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Abstract. In this paper, we consider a modified Leslie–Gower predator–prey model with Allee
effect on prey and fear effect on predators. Results show complex dynamical behaviors in the model
with these factors. Existence of equilibrium points and their stability of the model are first given.
Then it is found that, with the Allee and fear effects, the model exhibits various and different
bifurcations, such as saddle-node bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation.
Theoretical analysis is verified through some numerical simulations.
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1 Introduction

The predator–prey model is a fundamental ecological model that describes the interactions
between two species, capturing the interaction dynamics between them and attracting
persistent interests of scholars from the fields of mathematics and biology [5, 19, 21,
25, 27]. It is widely recognized that the amount of prey caught by a predator is the
only factor that sustains its survival and development. In practice, however, other vari-
ables also exert an influence on predator populations. Given that the carrying capacity
of the environment in a realistic situation is finite, it is reasonable to assume that the
rate of increase in the number of predators is proportional to the rate of increase in
the number of prey. Consequently, Leslie and Gower [12, 13] postulated that predator
populations do not reproduce indefinitely in order to grow; instead, they claimed that
the environmental carrying capacity of predators should be taken into consideration and
proposed the modified predator–prey model known as the Leslie–Gower predator–prey
model. The model proposes that the environmental carrying capacity of a predator is
constrained by the size of the prey population. On the other hand, predators often prefer
dietary diversity, feeding on alternative resources as favorite prey become scarce. With
this in mind, Aziz-Alaou and Okiye put forth a revised Leslie–Gower model to account
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for this intricacy [2]. In this case, the predator can survive even if the prey population is
scarce or even extinct due to the presence of alternative prey.

In the 1930s, Allee [1] introduced the Allee effect, which states that when population
densities are low, it is difficult for species to forage, find mates, fend off predators,
and reproduce successfully due to environmental constraints and inbreeding leading to
declining ability [6,10,14]. Now there are different forms of Allee effects, such as strong
Allee effect [8, 24], weak Allee effect [9], multiple Allee effects [3], etc. In addition
to the direct predation on prey from predators, prey frequently show some antipredator
responses to the perceived predatory actions, including changes in habitats, changes in
foraging behaviors, and changes in vigilance and physiology. For example, birds will flee
their nests in response to antipredator defenses [7], mule deer spend less time foraging
because of the threat of cougar predation [4]. This antipredator response of prey from the
indirect predation is known as the fear effect. Note that the direct and indirect effects of
predators are interrelated [22]. Although prey show fear effects on a regular basis, a recent
experiment in [15, 18, 20] suggested that the fear effect from large carnivores may have
a similar effect on medium-sized carnivores, leading to a reduction in their willingness
to feed on low-nutrient organisms and causing densities of low-nutrient organisms to
increase. During the experiment, a dog barking on videotape was used to simulate the
fear of raccoons. Consequently, the raccoons’ willingness to forage for food and the
amount of time spent on eating were greatly reduced. Species at the lower level of the
food chain can be effectively protected from such fear effects on predators. Therefore, it
is necessary and interesting to consider fear effects on predators and the Allee effect on
prey; see, for example, [13]. We will consider the modified Leslie–Gower predator–prey
model with fear effect on predators and strong Allee effect on prey

dx

dt
= rx

(
1− x

K

)
(x−m)− αxy,

dy

dx
=

sy

1 + ky

(
1− y

n+ βx

)
,

(1)

where x and y are the prey and predator densities at time t, respectively. The parameters
r and s represent the intrinsic growth rates of the prey and predator, respectively. K is
the environmental capacity of prey, m is the Allee effect threshold with 0 < m < K,
implying that it is the strong Allee effect, α denotes the conversion rate of predators, the
value of k reflects the level to which fear affects the behavior of predators, β measures the
quantity of prey that predators capture, n is the amount of available food that predators
consume when their favourite prey is scarce or disappears from the environment [17], and
all parameters are positive.

The remainder of this paper is organized into the following sections. The existence
and stability of equilibrium points of system (2) are analyzed in Section 2. In Section 3,
the bifurcations that occur in system (2) are described, including saddle-node bifurcation,
Hopf bifurcation, and Bogdanov–Takens bifurcation. Furthermore, in Section 4, the pre-
viously derived theoretical results were verified through a series of numerical simulations.
Finally, in Section 5, we provide a summary of the research presented in this paper.
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2 Existence and stability of equilibria

In order to facilitate the analysis, let us simplify (1) by applying the transformation

x = Ku, y = Kβv, t =
kKβ

s
τ

and still denoting u, v, and τ by x, y, and t, respectively. Then one has

dx

dt
= ax(1− x)(x− b)− cxy := P (x, y),

dy

dt
=

y

d+ y

(
1− y

e+ x

)
:= Q(x, y),

(2)

where a = krβK2/s, b = m/K, c = αkβ2K2/s, d = 1/(kKβ), e = n/(Kβ), and
0 < b < 1. Let P (x, y) = 0 andQ(x, y) = 0, then we obtain the equilibriumE0 = (0, 0),
the prey-free equilibrium E1 = (0, e), and two distinct predator-free equilibria denoted
as E2 = (b, 0) and E3 = (1, 0). With regard to the other equilibrium point (x, y) of
system (2), it satisfies

x2 +

(
c

a
− b− 1

)
x+

ce

a
+ b = 0. (3)

It is evident that the equation possesses at most two equilibrium points. The following
theorem is thus established.

Theorem 1. If b+ 1 > c/a, then

(i) when e > ∆0, system (2) has no positive equilibrium;
(ii) when e = ∆0, system (2) has a unique positive equilibrium

E∗(x∗, y∗) =

(
ab+ a− c

2a
, e+

ab+ a− c
2a

)
;

(iii) when e < ∆0, system (2) has two positive equilibria

E4(x4, y4) =

(
ab+ a− c− a

√
∆

2a
, e+

ab+ a− c− a
√
∆

2a

)
,

E5(x5, y5) =

(
ab+ a− c+ a

√
∆

2a
, e+

ab+ a− c+ a
√
∆

2a

)
,

where

∆0 =
a[(b+ 1− c

a )2 − 4b]

4c
, ∆ =

(
c

a
− b− 1

)2

− 4

(
ce

a
+ b

)
. (4)

Proof. The discriminant of Eq. (3) is denoted by ∆; see (4). Obviously, if e > ∆0, then
the discriminant ∆ < 0, and Eq. (3) has no solution on the real number field, i.e., there
is no positive equilibrium for system (2). If e = ∆0, then ∆ = 0, and Eq. (3) possesses
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a unique positive solution x∗ = (ab+ a− c)/(2a), i.e., system (2) has a unique positive
equilibria E∗((ab + a − c)(2a), e + (ab + a − c)/(2a)). If e < ∆0, then ∆ > 0,
and Eq. (3) has two distinct positive solutions x4,5 = (ab + a − c ∓ a

√
∆)/(2a), i.e.,

system (2) exhibits two distinct positive equilibria denoted as E4 and E5. The proof is
completed.

Theorem 2. Equilibria E0 and E3 of system (2) are saddle-points, E1 is a stable node,
and E2 is an unstable node.

Proof. The Jacobian matrices of system (2) at pointsE0,E1,E2, andE3 are, respectively,

JE0
=

(
−ab 0

0 1
d

)
, JE1

=

(
−ab− ce 0

1
d+e − 1

d+e

)
,

JE2
=

(
ab(1− b) −bc

0 1
d

)
, JE3

=

(
−a(1− b) −c

0 1
d

)
.

It is not difficult to find that equilibrium E0, E3 of system (2) are all saddle-points,
E1 is a stable node, E2 is an unstable node. The proof is completed.

Theorem 3. Let

b+ 1 >
c

a
and e =

a[(b+ 1− c
a )2 − 4b]

4c
,

and system (2) has a unique positive equilibrium E∗. Then:
(i) if (b− 1)

2
a2 + 4acd− c2 < 0, equilibrium E∗ is a saddle-node with a repelling

parabolic sector;
(ii) if (b− 1)

2
a2 + 4acd− c2 > 0,

(a) equilibrium E∗ is a saddle-node with a repelling parabolic sector if d > D1,
(b) equilibrium E∗ is a saddle-node with an attracting parabolic sector if

d < D1,

where

D1 =
2a

(ab+ a− c)c
− a(b− 1)

2

4c
+

c

4a
.

Proof. The Jacobian matrix of system (2) evaluated at equilibrium E∗ is

JE∗ =

(
a[−3x∗2 + (2b+ 2)x∗ − b]− cy∗ −cx∗

1
d+y∗ − 1

d+y∗

)
.

It readily follows that

Det(JE∗) = 0 and Tr(JE∗) =
c(ab+ a− c)

2a
− 4ac

(b− 1)
2
a2 + 4acd− c2

.

If (b− 1)2a2 + 4acd− c2 < 0, then Tr(JE∗) > 0, so E∗ is a saddle-node with a replling
parabolic sector. If (b−1)2a2 +4acd−c2 > 0, then if d > D1, we have Tr(JE∗) > 0, so
E∗ is a saddle-node with a repelling parabolic sector; if d < D1, we have Tr(JE∗) < 0,
so E∗ is a saddle-node with an attracting parabolic sector. The proof is completed.
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Theorem 4. Let

b+ 1 >
c

a
and e <

a[(b+ 1− c
a )2 − 4b]

4c
,

and system (2) has two distinct positive equilibria E4 and E5. Then:

(i) E4 is a saddle-node.
(ii) If a[−3x25 + 2(b+ 1)x5 − b]a− cy5 < 0, then E5 is a stable node (or focus).

(iii) If a[−3x25 + 2(b+ 1)x5 − b]a− cy5 > 0, then

(a) if d > D2, then E5 is an unstable node (or focus),
(b) if d < D2, then E5 is a stable node (or focus).

Here
D2 =

1

[−3x25 + 2(b+ 1)x25 − b]a− cy25
− y5.

Proof. The Jacobian matrix of system (2) evaluated at E4 is

JE4
=

(
a[−3x4

2 + (2b+ 2)x4 − b]− cy4 −cx4
1

d+y4
− 1
d+y4

)
.

It is clear that

Det(JE4
) =

3ax24 − 2a(b+ 1)x4 + ab+ cy4 + cx4
d+ y4

.

Note that d + y4 > 0, so the positivity of Det(JE5
) is the same as that of 3ax24 −

2a(b+ 1)x4 + ab+ cy4 + cx4. It can be obtained

3ax24 − 2a

[
(b+ 1)− c

a

]
x4 + ab+ ce = −x4a

√
∆ < 0,

i.e., Det(JE4
) < 0, so E4 is a saddle-node.

Similarly, the Jacobian matrix of system (2) evaluated at E5 is

JE5
=

(
a[−3x5

2 + (2b+ 2)x5 − b]− cy5 −cx5
1

d+y5
− 1
d+y5

)
,

then

Det(JE5
) =

3ax25 − 2a(b+ 1)x5 + ab+ cy5 + cx5
d+ y5

=
x5a
√
∆

d+ y5
> 0,

Tr(JE5) = a
[
−3x25 + (2b+ 2)x5 − b

]
− cy5 −

1

d+ y5
,

so the stability of E5 is determined by the sign of Tr(JE5
). If a[−3x25 + 2(b + 1) ×

x5 − b]a − cy5 < 0, then Tr(JE5
) < 0, and E5 is a stable node (or focus). When

a[−3x25 + 2(b + 1)x5 − b]a − cy5 > 0, if d > D2, then Tr(JE5) > 0, and E5 is an
unstable node (or focus); if d < D2, then Tr(JE5) < 0, and E5 is a stable node (or
focus). The proof is completed.
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3 Bifurcation analysis

Theorem 5. When bifurcation parameter

e = eSN =
(b+ 1− c

a )
2
a− 4ab

4c
,

system (2) will experience the saddle-node bifurcation near E∗.

Proof. The Jacobian matrix of system (2) evaluated at E∗ is given by

JE∗ =

(
c(ab+a−c)

2a − c(ab+a−c)2a
4ac

(b+1)2a2+4acd−c2 − 4ac
(b+1)2a2+4acd−c2

)
.

Clearly, when e = eSN = ((b+ 1− c/a)2a− 4ab)/(4c), Det(JE∗) = 0. In this instance,
the eigenvectors of matrices JE∗ and JT

E∗ are, respectively,

V =

(
v1
v2

)
=

(
1
1

)
, W =

(
w1

w2

)
=

(
1

− [(b−1)2a2+4acd−c2](ab+a−c)
8a2

)
.

Let F (x, y) = (P (x, y), Q(x, y))T, then we get

Fe(E
∗, eSN) =

(
0
1

d+y∗

)
,

D
(
Fe(E

∗, eSN)
)
V =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)(
v1
v2

)
=

(
0

− 1
d+y∗

)
,

D2
(
Fe(E

∗, eSN)
)
(V, V ) =

(
∂2P
∂x2 v1

2 + 2∂2P
∂x∂y + ∂2P

∂y2 v2
2

∂2Q
∂x2 v1

2 + 2∂2Q
∂x∂y + ∂2Q

∂y2 v2
2

)

=

(
2a(−3x∗ + b+ 1)− 2c

0

)
.

Further, we get

WTFe(E
∗, ESN) =

w2

d+ y∗
6= 0, WT

[
D2F (E∗, ESN)(V, V )

]
= 6ax∗ 6= 0.

Therefore, system (2) will exhibit the saddle-node bifurcation at e = eSN in view of the
Sotomayor’s theorem [16]. The proof is completed.

3.1 Hopf bifurcation

From Theorem 4 the stability of E5 changes with varying d, indicating that Hopf bifurca-
tion may occur.

Theorem 6. Let conditions in Theorem 4 are satisfied, and the stability of the positive
equilibrium point E5 is contingent upon the threshold value

d = dH =
1

[−3x25 + 2(b+ 1)x5 − b]a− cy5
− y5.

Then the Hopf bifurcation occurs.
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Proof. From the proof of Theorem 4 the characteristic equation of JE5
is

λ2 − Tr(JE5
)λ+ Det(JE5

) = 0.

A straightforward calculation reveals that the eigenvalues of the Jacobi matrix JE5
are as

follows:

λ1,2 =
Tr(JE5

)±
√

Tr(JE5
)2 − 4 Det(JE5

)

2
.

Note that
d Tr(JE5)

dd
=

1

(d+ y5)2
6= 0.

Then the Hopf bifurcation happens at E5 in system (2) when d = dH. As for the direction
of the Hopf bifurcation, it is necessary to calculate the first Lyapunov coefficient l1 of
system (2) at E5. Translating E5(x5, y5) to (0, 0) with (x̄, ȳ) = (x − x5, y − y5),
system (2) becomes

dx̄

dt
= ā10x̄+ ā01ȳ + ā20x̄

2 + ā11x̄ȳ + ā30x̄
3 +O

(
|x̄, ȳ|4

)
,

dȳ

dt
= b̄10x̄+ b̄01ȳ + b̄20x̄

2 + b̄11x̄ȳ + b̄02x̄
2 + b̄30x̄

3

+ b̄21x̄
2ȳ + b̄12x̄ȳ

2 + b̄03ȳ
3 +O

(
|x̄, ȳ|4

)
,

where

ā10 = a
[
−3x5

2 + (2b+ 2)x5 − b
]
− cy5, ā01 = −cx5,

ā20 = (−3x5 + b+ 1)a, ā11 = −c, ā30 = −a,

b̄10 =
1

d+ y5
, b̄01 = − 1

d+ y5
, b̄20 = − 1

(e+ x5)(d+ y5)
,

b̄11 =
2d+ y5

(e+ x5)(d+ y5)
2 , b̄02 = − d

(e+ x5)(d+ y5)
2 ,

b̄30 =
1

(e+ x5)
2
(d+ y5)

, b̄21 =
2d+ y5

(e+ x5)
2
(d+ y5)

2 ,

b̄12 =
d2

(e+ x5)
2
(d+ y5)

3 , b̄03 =
d

(e+ x5)(d+ y5)
3 .

Here ā10 + b̄01 = 0 and ā10b̄01 − ā01b̄10 > 0. According to [18, 23], the first Lyapunov
coefficient can be given by the following formula:

l1 =
−3π

2ā01H3/2

{[
ā10b̄10

(
ā211 + ā11b̄02

)
+ ā10ā01

(
b̄211 + ā20b̄11 + ā11b̄02

)
− 2ā10b̄10b̄

2
02 − 2ā10ā01

(
ā220 − b̄20b̄02

)
− ā210(2ā20b̄20 + b̄11b̄20) +

(
ā01b̄10 − 2ā210

)
(b̄11b̄02 − ā11ā20)

]
−
(
ā210 + ā01b̄10

)[
3(b̄10b̄03 − ā01ā30) + 2ā10b̄12 − ā10b̄21

]}
.

The Hopf bifurcation is subcritical if l1 > 0, and supercritical if l1 < 0. The proof is
completed.
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3.2 Bogdanov–Takens bifurcation

This section will examine the Bogdanov–Takens bifurcation near E∗ in detail. From
Theorem 3 the Jacobian matrix at the unique positive equilibrium E∗ is

JE∗ =

(
a[−3x∗2 + (2b+ 2)x∗ − b]− cy∗ −cx∗

1
d+y∗ − 1

d+y∗

)
.

Note that Det(JE∗) = 0 at E∗, which means that E∗ is a degenerate equilibrium.
Moreover, when

d = d0 =
2a

c(ab+ a− c)
+

c

4a
− (b− 1)2a

4c
,

Tr(JE∗) = 0, then Jacobian matrix JE∗ has two zero characteristic roots. Then E∗ is
a cusp of codimension 2 by using the similar method in [26], and the Bogdanov–Takens
bifurcation will occur in proximity to the value of E∗.

First, from the translation (x1, y1) = (x− x∗, y − y∗) we get

dx1
dt

= p10x1 + p01y1 + p20x
2
1 + p11x1y1 +O

(
|x1, y1|3

)
,

dy1
dt

= q10x1 + q01y1 + q20x
2
1 + q11x1y1 + q02y

2
1 +O

(
|x1, y1|3

)
,

(5)

where

p10 = a
[
−3x∗2 + (2bx∗ + 2)x∗ − b

]
− cy∗, p01 = −cx∗,

p20 = (−3x∗ + b+ 1)a, p11 = −c,

q10 =
1

d+ y∗
, q01 = − 1

d+ y∗
, q20 = − 1

(e+ x∗)(d+ y∗)
,

q11 =
2d+ y∗

(e+ x∗)(d+ y∗)
2 , q02 = − d

y∗(d+ y∗)
2 .

Then using the affine change x2 = x1, y2 = p10x1 + p01y1, system (5) reduces to

dx2
dt

= y2 +m20x
2
2 +m11x2y2 +O

(
|x2, y2|3

)
,

dy2
dt

= n20x
2
2 + n11x2y2 + n02y

2
2 +O

(
|x2, y2|3

)
,

(6)

where

m20 =

(
p20 −

p10p11
p01

)
, m11 =

p11
p01

, n11 =
p10p11
p01

+ q11 −
2q02p10
p01

,

n20 =p10p20 −
p210p11
p01

+ p01q20 − q11p10 +
q02p

2
10

p01
, n02 =

q02
p01

.

Further applying the transformation

x3 = x2 −
1

2
(m11 + n02)x22, y3 = y2 +m20x

2
2 − n02x2y2,

https://www.journals.vu.lt/nonlinear-analysis
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system (6) becomes

dx3
dt

= y3 +O
(
|x3, y3|3

)
,

dy3
dt

= µ1x
2
3 + µ2x3y3 +O

(
|x3, y3|3

)
,

where µ1 = n20, µ2 = m11 + 2m20. The preceding analysis allows us to conclude that
the following results can be derived.

Theorem 7. If µ1 6= 0, µ2 6= 0 and d = d0, then the unique positive equilibrium E∗ of
system (2) is a cusp of codimension 2.

From the above results we know that the Bogdanov–Takens bifurcation of codimen-
sion 2 will happen at the point E∗. To further explore the bifurcation, choose c and d as
the bifurcation parameters. Note that the critical values are

c0 = b+ 2e+ 1 + 2
√
be+ e2 + b+ e and d0 =

2a

(ab+ a− c0)c0
− a(b− 1)

2

4c0
+
c0
4a
,

respectively. Let c = c0 + λ1 and d = d0 + λ2, where λ1, λ2 are the small parameters
((λ1, λ2) is near (0, 0)). Then system (2) is rewritten as

dx

dt
= ax(1− x)(x− b)− (c0 + λ1)xy,

dy

dx
=

y

d0 + λ2 + y

(
1− y

e+ x

)
.

(7)

By the translation z1 = x− x∗, z2 = y − y∗, the Taylor expansion of (7) reads

dz1
dt

= a00(λ) + a10(λ)z1 + a01(λ)z2 + a20(λ)z21 + a11(λ)z1z2 +O
(
|z1, z2|3

)
,

dz2
dt

= b10(λ)z1 + b01(λ)z2 + b20(λ)z21 + b11(λ)z1z2 + b02(λ)z22 +O
(
|z1, z2|3

)
,

(8)

where λ is the vector (λ1, λ2), and

a00(λ) = ax∗(1− x∗)(x∗ − b)− (c0 + λ1)x∗y∗, a01(λ) = −(c0 + λ1)x∗,

a11(λ) = −c0 − λ1, a10(λ) = a
[
−3x∗2 + (2b+ 2)x∗ − b

]
− (c0 + λ1)y∗,

a20(λ) = a(−3x∗+b + 1), b10(λ) =
1

d0 + λ2 + y∗
,

b01(λ) = − 1

d0 + λ2 + y∗
, b20(λ) = − 1

(e+ x∗)(d0 + λ2 + y∗)
,

b11(λ) =
2d0 + 2λ2 + y∗

(e+ x∗)(d0 + λ2 + y∗)
, b02(λ) = − d0 + λ2

(e+ x∗)(d0 + λ2 + y∗)2
.
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Here a00(0) = 0, a10(0) + b01(0) = 0, a10(0)b01(0) + a01(0)b10(0) = 0. Through the
affine change

u1 = z1, v1 = a10(λ)z1 + a01(λ)z2,

system (8) is changed into

du1
dt

= f00(λ) + v1 + f20(λ)u21 + f11(λ)u1v1 +O(|u1, v1|3),

dv1
dt

= g00(λ) + g10(λ)u1 + g01(λ)v1 + g20(λ)u21

+ g11(λ)u1v1 + g02(λ)v21 +O
(
|u1, v1|3

)
,

(9)

where

f00(λ) = a00(λ), f20(λ) = a20(λ)− a10(λ)a11(λ)

a01(λ)
, f11(λ) =

a11(λ)

a01(λ)
,

g00(λ) = a00(λ)a10(λ), g10(λ) = a01(λ)b10(λ)− a10(λ)b01(λ),

g02(λ) =
b02(λ)

a01(λ)
, g01(λ) = a10(λ) + b01(λ),

g11(λ) = b11(λ) +
a10(λ)a11(λ)

a01(λ)
− 2a10(λ)b02(λ)

a01(λ)
,

g20(λ) = a10(λ)a20(λ) + a01(λ)b20(λ)− a10(λ)b11(λ)

− a210(λ)a11(λ)

a01(λ)
+
a210(λ)b02(λ)

a01(λ)
.

Next, applying the C∞ transformation

u2 = u1, v2 = f00(λ) + v1 + f20(λ)u21 + a11(λ)u1v1 +O
(
|u1, v1|3

)
,

system (9) becomes

du2
dt

= v2,

dv2
dt

= α00(λ) + α10(λ)u2 + α01(λ)v2 + α20(λ)u22

+ α11(λ)u2v2 + α02(λ)v22 +O
(
|u2, v2|3

)
,

(10)

where

α00(λ) = g00(λ)− f00(λ)g01(λ)− f200(λ)f11(λ) + f200(λ) + f200(λ)g02(λ),

α10(λ) = g10(λ)− f00(λ)g11(λ)− f11(λ)g00(λ)− f00(λ)f11(λ)g01(λ),

α01(λ) = g01(λ)− 2f00(λ)g02(λ)− f00(λ)f11(λ),

α20(λ) = g20(λ) + f11(λ)g10(λ)− f20(λ)g01(λ)− f00(λ)f10(λ)f11(λ),

α11(λ) = g11(λ) + 2f20(λ)− f00(λ)f211(λ),

α02(λ) = g02(λ) + f11(λ) + f02(λ)g01(λ).
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Here α00(0) = α10(0) = α01(0) = 0, α20(0) = g20(0), α11(0) = g11(0) + 2f20(0), and
α02(0) = f11(0) + g02(0).

In order to remove the term v2 from the second equation of system (10), it is necessary
to make the following substitutions. We assume that α11(0) 6= 0 and take the change

u3 = u2 +
α01(λ)

α11(λ)
, v3 = v2,

then system (10) is turned into

du3
dt

= v3,

dv3
dt

= β00(λ) + β10(λ)u3 + β20(λ)u23

+ β11(λ)u3v3 + β02(λ)v23 +O
(
|u3, v3|3

)
,

(11)

where

β00(λ) = α00(λ)− α10(λ)α01(λ)

α11(λ)
+
α20(λ)α2

01(λ)

α2
11(λ)

,

β10(λ) = α10(λ)− 2α01(λ)α20(λ)

α11(λ)
, β20(λ) = α20(λ),

β11(λ) = α11(λ), β02(λ) = α02(λ).

Now we take u4 = u3, v4 = v3(1− β02u3), and dt = (1− β02u3) dτ , still denote τ
by t. Then system (11) is changed to

du4
dt

= v4,

dv4
dt

= ζ00(λ) + ζ10(λ)u4 + ζ20(λ)u24 + ζ11(λ)u4v4 +O
(
|u4, v4|3

)
,

(12)

where
ζ00(λ) = β00(λ), ζ11(λ) = β11(λ),

ζ20(λ) = β20(λ)− 2β10(λ)β02(λ) + β2
02(λ),

ζ10(λ) = β10(λ)− 2β00(λ)β02(λ).

Finally, we take the scaling transformation

σ =

∣∣∣∣ζ20(λ)

ζ11(λ)

∣∣∣∣t, u5 =
ζ211(λ)

ζ20(λ)
u4, u5 = sign

(
ζ11(λ)

ζ20(λ)

)
ζ311(λ)

ζ220(λ)
v4.

Assume that ζ11(0) = α11(0) 6= 0, ζ20(0) 6= 0. Then system (12) turns into

du5
dσ

= v5,
dv5
dσ

= ξ1 + ξ2u5 + u25 + ξu5v5 +O
(
|u5, v5|3

)
,

where

ξ1 =
ζ00(λ)ζ411(λ)

ζ320(λ)
, ξ2 =

ζ10(λ)ζ211(λ)

ζ220(λ)
,
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ξ = sign
ζ11(0)

ζ20(0)
= sign

2f20(0) + g11(0)

g20(0)

with the condition ∣∣∣∣ ∂(ξ1, ξ2)

∂(λ1, λ2)

∣∣∣∣
λ1,2=0

=

∣∣∣∣∣
∂ξ1
∂λ1

∂ξ1
∂λ2

∂ξ2
∂λ1

∂ξ2
∂λ2

∣∣∣∣∣
λ1,2=0

6= 0.

According to [11, Them. 8.4], we obtain the following theorem.

Theorem 8. If the parameter satisfies the above nondegeneracy assumptions, then sys-
tem (2) will exhibit the Bogdanov–Takens bifurcation at E∗.

When ξ = −1, the following local bifurcation curve divides the neighborhood of the
origin of the ξ1, ξ2-plane into four regions:

1. the saddle-node bifurcation curve SN = {(ξ1, ξ2): ξ1 = ξ22/4};
2. the Hopf bifurcation curve H = {(ξ1, ξ2): ξ1 = 0, ξ2 < 0};
3. the homoclinic bifurcation curve HL = {(ξ1, ξ2): ξ1 = −6ξ22/25+o(ξ22), ξ2 < 0}.

Remark 1. If c0 = b+2e+1−2
√
be+ e2 + b+ e, we also have ∆ = 0, and system (2)

will admit the Bogdanov–Takens bifurcation at E∗. Analysis is similar to the above.

Remark 2. When ξ = +1, the system has similar local bifurcation curves. In this case,
the system can be changed as the above by t 7→ −t and ξ2 7→ −ξ2.

4 Numerical simulations

In this section, we validate the results of the preceding analysis through numerical sim-
ulations. The parameters of the system, denoted as a, b, c, d, and e, are utilized in the
simulations. Numerical simulations and phase portraits have been carried out by using
MATLAB with fixed parameters and varying conditions.

Example 1. In Fig. 1(a), the dynamics of system (2) are displayed with a = 1, b = 0.2,
c = 0.25, d = 7.5. The system always has four boundary equilibria: two saddle-points
E0 = (0, 0) and E3 = (1, 0), a stable node E1, and a unstable node E2 = (0.2, 0). In
this case, eSN = ((b + 1 − c/a)2a − 4ab)/(4c) = 0.1025. In the left panel of Fig. 1(a),
e=0.2 > eSN, the system does not have any positive equilibria. In the middle of Fig. 1(a),
e = eSN, the system has a unique positive equilibrium point E∗ = (0.475, 0.5775), and
saddle-node bifurcation may occur near E∗. In the diagram on the right in Fig. 1(a),
e = 0.09 < eSN, the system has two distinct positive equilibria E4 = (0.4191, 0.5091)
and E5 = (0.5309, 0.6209).

Example 2. Figure 1(b) shows the dynamical behaviors of system (2) with a = 1, b =
0.15, c = 0.36, e = 0.0167. The system has four boundary equilibria: two saddle-
points E0 = (0, 0), E3 = (1, 0), a stable node E1 = (0, 0.0167), and a unstable node
E2 = (0.15, 0). Here d0 = 2a/((ab+ a− c)c)− a(b− 1)2)/(4c) + c/(4a) = 6.6206. In
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(a) a = 1, b = 0.2, c = 0.25, d = 7.5

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.1

0.2

0.3

0.4

0.5

0.6

y

E
0

E
1 E

2
E

3

E
*

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

E
0

E
1 E

2
E

3

E
*

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.1

0.2

0.3

0.4

0.5

y

E
0

E
1 E

2
E

3

E
*

(b) a = 1, b = 0.15, c = 0.36, e = 0.0167
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(c) a = 1, b = 0.2, c = 0.25, e = 0.09

Figure 1. Dynamics of system (2).

the left panel of Fig. 1(b), d = d0 = 6.6206, the system has a unique positive equilibrium
E∗ = (0.3950, 0.4117), which is a cusp of codimension 2, so the system undergoes the
Bogdanov–Takens bifurcation around E∗. In the middle of Fig. 1(b), d = 1 < d0, the
unique positive equilibrium E∗ is an attracting saddle-node. In the diagram on the right
in Fig. 1(b), d = 30 > d0, the unique positive equilibrium E∗ is a repelling saddle-node.

Example 3. In Fig. 1(c), the dynamics of system (2) are presented with a = 1, b = 0.2,
c = 0.25, e = 0.09. Similar to Fig. 1(b), the system has four boundary equilibria: two
saddle-points E0 = (0, 0), E3 = (1, 0), a stable node E1 = (0, 0.09), and a unstable
node E2 = (0.2, 0). Meanwhile, the system have two distinct positive equilibria E4 =
(x4, y4) = (0.4191, 0.5091), E5 = (x5, y5) = (0.5309, 0.6209). In addition, we have
dH = 1/([−3x25 + 2(b + 1)x5 − b]a − cy5) − y5 = 13.0089. In the picture on the left
side of Fig. 1(c), d = 0.99 < dH, E5 is a stable node. In the middle picture of Fig. 1(c),
d = dH, E5 is a linear center. In the picture on the right side of Fig. 1(c), d = 200 > dH,
E5 is a unstable node. So the Hopf bifurcation may happen near E5.

Nonlinear Anal. Model. Control, 30(Online First):1–18, 2025

https://doi.org/10.15388/namc.2025.30.38982


14 R. Wu, W. Xiong

Example 4. In the picture on the left side of Fig. 2, the dynamics of system (2) are
presented with a = 1, b = 0.2, c = 0.025, d = 7.5. In the rest of the figures in
Figs. 2–4, the dynamics of system (2) are exhibited with a = 1, b = 0.15, c = 0.36,
d = 6.620614, e = 0.016736. The critical values of bifurcation parameters are c0 and d0.
By calculation, we get α11(0) = −0.4097792 6= 0, ζ20(0) = −0.0561689 6= 0, and∣∣∣∣ ∂(ξ1, ξ2)

∂(λ1, λ2)

∣∣∣∣ = −1.085704 6= 0.

So from Theorem 8, in this case, system (2) will experience the Bogdanov–Takens bi-
furcation at E∗. Moreover, for small λi (i = 1, 2), the bifurcation curves can be locally
approximated as

SN =
{

(λ1, λ2): λ1 = 0, λ2 6= 0
}

;

H =
{

(λ1, λ2): 350.4886λ21+14.2278λ1λ2+3.6798λ1+0.0218λ22 = 0, λ2 > 0
}

;

HL =
{

(λ1, λ2): 356.3012λ21+14.9247λ1λ2+3.6798λ1+0.0427λ22 = 0, λ2 > 0
}
.

Figures 2–4 show the subcritical Bogdanov–Takens bifurcation diagram and phase
portraits of system (2).

(a) In the left panel of Fig. 2, it is shown that the number of equilibrium points of the
system changes as the parameter e varies, where a saddle-node bifurcation occurs near
the LP point, and a Hopf bifurcation occurs near the H point

(b) In the middle panel of Fig. 2, the bifurcation curves SN, H, and HL divide the
λ1, λ2-plane into four regions, rotating counterclockwise around the critical parameter
value of the Bogdanov–Takens bifurcation (λ1, λ2) = (0, 0).

(c) When the parameter lies in the region I, then system (2) has no positive point of
equilibrium (as in the right panel of Fig. 2).

(d) When the parameter is situated on the curve SN, a unique positive equilibrium
point E∗, i.e., a saddle-node, will emerge.

(e) When the parameter crosses the curves SN and enters region II, the system un-
dergoes a saddle-node bifurcation, resulting in the emergence of two positive equilibrium
points E4 and E5. One of these equilibrium points is a saddle-point, while the other is an
unstable focus (as in the left panel of Fig. 3).

5.4 5.5 5.6 5.7 5.8 5.9

e

0.5

0.55

0.6

0.65

0.7

x

HH

LPLP

SN+

SN-

I

II

IV

III

H

HL

2

1

0 0.2 0.4 0.6 0.8 1

x

0

0.05

0.1

0.15

0.2

0.25

y

E
0

E
1

E
2

E
3

Figure 2. The panels are the saddle-node branching diagram, the Bogdanov–Takens bifurcation diagram, and
the bottom one shows no equilibria when (λ1, λ2) = (1, 0.005) is in region I.
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Figure 3. The left panel represents the unstable focus when (λ1, λ2) = (−0.001, 2) lies in region II, and the
right panel presents the unstable limit cycle when (λ1, λ2) = (−0.0001, 0.05) is in region III.

0.39 0.392 0.394 0.396 0.398 0.4 0.402 0.404 0.406

x

0.406

0.408

0.41

0.412

0.414

0.416

0.418

0.42

0.422

y

E
5

E
4

0.3 0.35 0.4 0.45 0.5 0.55 0.6

x

0.3

0.35

0.4

0.45

0.5

0.55

0.6

y

E
5

E
4

E
5

E
4

Figure 4. The left panel describes an unstable homoclinic cycle when (λ1, λ2) = (−0.00006367, 0.06453) is
on the curve HL, and the right panel represents a stable focus when (λ1, λ2) = (−0.007,−0.01) is in region IV.

(f) When the parameter is situated on the curve H, system (2) exhibits two positive
equilibrium points. One is an unstable weak focus, while the other is a saddle-point.

(g) When the parameter crosses the curve H and enters the region III through the
subcritical Hopf bifurcation, an unstable cycle emerges, where the focus remains stable
(as in the right panel of Fig. 3).

(h) When the parameter goes on changing until it lies on the curve HL, passing
through the homoclinic bifurcation, an unstable homoclinic orbit containing a stable focus
appears (as in the left panel of Fig. 4).

5 Conclusion

In view of the Allee effect on prey and fear effect on predator, the modified Leslie–Gower
predator–prey system exhibits complex dynamics. The model can have some degenerate
points, such as the saddle-node point, the fine focus, and the cusp point of codimension 2,
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in addition to some hyperbolic points. Under parameter perturbation, the system can
experience different and interesting bifurcations, such as the saddle-node bifurcation, the
Hopf bifurcation, and the Bogdanov–Takens bifurcation of codimension 2. As a result of
these bifurcations, the equilibrium point, the periodic cycle, and the homoclinic orbit will
appear in the system. From the findings the predators and prey could coexist in the long
run or coexist periodically, and that may be helpful to understand interaction between
them. In particular, when predators have alternative prey, it facilitates the coexistence of
predators and prey. From the results we find that predator and prey populations can have
long-term stable coexistence or the cyclical coexistence status. That implies the strong
Allee effect on the prey population, as well as the fear-influenced predators’ behaviors,
have clear implications for the stability and the persistence of population interactions.
Particularly, if the density of prey population is close to the Allee threshold, the dynamics
may become highly sensitive, and ecosystems become more susceptible to external dis-
turbances. From an ecological point of view, the results offer some theoretical basis to
discover the complex dynamics in predator–prey systems, especially, when the vulnerable
prey population need to be protected and predation numbers should be managed. These
can also explain the observed phenomena in similar systems in practice and offer potential
instruction to develop conservation and management strategies.
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