2

)
(Ē;hSN)

=

(
−2
0

)
.

Therefore, it is easily seen that V and W meet the following transversality conditions:

WTFh(Ē;hSN) = −1 6= 0, WT
[
D2F (Ē;hSN)(V, V )

]
= −2 6= 0.

Hence, system (4) undergoes a saddle-node bifurcation around Ē at h = hSN. This
completes the proof of Theorem 6.

Similarly, from Lemma 2 we know that system (4) undergoes a saddle-node bifurca-
tion around E∗.

Theorem 7. Assume that 0 < h < (r − 1)/k and F (x∗) = 0, then system (4) will
undergo a saddle-node bifurcation at E∗.
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3.2 Hopf bifurcation

According to Theorem 3, the stability of E4 will vary with fluctuations in the parameter
h. If h = x4(s+x4), thenE4 is a center or a weak focus, meaning the eigenvalues of JE4

will be a pair of imaginary roots. Thus, Hopf bifurcation will occurs atE4. For simplicity,
inspired by the method in Dai et al. [4] and Lu et al. [12], letting

x̄ =
x

x4
, ȳ =

y

y4
, t̄ = x4t, r̄ =

r

x4
, k̄ = x4k,

ā =
1

x4
, c̄ = c, h̄ =

h

x2
4

, s̄ =
s

x4

and dropping the bar, system (4) is transformed to the following system:

ẋ = x

(
r

ky + 1
− a− x− cy

)
− h, ẏ = sy

(
1− y

x

)
, (15)

where r > a > 0, and all the other parameters are positive.
Ẽ4(1, 1) is an equilibrium of system (15), which implies that

r = (a+ 1 + c+ h)(k + 1).

Assume that there is another positive equilibrium Ẽ3(x̃3, x̃3) with x̃3 satisfying the equa-
tion

(x− 1)Φ(x) = 0,

where
Φ(x) = k(c+ 1)x2 +

(
ak + (k + 1)(c+ 1)

)
x− h.

Note that x̃3 < 1. Substituting x = 1 into Φ(x), we have Φ(1) = h∗ − h > 0, that means
h < h∗, where h∗ = (2k + 1)(c+ 1) + ak.

The Jacobian matrix of system (15) at Ẽ4 is

JẼ4
=

(
−1 + h (a+2c+h+1)k+c

k+1

s −s

)
,

and

Det JẼ4
=
s(h∗ − h)

k + 1
, Tr JẼ4

= h− h∗∗,

where h∗∗ = s+ 1.

Theorem 8. Assuming that h < h∗, system (15) has an equilibrium Ẽ4(1, 1). Moreover,

(i) Ẽ4(1, 1) is a stable node or a focus if h < h∗∗;
(ii) Ẽ4(1, 1) is an unstable node or a focus if h > h∗∗;

(iii) Ẽ4(1, 1) is a center or a weak focus if h = h∗∗.

Now we will be going to study the Hopf bifurcation around Ẽ4(1, 1) in system (15).
It is clear that the condition of transversality

d Tr JẼ4

dh

∣∣∣∣
h=h∗∗

= 1 6= 0
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holds. Then we will calculate the first-order Lyapunov number to assess the stability of
the limit cycle around Ẽ4. Applying the transformations (x̃, ỹ) = (x − 1, y − 1), the
Taylor series expansion of system (15) around the origin can be expressed as

˙̃x = ã10x̃+ ã01ỹ + ã20x̃
2 + ã11x̃ỹ + ã02ỹ

2 + ã30x̃
3 + ã21x̃

2ỹ + ã12x̃ỹ
2 + ã03ỹ

3

+ o
(
|x̃, ỹ|3

)
,

˙̃y = b̃10x̃+ b̃01ỹ + b̃20x̃
2 + b̃11x̃ỹ + b̃02ỹ

2 + b̃30x̃
3 + b̃21x̃

2ỹ + b̃12x̃ỹ
2 + b̃03ỹ

3

+ o
(
|x̃, ỹ|3

)
,

(16)

where the coefficients of system (16) are omitted for brevity.
Next, applying the transformation (ũ, ṽ) = (−x̃, (ã10x̃ + ã01ỹ)/

√
D), where D =

ã10b̃01 − ã01b̃10 = Det JẼ4
> 0, system (16) is modified to

˙̃u = −
√
Dṽ + c̃20ũ

2 + c̃11ũṽ + c̃02ṽ
2 + c̃30ũ

3 + c̃21ũ
2ṽ + c̃12ũṽ

2 + c̃03ṽ
3

+ o
(
|ũ, ṽ|3

)
,

˙̃v =
√
Dũ+ d̃20ũ

2 + d̃11ũṽ + d̃02ṽ
2 + d̃30ũ

3 + d̃21ũ
2ṽ + d̃12ũṽ

2 + d̃03ṽ
3

+ o
(
|ũ, ṽ|3

)
,

(17)

where the coefficients of system (17) are omitted are omitted for brevity.
On the basic of the result of [21], the first-order Lyapunov number can be expressed

as

l1 =
γ1k

2 + γ2k + γ3

8((a+ 2c+ s+ 2)k + c)(1 + k)D
,

where the expression of γi (i = 1, 2, 3) are omitted for brevity.

Theorem 9. If h = h∗∗ < h∗, then the following statements hold:

(i) If l1 > 0, then system (15) undergoes a subcritical Hopf bifurcation, and an
unstable limit cycle comes out around Ẽ4;

(ii) If l1 < 0, then system (15) undergoes a supercritical Hopf bifurcation, and
a stable limit cycle comes out around Ẽ4;

(iii) If l1 = 0, then system (15) undergoes a degenerate Hopf bifurcation, and multiple
limit cycles may appear around Ẽ4.

By numerical simulation we show the existence of limit cycle. Letting a = 1, c = 0.6,
s = 0.2, k = 0.1, h = 1.2, r = 4.18, we have l1 = 0.3152321764 > 0. We perturb h
to h = 1.2− 0.01, then there exists an unstable limit cycle around Ẽ4; see Fig. 3(a)). On
the other hand, letting a = 1, c = 1.4, s = 0.2, k = 0.6, h = 1.2, r = 7.36, we have
l1 = −0.01607179488 < 0. We perturb h to h = 1.2+0.0029, then there exists an stable
limit cycle around Ẽ4; see Fig. 3(b).

Now we give an example to illustrate the existence of two limit cycles. Letting
a = 1, c = 13/2, s = 5/2, k = (863 + 6

√
39646)/1117, h = 7/2, r = (23760 + 72 ×√

39646)/1117, where l1 = 0, we perturb h and s to h = 7/2 + 0.008 and s = 5/2 +
0.006. Hence, system (15) undergoes a degenerates Hopf bifurcation, and there are two
limit cycles (the inner one is stable, and the outer one is unstable) around Ẽ4; see Fig. 3(c).
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Figure 3. Limit circles of system (15): (a) an unstable limit cycle with a = 1, c = 0.6, k = 0.1, h =
1.2 − 0.01, s = 0.2, and r = 4.18; (b) a stable limit cycle appears with a = 1, c = 1.4, k = 0.6,
h = 1.2 + 0.0029, s = 0.2, and r = 7.36; (c) two limit cycles (the inner one is stable, while the outer is
unstable) with a = 1, c = 13/2, k = (863 + 6

√
39646)/1117, h = 7/2 + 0.008, s = 5/2 + 0.006, and

r = (23760 + 72
√
39646)/1117.

Remark 1. In Fig. 3(a), the origin is stable, and one boundary equilibria is a unstable
node, while another is a saddle. What is more, there are two positive equilibrium, where
Ẽ3 is a saddle, and Ẽ4 is a stable focus, and a unstable limit cycle appears around Ẽ4. The
orbits of phase portraits reveal that the prey and predator tend to coexistent steady states
only when initial values of system (15) lie inside of the unstable limit cycle; otherwise,
the two species turn to die out.

In Fig. 3(b), except Ẽ4 becomes a unstable focus, the origin and the other equilibrium
remain the same. Besides, a stable limit cycle appears around Ẽ4. When the initial values
lies on the right of the two stable invariant manifolds of the saddle, the two species tend
to coexistent, while when the initial values lies on the left of the two stable invariant
manifolds of the saddle, the two species tend to die out.

In Fig. 3(c), we can know that system (15) undergoes degenerate Hopf bifurcation,
and there appear two limit cycles (the inner one is stable, while the outer is unstable).
That is, the two species will coexistent if the initial value is inside of the unstable limit
cycle, otherwise both will die out.

3.3 Bogdanov–Takens bifurcation

According to Theorem 5, the unique positive equilibrium E∗ of system (4) is a cusp of
codimension 2, indicating the possibility of a Bogdanov–Takens bifurcation occurring
near E∗. Thus, choosing s and k as the bifurcation parameters, system (4) transforms into

ẋ = x

(
r

1 + (k + λ1)y
− 1− x− cy

)
− h,

ẏ = (s+ λ2)y

(
1− y

x

)
,

(18)

where the parameter vector (λ1, λ2) is located in a small vicinity around the origin.
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Theorem 10. Assume that the conditions of Theorem 5 hold, then system (4) undergoes
a Bogdanov–Takens bifurcation of codimension 2 around E∗.

Proof. First, perform the following transformations in sequence:

x1 = x− x∗, y1 = y − y∗,

x2 = y1, y2 = h̃10x1 + h̃01y1 + h̃20x
2
1 + h̃11x1y1 + h̃02y

2
1 ,

x3 = x2, y3 = y2(1− j̃02x2), dt = (1− j̃02x2) dτ.

Then system (18) is restated as (still denote τ as t)

ẋ3 = y3,

ẏ3 = k̃00 + k̃10x3 + k̃01y3 + k̃20x
2
3 + k̃11x3y3 + o

(
|x3, y3|2

)
,

(19)

where the coefficients system (19) are omitted for brevity.
Since s > cx∗, we get

k̃20|λ1=λ2=0 =
sT1

x∗(1 + s+ cx∗ + 2x∗)
< 0,

where T1 is defined in Theorem 5. Letting

x4 = x3, y4 =
y3√
−k̃20

, τ =

√
−k̃20t,

system (19) transforms into the following form:

ẋ4 = y4,

ẏ4 = m̃00 + m̃10x4 + m̃01y4 − x2
4 + m̃11x4y4 + o

(
|x4, y4|2

)
,

(20)

where the coefficients system (20) are omitted for brevity.
Next, let

x5 = x4 −
m̃10

2
, y5 = y4,

then system (20) can be transformed into the following system:

ẋ5 = y5,

ẏ5 = ñ00 + ñ01y5 − x2
5 + ñ11x5y5 + o(|x5, y5|2),

(21)

where the coefficients system (21) are omitted for brevity. According to the proof of
Theorem 5, we obtain

ñ11|λ1=λ2=0 = −

√
− (2x∗ + s)2(1 + s+ 2x∗ + cx∗)

sx∗T1
< 0.

Finally, let

x6 = −ñ2
11x5, y6 = −ñ3

11y5, τ = − 1

ñ11
t.
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The universal unfolding of system (18) is given by

ẋ6 = y6, ẏ6 = µ1 + µ2y6 + x2
6 + x6y6 + o

(
|x6, y6|2

)
,

where µ1 = −ñ00ñ
4
11, µ2 = −ñ01ñ11.

Note that∣∣∣∣∂(µ1, µ2)

∂(µ1, µ2)

∣∣∣∣
λ1=λ2=0

= −x∗(cx∗ + 2x∗ + s+ 1)4(2x∗ + s)5(cx∗ + 2x∗ + 1)

s3T 4
1

6= 0.

Based on research by Preko [13], when (λ1, λ2) is close to (0, 0), system (4) undergoes
a Bogdanov–Takens bifurcation of codimension 2. This completes the proof of Theorem
10.

4 Numerical simulations

This paper considers a Leslie–Gower predator–prey model incorporating fear effect and
constant-type harvesting in prey. The main factors influencing the dynamic behaviour
of system (4) are fear of predators and harvesting. Numerical simulations show that the
impact of constant-type harvest and fear effect on the dynamic behaviour of (4) are as
follows.

4.1 The impact of fear effect

First of all, there is a discussion regarding the influence of fear effect. From Fig. 3
it can be seen that as the parameter k decreases, the number of positive equilibria of
system (4) alters, resulting in the emergence of a saddle-node bifurcation. Furthermore,
system (4) undergoes a Hopf bifurcation as shown in Fig. 3. For instance, allowing
(r1, c1, s1, k1, h1) = (8.36, 3.8, 0.81, 0.1, 1.8) and (r2, c2, s2, k2, h2) = (10.488, 3.8,
0.8, 0.38, 1.8) and by calculation, the first-order Lyapunov number is as follows:
L1|(r,c,s,k,h)=(r1,c1,s1,k1,h1) = 0.04462864722 and L1|(r,c,s,k,h)=(r2,c2,s2,k2,h2) =
−0.006671445061. This implies that system (4) undergoes a subcritical Hopf bifurcation
and a supercritical Hopf bifurcation, respectively.

To further investigate the effects of constant-type harvesting, we provide additional
clarification regarding Fig. 4(b). When k = 1.2, system (4) has no positive equilibrium.
Both predator and prey cannot coexist; see Fig. 5(a). When k = 1.0390744, system (4)
has only one positive equilibrium, which is a saddle-node with unstable parabolic; see
Fig. 5(b). When k = 0.6, system (4) has two positive equilibria, one being a saddle,
and the other an unstable focus. According to Fig. 5(c), it can be observed that both
the predator and prey species are unable to coexist. When k = 0.3797, there exist two
limit cycles around the unstable focus with the inner one being stable and the outer one
being unstable; see Fig. 5(d). When k = 0.378, there is a transition from an unstable
state to a stable state for focus accompanied by the emergence of an unstable limit cycle
around it. From Figs. 5(d) and 5(e) the unstable limit cycle can be regarded as a separatrix
curve. It is only when the initial value lies within the unstable limit cycle thatthe predator
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Figure 4. Bifurcation diagram of system (4) in k, y-plane: (a) (r, c, s, h) = (r1, c1, s1, h1); (b) (r, c, s, h) =
(r2, c2, s2, h2). (c) The local amplified phase portrait of (b).
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Figure 5. Phase portraits of system (4) with (r, c, s, h) = (r2, c2, s2, h2).
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and prey can coexist in a steady state or in periodic orbits. When k = 0.37058, the
unstable limit cycle goes bigger and becomes a homoclinic loop finally; see Fig. 5(f).
When k = 0.35, the unstable homoclinic disappears, and the focus remains stable. From
Fig. 5(g) the two stable saddle manifolds serve as a separatrix curve, furthermore, prey
and predator will be coexist if the initial value is to the right of the stable saddle manifolds,
but will not coexist if the initial value is to the left of the stable saddle manifolds. When
k = 0, the dynamic behaviors of system (4) shown in Fig. 5(h) is similar to that shown in
Fig. 5(g). Figure 5 displays that when the fear effect is small, both predator and prey will
survive or die out. But as the fear effect gradually increase, the area in which the species
live together will decrease, and ultimately make it impossible for the coexistence of prey
and predator. Therefore, the survival of both prey and predators is adversely affected by
high levels of fear.

4.2 The impact of constant-type harvesting

Secondly, it discusses how constant harvesting is affected. Figure 6 shows that sys-
tem (4) will undergo a Hopf bifurcation. Let (r3, c3, s3, k3, h3)=(12.6, 4.2, 1.8, 0.4, 2.8),
(r4, c4, s4, k4, h4) = (11.34, 4.2, 0.9, 0.4, 1.9), and the first-order Lyapunov number as
follows: L1|(r,c,s,k,h)=(r3,c3,s3,k3,h3) =0.1238687618 and L1|(r,c,s,k,h)=(r4,c4,s4,k4,h4) =
−0.008220336145, which means that system (4) undergoes a subcritical or a supercritical
Hopf bifurcation, respectively.

From Figs. 7(a)–7(c) it can be observed that when the level of harvesting is high, it
is not possible for both the prey and predator to coexist. From Figs. 7(d)–7(e) it can be
seen that there exist two limit cycles with the inner one being stable and the outer one
being unstable or one unstable limit cycle. In addition, the unstable limit cycle acts as a
separatrix curve, allowing for the potential coexistence or absence of predator and prey
depending on whether the initial value falls within or outside of the cycle. Figure 7(f)
shows that the unstable limit cycle gets bigger and becomes a homoclinic loop. Figure
7(g) shows that the homoclinic loop disappears, and if the initial value is to the right
of the stable saddle manifolds, prey and predator can coexist in a steady state. When
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Figure 6. Bifurcation diagram of system (4) in h, y-plane: (a) (r, c, s, k) = (r3, c3, s3, k3); (b) (r, c, s, k) =
(r4, c4, s4, k4). (c) The local amplified phase portrait of (b).
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Figure 7. Phase portraits of system (4) with (r, c, s, k) = (r4, c4, s4, k4).

h = 0, system (4) without constant-type harvesting has a single positive equilibria that is
globally asymptotically stable; see Fig. 7(h). Figure 7 displays that excessive harvesting
negatively impacts the survival of both prey and predator, highlighting the importance of
implementing sustainable harvesting practices to ensure the survival of both species.

5 Conclusion

Qualitative analysis suggests that prey harvesting and fear of predators are key determi-
nants of the dynamic behaviour of system (4). We get that the number and stability of
boundary equilibrium for system (4) may change by the change of parameter h. Besides,
the number of positive equilibrium for system (4) will vary by 0, 1, and 2 when there
is minimal prey harvesting or fear effects, and so does their stability. We demonstrate
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that, for a suitable range of parameters, the sole positive equilibrium E∗ may be a saddle-
node or a cusp of codimension 2. In addition, it is confirmed that saddle-node bifurcation
and Bogdanov–Takens bifurcation occur around E∗, and expressions for three bifurcation
curves are given, which consist of the saddle-node bifurcation curve, homoclinic bifurca-
tion curve, and Hopf bifurcation curve. Furthermore, E3 is consistently a saddle, whereas
E4 can be either stable or unstable depending on the parameter values. Additionally, sys-
tem (4) undergoes a supercritical and subcritical Hopf bifurcation along with a degenerate
Hopf bifurcation, resulting in the presence of two limit cycles with the inner one being
stable and the outer one being unstable.

In [22], the authors studied the properties of the positive equilibrium and proved that
supercritical or subcritical Hopf bifurcations and limit cycles occur in system (1). In [6],
the authors further proved that system (1) can generate Bogdanov–Takens bifurcation
of codimension 2. Different from [22] and [6], we demonstrates that the quantity of
limit cycles can vary by zero, one (an unstable limit cycle), or two (with the inner one
being stable and the outer one being unstable) within specific parameter ranges. That is,
by choosing the suitable parameters we find system (4) to undergo a degenerate Hopf
bifurcation, which is not discussed in [22] and [6]. In the realm of biology, the act of
prey harvesting and fear of predator hold substantial significance, impacting the quantity
and stability of equilibria as well as the occurrence of different bifurcations. Two species
will attain a steady state only if the fear effect or prey harvesting remains at a low level.
It becomes impossible for both prey and predator to coexist if the fear effect or prey
harvesting exerts a pronounced impact. As the fear effect or constant-type harvesting
become large, system (4) transitions from a stable state to an unstable state. These
findings suggest that system (4) exhibits more intricate dynamic behaviors compared to
the systems studied in previous works by [22] and [6].
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