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Abstract. This paper establishes a nonlinear optimization strategy for position control of a direct
current motor. When experimental evidence showed that the linear model does not sufficiently
represent the system, the model is modified from linear to nonlinear, using friction-induced
nonlinearity. In the course of the research, an analysis of the nonlinear feedback linearizing
controller and the up to date gorilla troops optimization algorithm are carried out. The proposed
algorithm is juxtapose with four others metaheuristic optimizations. Furthermore, performances
with and without different types of disturbances are compared for individual desired output signals.
The experimental results corroborate the nonlinear control’s robustness.

Keywords: nonlinear modelling, artificial gorilla troops optimizer, African vultures optimization
algorithm, feedback linearization approach, stochastic disturbance robustness.

1 Introduction

A variety of methods may be used to regulate the position of the output series direct
current (DC) motor shaft. Traditional feedback control systems are commonly used, such
as proportional-integral-derivative (PID-like) controllers. They are simple and affordable
(in comparison to more complicated control systems), and many versions of these control
systems manage to keep the system’s output well matched with the specified value within
error limits. They, on the other hand, are unable to withstand adversity [17].

Aside from basic controllers, there are a variety of nonlinear controllers available [24].
In [16], a brand-new adaptive approach is created for controlling DC motors. In this
approach, the plant is controlled concurrently using PID and artificial neural networks
(ANN). The neural network feed forward controller is trained using the PID controller.
For the same issue, however, paper [15] proposes the design of a fuzzy logic controller
(FLC). Global optimization problems are difficult to solve efficiently because of their
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significant nonlinearity and multiple local optima. With nonlinear equations, however,
the individual equilibrium stability must be verified [9].

Nature has been a major source of inspiration in this subject. These methods include
popular algorithms such as: the firefly algorithm (FA) [23], the particle swarm algo-
rithm (PSO) [5], the differential evolution (DE) algorithm [18], the genetic algorithm
(GA) [8]; some recently developed algorithms: the grey wolf optimization (GWO) [13]
and the whale optimization algorithm (WOA) [12]; some newly discovered algorithms:
the artificial gorilla troops optimizer (GTO) [2] and the African vultures optimization
algorithm (AVOA) [1] and many others. These algorithms have found wide application.
For example, [3] and [7] use GTO for tuning the control system parameters. Supplemental
nonlinear control methods can be used in combination with other tactics.

For example, feedback linearization (FBL) permits the production of linear control
law through the synergy of a nonlinear transformation and linearization with feedback
loop, by canceling the nonlinearities in the system model. This method has shown to
be useful in a wide range of control tasks, including robotic systems, high-performance
aircraft, helicopters, biomedical equipment, and general industries [9], or it can be used
as position controller for DC motor [21]. This nonlinear technique can be combined with
metaheuristics optimization in order to obtain controller that will provide best machine
performance [10, 19, 22].

As the continuation of the research [20], the FBL approach was also utilized in this
study. It was carried out using a mathematical model that accounts for friction-induced
nonlinearity. Unlike past research on related subjects, that construct the model in compli-
ance with the flux and motor current nonlinearities [4, 11, 14], here a unique model with
discontinuous nonlinearity was developed utilizing the Tustin model and Stribeck friction.
This model was approximated by a differentiable function of the hyperbolic tangent. In
this way, all of the constraints and all of the requirements for FBL application are met.
After fully utilizing the FBL strategy to algebraically reduce the system’s nonlinearities
to their linear forms, the innovative GTO optimization method, as recent metaheuristics
intelligence methodology, was used to solve the challenge of determining controller coef-
ficients. Furthermore, in order to juxtapose this method, the comparison is made with the
AVOA, GWO, WOA and FA.

The last contribution of the research is an experimental demonstration of the robust-
ness and effectiveness of nonlinear system control in the face of both, continuous and
pulse disruption in the form of the white noise and external step disturbances acting up
on the object.

2 Object description

All systems, including mechanical ones, are mostly very complex and nonlinear. When
there are simpler models, for example linear ones, there is no need to work with more
complicated. However, neglecting nonlinearities in some cases significantly affects the
design of the control system. On the other hand, accurate mathematical models are tough
to obtain. A schematic depiction of a series wounded DC motor is shown in Fig. 1.
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Figure 1. The armature circuit and gain train for the SRV02 DC motor [6].

Figure 1 shows a schematic representation of a series-wound DC motor, with Vm standing
for voltage, Rm for resistance, Im for current, and Lm for the motor’s inductance. Load
moment of inertia is represented by Jl, motor shaft moment of inertia by Jm, motor
shaft position by θm, load shaft position by θl, viscous friction acting on the motor shaft
Bm and load shaft Bl. Total torque applied on the load is τl and on the motor is τm.
Ni, i = 1, 2, 3, 4, are gears. To address the challenges identified, this paper begins by
describing the DC motor’s structural and operational characteristics, emphasizing the
nonlinearities that inform the subsequent control strategy.

2.1 Selection of a mathematical model

Given the complex nature of the DC motor, an accurate mathematical model is essential
for developing robust control strategies. In this section, a model that captures dynamics
and incorporating friction-induced nonlinearities is presented. Using motor voltage as an
input variable Vm = u, the position of the load shaft θl = y as an output variable and
including the total moment of inertia Jeq , the equivalent damping term Beq,v , and the
actuator gain Am, the linear model for the system is:

Jeq ÿ(t) +Beq,v ẏ(t) = Amu(t)

The numerical values of the object’s parameters are given in Section 5. The speed-depen-
dent friction nonlinearity was used to build the DC motor’s nonlinear mathematical model.
Many friction models differ largely in how they characterize the moment of friction,
which has been thoroughly investigated in the literature. In these approaches the friction
torque is expressed as a static and/or dynamic function of rotational velocity. In this
research, the Tustin friction model was employed [6]:

Tfric = Tvisc + Tst

= Tc sgn(θ̇l) + (Ts − Tc)eθ̇l/θ̇s sgn(θ̇l) +Bθ̇l,

Tvisc is viscous friction part, Tst is Stribeck function with an upper bound equal to the
static friction torque Ts at zero velocity and a lower bound equal to the Coulomb friction
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Figure 2. Approximation of the part of the friction curve [21].

torque Tc. This is a decreasing function as Stribeck velocity θ̇s increases. B is the viscous
friction coefficient. As a result, a nonlinear mathematical model is used as

Jeq ÿ(t) + Tst
(
ẏ(t)

)
+Beq,n ẏ(t) = Amu(t),

where Tst is the nonlinear segment of the friction torque (Stribeck), Beq,n is the equiv-
alent damping term in which the linear viscous friction is already comprehended. Be-
cause the Stribeck effect is most noticeable at low velocities, the portion of the derived
friction curve Tst(θ̇l) at velocities between −0.04 and 0.04 rad/s is shown in Fig. 2.
For negative and positive values of angular velocity, friction properties are considered to
be symmetrical. The approximation is performed using the tangent hyperbolic function:
f(θ̇l) = λ1(2/(1 + e− λ2θ̇l)− 1), where λ1 and λ2 are numerical constants with values
given in Section 5. In order to avoid the jump discontinuity of the recommended friction
model and since the FBL technique requires differentiable functions (as will be seen in
the subsequent section) the exponential component of the Stribeck curve (static friction)
is neglected, and only Coulomb and viscous friction are described in this way [21]. The
state equation of the system can be written as Eq. (1). State variables are given as: x1 = θl
and x2 = θ̇l.

ẋ =

[
ẋ1
ẋ2

]
=

[
0 1

0 −Beq,n

Jeq

]
x+

[
0
−1

]
f(x) +

[
0
Am

Jeq

]
u, y =

[
1 0
]
x. (1)

2.2 Verification of the mathematical model

Having established a mathematical model, its validity is assessed through a comparison
with empirical data, as detailed in the provided section. Comparisons were made between
the responses produced from the linear and nonlinear models for step and sinusoidal
inputs, Fig. 3. The responses of the real object and the linear model to step and sinusoidal
excitations do not match well. For the step input, the model does not accurately reflect
the system’s real behavior. To construct the most realistic model of a DC motor and to
allow a fair synthesis of the control system subsequently, the nonlinearity of friction must
be studied and taken into account.
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Figure 3. Actual behavior and two models.

3 Feedback linearization limitations

3.1 A brief overview of the method

The theoretical groundwork for executing the proposed FBL approach will be discussed
in this part in order to algebraically eliminate nonlinearities from the system. The idea
of nonlinear cancellation is conceptually general and theoretically robust but practically
constrained by the specific characteristics of the system being controlled. It is best suited
for systems where the nonlinearities can be modeled accurately and satisfy the mathemat-
ical conditions necessary for cancellation. When these conditions are not met, alternative
strategies like adaptive, robust, or hybrid control methods are often employe. Clearly, we
should not expect to be able to cancel nonlinearities in every nonlinear system. There must
be a certain structural property of the system that allows as to prefer such cancellation [9].

Examine the nonlinear system class

ẋ = f(x) + g(x)u,

y = h(x)

where f(x), g(x) and h(x) are sufficiently smooth in a domain D ⊂ Rn, ẋ = [x1, x2,
x3, . . . , xn]

T is a state vector and u is the state feedback control. It is undeniable that this
concept cannot always be generalized; cancellation must be permitted by unique systemic
characteristics. In order to accomplish this type of control, four requirements must be met.

• In the first place, the system’s state equation must have the following form:

ẋ = Ax+Bγ(x)
[
u− α(x)

]
,

where A is n × n and B is n × p matrix. The function α : Rn → Rp and γ :
Rn → Rp·p are defined on domain that contains the origin and reflect possible
nonlinearities in the system. It is not difficult to remark that to cancel a nonlinear
component α(x) by subtraction, the control signal u and the nonlinearity α(x) must
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appear together as the sum: u + α(x). On the other hand, to undo the nonlinear
component γ(x) by division, the control u and nonlinearity γ(x) must always
appear as a product γ(x)u. If the square matrix γ(x) is nonsingular in the domain
of interest, then it can be cancelled by u = β(x)v, where β(x) = γ−1(x) is the
inverse of the matrix γ(x).

• γ(x) has to be nonsingular for any x in the domain of interest x ∈ D or if it is
a scalar value then it has to be nonzero value.

• The controllability of the pair (A,B) is required.
• All functions must be differentiable.

The satisfied control law, which yields a new control signal v, can be produced under
these conditions as follows: u = α(x) + γ−1(x)v [9].

3.1.1 Input-output feedback linearization

Even though one component of the state equation remains nonlinear, it is sometimes
more cost-effective to do linearization simply from input to output. It is required to
know the system’s relative degree in order to assess whether linearization of all states is
conceivable or whether internal dynamics exist. Input-Output Feedback can be performed
when the system’s relative degree equals the order of the system, because only then
full state linearization is possible. In Eq. (2), r represents the relative degree of the
system (the number of output signal derivatives required to determine the input’s explicit
dependency), L denotes Lie derivatives of the functions f and g from the nonlinear system
class: ẋ = f(x) + g(x)u and y = h(x). The system is linearized through feedback from
input to output by using the following u:

yr = Lrfh(x) + LgL
r−1
f h(x)u, u =

1

LgL
r−1
f h(x)

(
−Lrfh(x) + v

)
. (2)

3.2 Fulfillment of conditions

Applying constraints of the FBL from the previous Section to the system equation (1)
yields

A =

[
0 1

0 −Beq,n

Jeq

]
, B =

[
0
Am

Jeq

]
, α(x) =

Jeq
Am

f(x), γ(x) = 1.

Firstly, in this paper, no transformation of the system is needed because the state
equation does have the desirable structure for already accepted choice of state variables.
Since the system is already in the right shape for FBL, coordinate transformation is not
required.

In this model, γ(x) appears explicitly in the system’s state-space representation. As it
is already mentioned, generally, to cancel nonlinear γ(x) term, the control u and the
nonlinearity γ(x) must always appear as a product γ(x)u. If the γ(x) is matrix and
nonsingular in the domain of interest than it can be cancelled by the inversion. If it is
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a scalar value then it has to be nonzero value. For the given system, it is defined as scalar,
γ(x) = 1. This simplification arises because in a given system there are no nonlinearities
that multiply with the control signal. As a result, γ(x) being unity ensures that it is
nonzero for all x, thus inherently satisfying the nonsingularity condition. This specific
characteristic of the model greatly simplifies the discussion, as no additional analysis
is required to verify the invertibility of γ(x). In practical terms, it eliminates the need
to account for singularities, which might otherwise arise in systems with more complex
forms. From the above discussion it follows that the second criterion is also met because
γ(x) is nonzero value.

Furthermore, the controllability matrix is U = [B AB A2B · · · An−1B]. Since
order of the system is n = 2, the controllability matrix evaluates to

U = [B AB] = U =

[
0 Am

Jeq
Am

Jeq
−Beq,nAm

J2
eq

]
.

Because this matrix is full rank, rankU = n = 2, the pair (A,B) is controllable. The
number of the noncontrollable states is equal to the zero. It can easily be concluded
that applying constraints of the FBL to the system in this paper, the controllability of
(A,B) hinges on the values of Am and Beq,n . Since these parameters represent physical
properties (actuator gain and damping, respectively) and are nonzero in practical systems,
the controllability condition is inherently satisfied.

Finally, since the approximation using the differentiable tangent hyperbolic was
achieved before, all functions are smooth and differentiable.

Since the system output’s first derivative is independent of the control signal, the
system’s relative degree is not 1. The relative degree of this system is equal to the system
order r = 2. The control signal u can be chosen in the following form:

u =
1

LgLfh(x)

(
−L2

fh(x) + v
)
=
Jeq
Am

[
Beq,n
Jeq

x2 + f(x) + v

]
,

v = −K0x1 −K1x2 +K2xref .

(3)

Thus, all conditions for feedback linearization are satisfied, as explicitly demonstrated.
Feedback linearization, while powerful, requires parameter tuning. This challenge is ad-
dressed using GTO, as explained below.

4 Optimization of the nonlinear controller

A metaheuristic algorithm is a search process meant to discover a decent solution to
a complex and difficult to solve optimization problem. In this study, GTO is used to op-
timize the controller parameters. In addition, four different metaheuristic techniques are
used for comparison: the WOA, GWO, AVOA and FA. The general task of optimization
in metaheuristic algorithms is to find the best solution (or a near-optimal one) to a given
problem within a feasible search space, where traditional optimization methods may fail
due to complexity, nonlinearity, or the presence of multiple local optima. In the context
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of optimization, the task of a metaheuristic algorithm is to minimize (or maximize) an
objective function that measures the quality of a solution. The algorithm aims to find
the best possible solution within the defined search space, ensuring that it outperforms
or matches all other potential solutions, while also satisfying any specific constraints of
the problem. Metaheuristic algorithms are designed to efficiently explore and exploit the
search space, balancing between global and local search capabilities.

4.1 Artificial gorilla troops optimizer

The GTO algorithm employs five separate operators based on gorilla behaviours. In the
exploration phase, three distinct operators were used: migration to an unfamiliar location
to boost GTO exploration; a move to the other gorillas to raise the level of exploration
and exploitation and migration towards a known place, which considerably enhances the
GTO’s power to explore for alternative optimization spaces. In the exploitations phase,
two operators are employed, which considerably improves the search performance. This
algorithm was proposed for the first time in [2], and a brief mathematical description of
this algorithm is given below.

4.1.1 Exploration phase

All gorillas are considered candidate solutions in the GTO algorithm and the best can-
didate solution at each optimization operation step is referred to as a silverback gorilla.
The first mechanism, technique of migration to an unknown location, is chosen using
a parameter named p, namely, if rand is less than p. Parameter p represents the probability
of selecting the migration to an unknown location mechanism during the exploration
phase. It governs the balance between exploration (searching new areas) and exploitation
(refining existing solutions). It decides which exploration mechanism is applied based on
a randomly generated value rand . However, the technique of migration towards other
gorillas is selected if rand is greater or equal than 0.5. Finally, for rand is less than
0.5 the technique of migration to a known location is chosen. The three processes were
simulated using Eq. (4), where GX (t + 1) is the candidate position vector containing
the optimization parameters (K0, K1, K2) in the next t iteration and X(t) is the current
vector, i.e., part of the optimization process to determine the optimal control parameters
(K0, K1, K2) for feedback linearization. Moreover, r1, r2, r3, and rand are random
values ranging from 0 to 1 updated in each iteration, and p determines the probability of
selecting the migration mechanism to an unknown location.

GX (t+ 1) =


(UB − LB) · r1 + LB , rand < p,

(r2 − C) ·Xr(t) + L ·H, rand > 0.5,

X(i)− L · (L ·X(t)−GX r(t))

+r3 · (X(t)−GX r(t)), rand < 0.5,

(4)

UB and LB represent the upper and lower bounds of the variables, respectively. Xr is
one member of the gorillas in the group randomly selected from the entire population
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and also GX r is one of the vectors of gorilla candidate positions randomly selected but
includes the positions updated in each phase. Finally, C, and L are calculated as: C =
F · (1 − It/MaxIt), F = cos(2r4) + 1 and L = C · l. Here It is the current iteration
value, and MaxIt is the maximum number of iterations. l is a number between −1 and
1 that is as well chosen at random. Also, in Eq. (4), H is as H = Z · X(t), while Z is
calculated using Z = [−C C]. A group formation operation is carried out at the end of
the exploration phase and at the conclusion the cost of all GX solutions is computed. If
the cost of the GX (t) is smaller than cost of the X(t), f(GX (t)) < f(X(t)), the GX (t)
solution is utilized as the X(t) solution. As a result, the best solution created during this
phase is referred to as a silverback. Having established the exploration mechanisms of the
GTO, we next detail its exploitation strategies, critical for fine-tuning the solution space.

4.1.2 Exploitation phase

Using the C value one of the two behaviors, follow the silverback or competition for
adult females equations (5) and (6), can be selected during the exploitation phase of the
GTO algorithm. W serves as a threshold for determining which behavior is used during
the exploitation phase: follow the silverback or competition for adult females. It controls
the shift from cooperative to competitive dynamics as the algorithm progresses. W is
compared with the computed value C in the exploitation phase: If C >W is selected, the
silverback mechanism is used, however if C < W is selected, adult females’ competition
is selected. The first type of behavior, the silverback is described with Eq. (5), where
X(t) is the gorilla position vector and Xsilverback is the silverback gorilla position vector,
i.e., best solution. GX i(t) represents the vector location of each potential candidate in
iteration t. The total number of gorillas is denoted by the letter N . Equation (6) is used to
simulate the second type of behaviour-competition.

GX (t+ 1) = L ·M ·
(
X(t)−Xsilverback

)
+X(t),

M =

(∣∣∣∣∣ 1N
N∑
i=1

GX i(t)

∣∣∣∣∣
g)1/g

, g = 2L.
(5)

GX (i) = Xsilverback −
(
Xsilverback ·Q−X(t) ·Q

)
·A,

E =

{
N1, rand > 0.5,

N2, rand < 0.5.

(6)

Here, Q = 2r5 − 1 is used to mimic the impact force, while r5 and rand are random
numbers between 0 and 1. The coefficient vector A = β · E is used to determine the
degree of violence in conflicts. Value E uses a threshold of 0.5 to simulate how vio-
lence impacts the limits of solutions and β determines the degree of intensity in conflicts
during the competition for adult females phase of the GTO algorithm, influencing how
aggressively candidate solutions compete for improvement. The cost of all GX solutions
is evaluated at the end and if the cost of GX (t) is smaller than the cost of the X(t),
f(GX (t)) < f(X(t)) the GX (t) solution is utilized as the X(t) solution, and the best
solution produced among the whole population is seen as a silverback.
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4.2 Metaheuristic optimization algorithms for comparison

The GTO results are compared to the four distinct optimization algorithms: the GWO,
WOA, AVOA, and FA. The default values are set for all of the parameters.

Seyedali Mirjalili et al. presented the GWO as a revolutionary heuristic intelligence
optimization technique in [13].

The WOA [12] is a metaheuristic algorithm based on humpback whales’ hunting
strategy, which involves swimming up to the surface while producing bubbles in a spiral
form around the target.

The AVOA is very recent algorithm based on African vulture hunting behaviour [1].
The FA [23], is another population-based optimization approach, which has been

challenged for only having a little difference from the well-known particle swarm op-
timization.

4.3 Optimization of FBL controller using the artificial gorilla troop algorithm

K0,K1 andK2 from Eq. (3) are three parameters in the proposed FBL controller that may
be modified to produce the optimal dynamical response. This study’s exclusive focus has
been on the modification of these gains. Moreover, to design the optimal FBL controller,
the GTO optimization approach was used. In addition, each of the aforementioned param-
eters is programmed into a single agent, which in our situation is given a vector with three
parameters. All of the optimization processes find optimal controller gains in a discrete
framework. Those fixed gains are then applied in the real-time continuous system. The
optimization algorithm is executed offline, before real-time control is implemented. The
DC motor operates smoothly due to set optimal gains and no dynamic gain swapping.

The objective function performance requirements employ the integral of time-weighted
absolute error (ITAE) performance criteria:

ITAE =

tf=10∫
0

t
∣∣ε(t)∣∣ dt,

where ε(t) = yd(t)−y(t) represents the difference between the desired output yd and the
real output - the position of the load shaft.

The maximum number of iterations and the number of search agents are both fixed
at 50 and 30 respectively. Furthermore, a single agent represents one potential ideal con-
troller. GTO was compared against four other optimization algorithms in the experimental
section: the AVOA, WOA, GWO, and FA. The parameters of all algorithms are taken
from original papers [1, 2, 12, 13] and [23], respectively. Due to a fair comparison, all of
the algorithms have the same goal function, a number of iterations, and search agents.

To validate the optimized controller parameters derived through the proposed meta-
heuristic approach, extensive experiments were conducted, as detailed below.

https://www.journals.vu.lt/nonlinear-analysis
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5 Experimental results

The numerical values of the object’s parameters are: Jeq = 0.0021 kg m2, Beq,v =
0.0840 Nm/rad/s, Beq,n = 0.0721 Nm/rad/s, Am = 0.1284 Nm/V, λ1 = 0.0173607,
and λ2 = 2500. The results of applying the various optimization methodologies to the
proposed control are summarized.

The results are averaged over 50 independent runs, and all of the algorithms give
similar results with ITAE, shown in Table 1. The best results are indicated in the bold
type.

The convergence curve of the objective function value is depicted in Fig. 4. From
Table 1 and Fig. 4 it is possible to conclude that, according to minimal value of the
objective function, GTO and AVOA gave better results comparing to GWO, WOA and
FA, but the best result is obtained by GTO. Despite the fact that all of the outcomes are
comparable, gorillas continue to perform the best. As a consequence, the following results
are solely for GTO.

With K0 = 442.72, K1 = 442.75 and K2 = 30, efficiency of proposed optimized
FBL controller is tested for the ensuing cases.

First of all, desired trajectories are defined as constant value and sinusoidal signal.
In the first case, the output and intended trajectory signals are fairly similar, with slight

differences. It is evident from Fig. 5(a), which shows position tracking for a constant value
signal 2π/3, that the system reacts fast.

With an overshoot less than 3.5% and a steady state error of 0.015, the rising and
settling times are both less than 0.39 seconds.

Sinusoidal signals, in which the output shaft rotates in a different direction through-
out operation, are also particularly useful for evaluating the performance of a nonlinear
control system.

As a result, Fig. 5(b) shows a sinusoidal signal with amplitude 2 and frequency 1 Hz.
In the second case, the study is expanded to examine the robustness of the controller.
The white noise disturbance is introduced as a more generic scenario, which is an

important measurement when examining the robustness of the control algorithms. White
noise is introduced as a method of simulating random excitation. This is a random process
with a constant power spectral density.

To demonstrate the efficiency of the suggested optimization, simulations with a band-
limited white noise introduced to the controlled variable and experimental findings on
a laboratory plant are employed.

Table 1

Optimization Objective function: Objective function:
algorithm average value the best value
FA 0.1035 0.0767
GWO 0.0883 0.0824
WOA 0.0854 0.0837
AVOA 0.0810 0.0757
GTO 0.0804 0.0753
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Figure 4. The convergence curve of the ITAE

(a) (b)

Figure 5. Position tracking for constant (a) and sinusoidal signal (b) as desired output signals.

Although the suggested controller’s coefficients are tuned for the disturbance-free
situation, the responses are strikingly similar to the first instance. The difference is practi-
cally imperceptible graphically, so Fig. 6 shows the error signal for the position tracking
for reference signal: xref = 2π/3.

Finally, in the third instance, a disturbance that occurs between the third and fourth
second is applied. The disturbance d is simulated using two time-delayed unit step func-
tions, shown on Fig. 6(b). Figure 7(a) shows minor deviations from the desired output
between the third and fourth second. In that time interval, the error is less than 0.057 rad.

After the disturbance has ceased, the system needs about 0.014 seconds to return to
steady state.

Since the intensity of the disturbance is equal to the intensity of the desired output
signal, it can be considered that the control system manages to cause the object to follow
the given desired output signal.

Figure 7(a) shows good tracking of the given signal, without any major deviations.
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(a) (b)

Figure 6. Tracking error for constant value with white noise applied as disturbance (a). Case 3: Disturbance
acting on the object (b).

(a) (b)

Figure 7. Position tracking with descrete disturbance for unit step (a) and sinusoidal signal (b).

The experimental results demonstrate the proposed controller’s robustness and preci-
sion, affirming its potential as a practical solution, as summarized in the conclusion.

6 Conclusion

This study is an extension of the study [20], in which the position of the load shaft of
a DC motor is regulated using the FBL technique, whose gains were optimized using
the GWO algorithm. Friction modeling using the Tustin, i.e., Stribeck model resulted
in a nonlinear mathematical model of the object. The hyperbolic tangent was discovered
as an approximation of a section of the Stribeck friction curve and was utilized as the
nonlinearity function. Following that, the requirements for correctly implementing FBL,
as well as the theory of the GTO technique, were investigated. This approach has been
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used to consider the prerequisites for synthesis of the control law. Finally, gains for the
proposed FBL controller were obtained using the GTO optimization approach. To com-
pare its performance, four other algorithms: the AVOA, GWO, WOA, and FA are used.
It was demonstrated that GTO had the lowest objective function, making it preferable
than the others. Proposed controller was capable of dealing with the nonlinearities of the
DC motor. Further, two types of disturbances were introduced to test the robustness. As
the suggested technique works over a wide range of outputs and because the desired and
actual trajectory are so similar in all of the situations studied, it is feasible to infer that the
proposed optimal feedback linearizing controller provides a viable solution to the stated
problem.
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