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Abstract. With the aggravation of the global aging trend, Parkinson’s disease has become a hot
spot of scientific research all over the world. Abnormal β oscillation in the basal ganglia region
is considered to be a major inducement of Parkinson’s disease. In this paper, a new and more
complete Parkinson’s model based on fractional operators is proposed to study the oscillation
behavior of the basal ganglia region. The correctness of this new fractional model is validated
by the simulation of Nambu and Tachibana’s experiment [A. Nambu, Y. Tachibana, Mechanism
of parkinsonian neuronal oscillations in the primate basal ganglia: some considerations based on
our recent work, Front. Syst. Neurosci., 8:74, 2014]. Then we carry out the Hopf bifurcation
analysis of the fractional model and derive the critical conditions for periodic oscillation. The
influence of important parameters on the oscillation behavior of the system is analyzed by numerical
simulations. It is found that proper control of synaptic transmission delay and synaptic connection
strength can improve the abnormal β-oscillation behavior in the basal ganglia region effectively.
In addition, the fractional Parkinson’s model in this paper provides more flexibility for model fitting
and parameter estimation. The choice of the fractional order α plays a crucial role in the analysis of
system oscillation.
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1 Introduction

Brain science has become the focus of scientific research all over the world in recent
years. Among all kinds of brain diseases, Parkinson’s disease is a neurodegenerative
disease that occurs mostly in middle-aged and elderly people, and it will become more
and more serious with age. As the global aging trend intensifies, Parkinson’s disease has
brought a huge burden to society. Therefore, the pathogenesis and treatment mechanism
of Parkinson’s disease are always concerned by neuroscience.

Dysfunction of basal ganglia (BG) is considered as the main cause of Parkinson’s
disease. Basal ganglia is mainly composed of striatum (Str), globus pallidus (GP), subtha-
lamic nucleus (STN), and substantia nigra, which, together with cerebral cortex (Ctx) and
thalamus (Th), form the BGTH circuit for controlling motor function. Striatum contains
D1 and D2 neurons. Globus pallidus can be divided into the inside of globus pallidus (GPi)
and the outside of globus pallidus (GPe). Cerebral cortex is divided into two neuronal clus-
ters of excitatory (E) and inhibitory (I). When dopaminergic neurons (D) in the striatum
gradually degenerate, the dynamics of neurons in basal nuclei also change. These changes
are the core features of Parkinson’s disease. It has been found that the neuronal oscillation
activity in β frequency band in globus pallidus and hypothalamus is highly correlated with
dopaminergic degeneration [10,16]. In order to better explore the mechanism of abnormal
β oscillation, researchers have established many mathematical models. Holgado, Terry
and Bogacz [12] established a computational model of STN-GPe network, suggesting that
β oscillation was caused by STN-GPe loop. However, the experimental results of Nambu
and Tachibana [20] showed that Ctx was also important for the oscillation activities of
STN and GP. Therefore, Pavlides, Hogan and Bogacz [21] put forward a Ctx-STN-GPe
model, which was consistent with the experimental data of Nambu and Tachibana. On
the basis of this model, Chen et al. [3] took GPi into account and constructed a Ctx-
STN-GPe-GPi model. Liu, Bi and Yang et al. [19] considered the whole BGTH loop
and put forward a relatively perfect Ctx-BG-Th model. More research can be found
in [5, 9, 11, 17, 18, 24, 29, 30]. It is worth mentioning that mathematical modeling is an
effective means to study practical problems and it has a wide range of applications, such
as material engineering [8], molecular chemistry [14], bioeconomy [4, 28], and so on.
Mathematical modeling also plays an indispensable role in medical research, especially
in the field of nervous system diseases.

In recent studies, the Ctx-BG-Th model proposed by Liu et al. [19] did not consider
the synaptic transmission delay. Although the Ctx-STN-GPe-GPi model in [3] considered
this factor, it did not subdivide the two types of neurons in striatum and ignored the role
of thalamus. In addition, the previous studies on abnormal β oscillation in Parkinson’s
disease were all carried out by establishing integer differential models. No one has de-
veloped a fractional differential model yet. Inspired by the above, we build a new and
more complete fractional differential model of BGTH loop, which takes into account the
synaptic transmission delay and subdivides striatum into D1 and D2. Further, we verify
the consistency between the new fractional model and the actual experimental results.
Through the Hopf bifurcation analysis, it is known that the fractional model will oscillate
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periodically. The influence of some important parameters on the oscillation of the new
model is studied.

Fractional differential models have unique memorability and heredity, and can de-
scribe the time-dependent changes of the system better. In recent decades, they have
appeared in more and more scientific fields [1, 2, 6, 7, 13, 22, 25, 26, 31–35]. A fractional
differential model usually has more free parameters, which enables researchers to adjust
the model more flexibly to match experimental data or clinical observations. These char-
acteristics make the fractional differential model very suitable for the study of Parkinson’s
disease.

The structure of this paper is as follows: In Section 2, a new fractional BGTH loop
differential model is proposed, and the correctness of this fractional model is verified
through the simulation of Nambu and Tachibana’s experiment. Moreover, the Hopf bifur-
cation analysis of the new fractional model is carried out. Section 3 analyzes the influence
of single parameter and double parameters on oscillation. Section 4 gives the conclusion.
The last part is the Appendix.

2 Materials and method

2.1 Fractional BGTH loop differential model

In this part, we establish a new fractional BGTH loop differential model. The fractional
model includes Ctx, BG, Th, and their interactions. Among them, BG includes Str, STN,
and GP. We divide Str into D1 and D2, and GP into GPe and GPi.

E transmits exciting signals to STN, D1, and D2 through axons of neurons. STN
further transmits the exciting signals to GPe and GPi. GPi outputs inhibitory signals to
Th. Th outputs exciting signals to E to form a loop. In addition, E also sends exciting
signals to I, and I sends inhibitory signals to E. D1 and D2 transmit suppression signals to
GPi and GPe, respectively. GPe inputs suppression signals to GPi and STN. We assume
that E receive exciting signals of the constant input C. Figure 1 shows the BGTH network
described above.

Figure 1. The BGTH network.
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For convenience, let the lower corners i = 1, 2, . . . , 8 denote E, I, D1, D2, GPe,
GPi, Th, STN, respectively. fi(t) and Ti represent the firing rates of i at time t and the
membrane time constants of i, respectively. ωij represent the connection strength between
i and j. τ denotes the synaptic transmission delay. Dα stands for the Caputo fractional
derivative of order α, 0 < α 6 1. The fractional model represented by the network shown
in Fig. 1 is as follows:

T1D
αf1(t) = G1

(
ω71f7(t− τ)− ω21f2(t− τ) + C

)
− f1(t),

T2D
αf2(t) = G2

(
ω12f1(t− τ)

)
− f2(t),

T3D
αf3(t) = G3

(
ω13f1(t− τ)

)
− f3(t),

T4D
αf4(t) = G4

(
ω14f1(t− τ)

)
− f4(t),

T5D
αf5(t) = G5

(
ω85f8(t− τ)− ω45f4(t− τ)

)
− f5(t),

T6D
αf6(t) = G6

(
ω86f8(t− τ)− ω56f5(t− τ)− ω36f3(t− τ)

)
− f6(t),

T7D
αf7(t) = G7

(
−ω67f6(t− τ)

)
− f7(t),

T8D
αf8(t) = G8

(
ω18f1(t− τ)− ω58f5(t− τ)

)
− f8(t).

(1)

Gi represent the activation functions and satisfy the following formula:

Gi(in) =
Mi

1 + (Mi−Bi

Bi
)e−4inMi

,

where Bi and Mi represent the basic discharge rates and the maximum discharge rates
of i, respectively.

2.2 Simulation of the experiment

In this part, we simulate the experiment of Nambu and Tachibana by changing the con-
nection strength in the fractional model and then verify the correctness of our model.
The settings of relevant parameters are shown in Table 1. Synaptic transmission delay is
10 ms. More details can be found in [19, 30].

In the experiment, STN was inactivated by injection of muscimol. It was found that
the firing rate of GPi decreased and the oscillation weakened. We set ω86 = 0 in the
model and give Fig. 2 to describe the time history of GPi firing rate. After that, the
experiment blocked the glutamatergic input of Ctx to STN and found the oscillation of
STN weakened. We set ω18 = 0 in the model and give Figs. 3(a), 3(c), and 3(e) to describe
the time history of STN firing rate. Finally, researchers blocked the GABAergic input of
GPE to STN. They discovered that the firing rate of STN increased, but the oscillation
weakened. Let ω58 = 0, and Figs. 3(b), 3(d), and 3(f) are given to describe the time
history of STN firing rate. As can be seen from the figures, the numerical results of our
model are consistent with the experimental results.
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Table 1. Parameter values in simulation.

Ti Value Bi Value Mi Value ωij Value ωij Value
[ms] [spk/s] [spk/s]
T1 10 B1 3.62 M1 71.77 ω71 5 ω56 0.9
T2 10 B2 7.18 M2 276.39 ω21 3.08 ω36 3
T3 10 B3 15 M3 240 ω12 3.08 ω67 5
T4 10 B4 15 M4 240 ω13 5 ω18 6
T5 14 B5 75 M5 400 ω14 5 ω58 6.6
T6 14 B6 75 M6 400 ω85 2.56
T7 10 B7 15 M7 240 ω45 5
T8 6 B8 17 M8 300 ω86 2.56

(a) (b)

(c)

Figure 2. Influence of ω86 on the change of GPi firing rate under different fractional orders.

Besides, these figures also manifest that the amplitude of system oscillation varies
with the fractional order α. The larger the fractional order α, the greater the amplitude.
Therefore, it is helpful for us to study Parkinson’s disease more accurately by choosing
the appropriate fractional order α according to the actual situation.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Influence of ω18 (a), (c), (e) and ω88 (b), (d), (f) on the change of STN firing rate under different
fractional orders.
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2.3 Hopf bifurcation analysis

In this part, we analyze the Hopf bifurcation of the fractional model (1) and derive the
critical conditions for Hopf bifurcation. Related basic theories can be found in [15,23,27].

Because of the complexity of the model, we assume that the membrane time constants
are all the same, which is denoted as T . Thus, we can write the fractional model (1) as
follows:

TDαf1(t) = G1

(
ω71f7(t− τ)− ω21f2(t− τ) + C

)
− f1(t),

TDαf2(t) = G2

(
ω12f1(t− τ)

)
− f2(t),

TDαf3(t) = G3

(
ω13f1(t− τ)

)
− f3(t),

TDαf4(t) = G4

(
ω14f1(t− τ)

)
− f4(t),

TDαf5(t) = G5

(
ω85f8(t− τ)− ω45f4(t− τ)

)
− f5(t),

TDαf6(t) = G6

(
ω86f8(t− τ)− ω56f5(t− τ)− ω36f3(t− τ)

)
− f6(t),

TDαf7(t) = G7

(
−ω67f6(t− τ)

)
− f7(t),

TDαf8(t) = G8

(
ω18f1(t− τ)− ω58f5(t− τ)

)
− f8(t).

(2)

The nonzero equilibrium point of system (2) is E∗ = (f∗1 , f
∗
2 , . . . , f

∗
8 ). By substituting

f i = fi − f∗i , system (2) at the equilibrium point E∗ can be linearized to

Dαv(t) = A1v(t) +A2v(t− τ), (3)

where v(t) = (f1 − f∗1 , f2 − f∗2 , . . . , f8 − f∗8 )T,

A1 =



− 1
T
− 1
T
− 1
T
− 1
T
− 1
T
− 1
T
− 1
T
− 1
T


,

A2 =



0 −a12 0 0 0 0 a17 0
a21 0 0 0 0 0 0 0
a31 0 0 0 0 0 0 0
a41 0 0 0 0 0 0 0
0 0 0 −a54 0 0 0 a58
0 0 −a63 0 −a65 0 0 a68
0 0 0 0 0 −a76 0 0
a81 0 0 0 −a85 0 0 0


,
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a12 =
4ω21f

∗
1

TM1
− 4ω21(f

∗
1 )

2

TM2
1

, a17 =
4ω71f

∗
1

TM1
− 4ω71(f

∗
1 )

2

TM2
1

,

a21 =
4ω12f

∗
2

TM2
− 4ω12(f

∗
2 )

2

TM2
2

, a31 =
4ω13f

∗
3

TM3
− 4ω13(f

∗
3 )

2

TM2
3

,

a41 =
4ω14f

∗
4

TM4
− 4ω14(f

∗
4 )

2

TM2
4

, a54 =
4ω45f

∗
5

TM5
− 4ω45(f

∗
5 )

2

TM2
5

,

a58 =
4ω85f

∗
5

TM5
− 4ω85(f

∗
5 )

2

TM2
5

, a63 =
4ω36f

∗
6

TM6
− 4ω36(f

∗
6 )

2

TM2
6

,

a65 =
4ω56f

∗
6

TM6
− 4ω56(f

∗
6 )

2

TM2
6

, a68 =
4ω86f

∗
6

TM6
− 4ω86(f

∗
6 )

2

TM2
6

,

a76 =
4ω67f

∗
7

TM7
− 4ω76(f

∗
7 )

2

TM2
7

, a81 =
4ω18f

∗
8

TM8
− 4ω81(f

∗
8 )

2

TM2
8

,

a85 =
4ω58f

∗
8

TM8
− 4ω85(f

∗
8 )

2

TM2
8

.

When τ = 0, the coefficient matrix of the linearized system (3) is Λ = A1 + A2. Then
the characteristic equation of Λ is

|λI − Λ| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ 1
T a12 0 0 0 0 −a17 0

−a21 λ+ 1
T 0 0 0 0 0 0

−a31 0 λ+ 1
T 0 0 0 0 0

−a41 0 0 λ+ 1
T 0 0 0 0

0 0 0 a54 λ+ 1
T 0 0 −a58

0 0 a63 0 a65 λ+ 1
T 0 −a68

0 0 0 0 0 a76 λ+ 1
T 0

−a81 0 0 0 a85 0 0 λ+ 1
T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ8 + b1λ

7 + b2λ
6 + b3λ

5 + b4λ
4 + b5λ

3 + b6λ
2 + b7λ+ b8 = 0.

The specific formulae of bi are shown in the Appendix. We give the following assumption:

(A1) bi > 0, ∆i > 0, where

∆i =

∣∣∣∣∣∣∣∣∣∣∣

b1 b3 b5 · · · b2i−1
b0 b2 b4 · · · b2i−2
0 b1 b3 · · · b2i−3
...

...
...

. . .
...

0 0 0 · · · bi

∣∣∣∣∣∣∣∣∣∣∣
, i = 1, 2, . . . , 8.

Then a lemma can be obtained from the Routh–Hurwitz criterion.

Lemma 1. If (A1) holds, all eigenvalues of the coefficient matrix Λ of system (3) with
τ = 0 satisfy |arg(λi)| > qπ/2, 0 < q 6 1.
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Next, we prove that the characteristic equation of system (3) with τ = τ0 has a pair
of purely imaginary roots ±iw0. From [27] the characteristic equation of system (3) is
|sαI −A1 −A2e

−sτ | = 0, that is,

C1(s) + C2(s)e
−2sτ + C3(s)e

−4sτ + C4(s)e
−5sτ = 0, (4)

where

C1(s) = s8α + β1s
7α + β2s

6α + β3s
5α + β4s

4α + β5s
3α + β6s

2α + β7s
α + β8,

C2(s) = β9s
6α + β10s

5α + β11s
4α + β12s

3α + β13s
2α + β14s

α + β15,

C3(s) = β16s
4α + β17s

3α + β18s
2α + β19s

α + β20,

C4(s) = β21s
3α + β22s

2α + β23s
α + β24.

The specific formulae of βi are shown in the Appendix. We rewrite (4) as

C1(s)e
2sτ + C2(s) + C3(s)e

−2sτ + C4(s)e
−3sτ = 0. (5)

Suppose that s = iw = w(cos(π/2) + i sin(π/2) is the solution of Eq. (5). ClR and
ClI are the real part and imaginary part of Cl(s) (l = 1, 2, 3, 4), respectively. Through
calculation, we can get

C1R = d1w
8α + d2w

7α + d3w
6α + d4w

5α + d5w
4α + d6w

3α + d7w
2α + d8w

α + d9,

C1I = d10w
8α + d11w

7α + d12w
6α + d13w

5α + d14w
4α+ d15w

3α+ d16w
2α+ d17w

α,

C2R = d18w
6α + d19w

5α + d20w
4α + d21w

3α + d22w
2α+ d23w

α + d24,

C2I = d25w
6α + d26w

5α + d27w
4α + d28w

3α + d29w
2α+ d30w

α,

C3R = d31w
4α + d32w

3α + d33w
2α + d34w

α + d35,

C3I = d36w
4α + d37w

3α + d38w
2α + d39w

α,

C4R = d40w
3α + d41w

2α + d42w
α + d43,

C4I = d44w
3α + d45w

2α + d46w
α.

The specific formulae of di are shown in the Appendix. Substituting the solution into (5)
and distinguishing the real part from the imaginary part, one has

(C1R + iC1I)(cos 2wτ + i sin 2wτ) + (C2R + iC2I)

+ (C3R + iC3I)(cos 2wτ − i sin 2wτ)

+ (C4R + iC4I)(cos 3wτ − i sin 3wτ) = 0.

It follows from the above that

(C1R + C3R) cos 2wτ + (C3I − C1I) sin 2wτ + C2R

= −C4I sin 3wτ − C4R cos 3wτ,

(C1I + C3I) cos 2wτ + (C1R − C3R) sin 2wτ + C2I

= C4R sin 3wτ − C4I cos 3wτ.

(6)

Nonlinear Anal. Model. Control, 30(3):499–516, 2025
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Let
F1 = C1R + C3R, F2 = C3I − C1I ,

F3 = C1I + C3I , F4 = C1R − C3R,

the following can be obtained from (6):(
F 2
1 + F 2

3

)
cos2 2wτ +

(
F 2
2 + F 2

4

)
sin2 2wτ + 2(F1C2R + F3C2I) cos 2wτ

+ 2(F2C2R + F4C2I) sin 2wτ + 2(F1F2 + F3F4) sin 2wτ cos 2wτ

=
(
C2

4I + C2
4R

)2 − C2
2R − C2

2I .

It is equivalent to

cos4 2wτ +
2(ac− bc+ de)

a2 + b2 + e2 − 2ab
cos3 2wτ

+
c2 + d2 − e2 + 2(ab− am+ bm− b2)

a2 + b2 + e2 − 2ab
cos2 2wτ

− 2(de+ cm− bc)
a2 + b2 + e2 − 2ab

cos 2wτ − d2 − b2 −m2 + 2bm

a2 + b2 + e2 − 2ab
= 0, (7)

where

a = F 2
1 + F 2

3 , c = 2(F1C2R + F3C2I), e = 2(F1F2 + F3F4),

b = F 2
2 + F 2

4 , d = 2(F2C2R + F4C2I), m =
(
C2

4I + C2
4R

)2 − C2
2R − C2

2I .

Let us denote

G1 =
2(ac− bc+ de)

a2 + b2 + e2 − 2ab
, G2 =

c2 + d2 − e2 + 2(ab− am+ bm− b2)
a2 + b2 + e2 − 2ab

,

G3 = − 2(de+ cm− bc)
a2 + b2 + e2 − 2ab

, G4 = −d
2 − b2 −m2 + 2bm

a2 + b2 + e2 − 2ab
.

Then Eq. (7) implies that

cos4 2wτ +G1 cos
3 2wτ +G2 cos

2 2wτ +G3 cos 2wτ +G4 = 0. (8)

In order to get the theoretical results, we need the following assumption:

(A2) (1 +G2 +G4)
2 6 (G1 +G3)

2.

According to the zero theorem, there is at least one solution of (8), which is denoted as ρi
(i 6 4, i ∈ N+). Consequently,

τ
(k)
i =

1

2wi
(arccos ρi + 2kπ), k = 0, 1, 2, . . . .

Let τ0 = min{τ (k)i }. When τ = τ0, we have w = w0. It is concluded that Eq. (4) has
a pair of purely imaginary roots ±iw0 when τ = τ0.
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Finally, Re[ds(τ)/dτ ]|τ=τ0, w=w0
> 0 can be verified. Taking the derivative of τ on

both sides of (5), one can get that

ds

dτ
=
X(s)

Y (s)
,

where
X(s) = 3sC4(s)e

−3sτ + 2sC3(s)e
−2sτ − 2sC1(s)e

2sτ ,

Y (s) =
(
C ′4(s)− 3τC4(s)

)
e−3sτ +

(
C ′3(s)− 2τC3(s)

)
e−2sτ

+
(
2τC1(s) + C ′1(s)

)
e2sτ + C ′2(s).

Separate the real part and imaginary part of X(s) and Y (s) to obtain

X(s) = X1 + iX2, Y (s) = Y1 + iY2.

Further,

Re

[
ds(τ)

dτ

]
=
X1Y1 +X2Y2
Y 2
1 + Y 2

2

.

Let the following hypothesis hold:

(A3) (X1Y1 +X2Y2)/(Y
2
1 + Y 2

2 )|τ=τ0, w=w0
> 0.

Then we have

Re

[
ds(τ)

dτ

]∣∣∣∣
τ=τ0,w=w0

> 0.

Taking all the above into account, we can arrive at the conclusion of this section.

Theorem 1. Under (A1)–(A3), system (2) experiences Hopf bifurcation at the equilibrium
point E∗ = (f∗1 , f

∗
2 , . . . , f

∗
8 ).

3 Results and discussion

In this section, we employ numerical simulations to analyze the influence of related
parameters on abnormal β oscillation. Except for the variable parameters, the values of
other parameters refer to Section 2.2. We take the fractional order α as 0.95.

The effect of single parameter is analyzed first. Figure 4 displays the influence of
synaptic connection strength of D1 and GPi on GPi oscillation. It can be found from
Fig. 4(a) that with the increase of ω36, the firing rate of GPi decreases, but the amplitude
increases. To further explore the influence of ω36 on GPi oscillation, we continue to
increase the value of ω36. The result from Fig. 4(b) displays that with the increase of ω36,
the discharge rate and amplitude of GPi both decrease gradually. In other words, when the
value of ω36 is within a certain range, the oscillation of GPi exacerbates with the increase
of ω36. But GPi will return to a stable state when ω36 is large enough.

Next, the effect of double parameters is analyzed. Figure 5(a) shows the effects of ω36

and ω56 on the GPi amplitude. Figure 5(b) shows the effects of ω36 and ω86 on the GPi
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(a) (b)

Figure 4. Influence of ω36 on the oscillation of GPi. (a) Variation of GPi firing rate over time when ω36 takes
0.7, 1, and 1.3, respectively. (b) Variation of GPi firing rate over time when ω36 takes 1.3, 4.3, and 10.3,
respectively.

(a) (b)

(c)

Figure 5. Influence of double parameters on the amplitude of GPi. (a) Influence of ω36 and ω56 on the
amplitude of GPi. (b) Influence of ω36 and ω86 on the amplitude of GPi. (c) Influence of ω36 and τ on the
amplitude of GPi.

amplitude. Figure 5(c) shows the effects of ω36 and τ on the GPi amplitude. It can be seen
that the amplitude of GPi diminishes gradually, while ω36 and ω56 rise simultaneously.
When ω36 and ω86 take the maximum and minimum values, respectively, the amplitude
of GPi is the smallest. With the increase of ω36 and the decrease of τ , the amplitude of
GPi will decrease gradually.

https://www.journals.vu.lt/nonlinear-analysis
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(a) (b)

Figure 6. Influence of double parameters on the amplitude of STN. (a) Influence of ω18 and τ on the amplitude
of STN. (b) Influence of ω58 and τ on the amplitude of STN.

Figure 6 exhibits the influence of two parameters on the amplitude of STN. In Fig. 6(a),
the oscillation of STN wanes with the raise of τ and the reduction of ω18. In Fig. 6(b),
when τ and ω58 are both maximum, the amplitude of STN is minimum.

4 Conclusion

The pathogenesis of Parkinson’s disease is extremely complicated, and it is still not fully
understood as yet. However, the abnormal β oscillation in basal ganglia has been proved
to be closely related to Parkinson’s disease. In order to further explore the etiology and
treatment of Parkinson’s disease, this paper proposed a new fractional BGTH loop model
with time delay based on integer-order Parkinson’s models in previous research. Through
the simulation of Nambu and Tachibana’s experiment, we validated the correctness of
the new fractional model. Then we performed Hopf bifurcation analysis on the new
fractional model and proved the existence of the Hopf bifurcation point, which showed
that the system would produce periodic oscillation with the increase of time delay. Finally,
the important influence of related parameters on the system state was verified through
numerical simulations.

In addition, the fractional BGTH loop differential model in this paper provides more
flexibility for model fitting and parameter estimation. From the simulation of the exper-
iment in Section 2 we can see that the choice of the fractional order α also plays an
important role in the analysis of system oscillation. It is hoped that the results of this
paper can provide a deeper understanding for the study of Parkinson’s disease.

Appendix

Specific formulae not given in Section 2.3 will be presented in this section.

b1 =
8

T
, b2 = a12a21 + a58a85 +

28

T 2
,

b3 =
6a58a85 + 6a12a21

T
+

56

T 3
,
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b4 = a17a68a76a81 − a17a31a63a76

+
a12a21a58a85 + 15a12a21 + 15a58a85

T 2
+

70

T 4
,

b5 = a17a41a54a65a76 − a17a58a65a76a81

+
4a17a68a76a81 + 4a12a21a58a85 − 4a17a31a63a76

T

+
20a58a85 + 20a12a21

T 3
+

56

T 5
,

b6 = a17a41a54a68a76a85 − a17a31a58a63a76a85

+
3a17a41a54a65a76 − 3a17a58a65a76a81

T

+
6a12a21a58a85 + 6a17a68a76a81 − 6a17a31a63a76

T 2

+
15a12a21 + 15a58a85

T 4
+

28

T 6
,

b7 =
2a17a41a54a68a76a85 − 2a17a31a58a63a76a85

T

+
3a17a41a54a65a76 − 3a17a58a65a76a81

T 2

+
4a12a21a58a85 − 4a17a31a63a76 + 4a17a68a76a81

T 3

+
6a12a21 + 6a58a85

T 5
+

8

T 7
,

b8 =
a17a41a54a68a76a85 − a17a31a58a63a76a85

T 2

+
a17a41a54a65a76 − a17a58a65a76a81

T 3

+
a12a21a58a85 + a17a68a76a81 − a17a31a63a76

T 4

+
a12a21 + a58a85

T 6
+

1

T 8
;

β1 =
8

T
, β2 =

28

T 2
, β3 =

56

T 3
, β4 =

70

T 4
, β5 =

56

T 5
,

β6 = a17a41a54a68a76a85 − a17a31a58a63a76a85 +
28

T 6
,

β7 =
2a17a41a54a68a76a85 − 2a17a31a58a63a76a85

T
+

8

T 7
,

β8 =
a17a41a54a68a76a85 − a17a31a58a63a76a85

T 2
+

1

T 8
,

β9 = a58a85 + a12a21, β10 =
6a58a85 + 6a12a21

T
,

β11 =
15a12a21 + 15a58a85

T 2
, β12 =

20a12a21 + 20a58a85
T 3

,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A novel fractional operator-based model for Parkinson’s disease 513

β13 =
15a58a85 + 15a12a21

T 4
, β14 =

6a12a21 + 6a58a85
T 5

,

β15 =
a12a21 + a58a85

T 6
,

β16 = a12a21a58a85 + a17a68a76a81 − a17a31a63a76,

β17 =
4a12a21a58a85 + 4a17a68a76a81 − 4a17a31a63a76

T
,

β18 =
6a12a21a58a85 + 6a17a68a76a81 − 6a17a31a63a76

T 2
,

β19 =
4a12a21a58a85 + 4a17a68a76a81 − 4a17a31a63a76

T 3
,

β20 =
a12a21a58a85 + a17a68a76a81 − a17a31a63a76

T 4
,

β21 = a17a41a54a65a76 − a17a58a65a76a81,

β22 =
3a17a41a54a65a76 − 3a17a58a65a76a81

T
,

β23 =
3a17a41a54a65a76 − 3a17a58a65a76a81

T 2
,

β24 =
a17a41a54a65a76 − a17a58a65a76a81

T 3
;

d1 = cos 4π, d2 = β1 cos
7απ

2
, d3 = β2 cos 3π,

d4 = β3 cos
5απ

2
, d5 = β4 cos 2π, d6 = β5 cos

3απ

2
,

d7 = β6 cosπ, d8 = β7 cos
απ

2
, d9 = β8,

d10 = sin 4π, d11 = β1 sin
7απ

2
, d12 = β2 sin 3π,

d13 = β3 sin
5απ

2
, d14 = β4 sin 2π, d15 = β5 sin

3απ

2
,

d16 = β6 sinπ, d17 = β7 sin
απ

2
, d18 = β9 cos 3π,

d19 = β10 cos
5απ

2
, d20 = β11 cos 2π, d21 = β12 cos

3απ

2
,

d22 = β13 cosπ, d23 = β14 cos
απ

2
, d24 = β15,

d25 = β9 sin 3π, d26 = β10 sin
5απ

2
, d27 = β11 sin 2π,

d28 = β12 sin
3απ

2
, d29 = β13 sinπ, d30 = β14 sin

απ

2
,

d31 = β16 cos 2π, d32 = β17 cos
3απ

2
, d33 = β18 cosπ,

d34 = β19 cos
απ

2
, d35 = β20, d36 = β16 sin 2π,
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d37 = β17 sin
3απ

2
, d38 = β18 sinπ, d39 = β19 sin

απ

2
,

d40 = β21 cos
3απ

2
, d41 = β22 cosπ, d42 = β23 cos

απ

2
,

d43 = β24, d44 = β21 sin
3απ

2
, d45 = β22 sinπ,

d46 = β23 sin
απ

2
.
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